

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OCAÑA			
Documento	Código	Fecha	Revisión
FORMATO HOJA DE RESUMEN PARA TRABAJO DE GRADO	F-AC-DBL-007	10-04-2012	А
DIVISIÓN DE BIBLIOTECA	SUBDIRECTOR ACADEMICO		Pág. i(186)

RESUMEN – TRABAJO DE GRADO

AUTORES	YARINET CARVAJAL MENESES	
	KELLY YOHANA MACHADO GALVÁN	
FACULTAD	FACULTAD DE INGENIERAS	
PLAN DE ESTUDIOS	INGENIERIA CIVIL	
DIRECTOR	ANDREA LORENA VERGEL ROMERO	
TÍTULO DE LA TESIS	MODELACIÓN DE LA MOVILIDAD VEHICULAR DE LAS	
	VÍAS CIRCUNDANTES A LA PLAZA PARQUE 29 DE MAYO	
	DE LA CIUDAD DE OCAÑA (NORTE DE SANTANDER),	
	MEDIANTE EL SOFTWARE PTV VISSIM	
RESUMEN		
(70 palabras aproximadamente)		

LAS CONGESTIONES CAUSADAS POR EL TRÁFICO VEHICULAR SON UN PROBLEMA QUE ACOSA AL MUNDO ENTERO, PUES LA NECESIDAD DE MOVILIZARNOS DE UN PUNTO A OTRO RECORRIENDO LARGAS DISTANCIAS TRAE CONSIGO LA APARICIÓN DE MEDIOS DE TRANSPORTE PÚBLICOS Y PARTICULARES QUE SE TRADUCEN EN EXTERNALIDADES DEL TRÁFICO COMO CONGESTIÓN POR AUMENTO DE LOS VOLÚMENES VEHICULARES; OCAÑA NORTE DE SANTANDER EN SUS ARTERIAS PRINCIPALES, COMO LAS VÍAS QUE CONDUCEN AL CENTRO DE LA CIUDAD Y LAS VÍAS QUE RODEAN EL PARQUE 29 DE MAYO, SE VE AFECTADA POR ESTE CASO EN PARTICULAR, PUES EL MAL USO QUE LE DAN LOS CONDUCTORES Y EN ALGUNAS PARTES EL POCO ESPACIO PARA LA CIRCULACIÓN DE LOS AUTOMÓVILES SE CONVIERTE EN UN CAOS EN ESPECIAL EN LAS HORAS DE MÁXIMA DEMANDA..

CARACTERÍSTICAS			
PÁGINAS: 186	PLANOS:	ILUSTRACIONES:	CD-ROM:

MODELACIÓN DE LA MOVILIDAD VEHICULAR DE LAS VÍAS CIRCUNDANTES A LA PLAZA PARQUE 29 DE MAYO DE LA CIUDAD DE OCAÑA (NORTE DE SANTANDER), MEDIANTE EL SOFTWARE PTV VISSIM.

Autoras

YARINET CARVAJAL MENESES KELLY YOHANA MACHADO GALVÁN

Trabajo de grado presentado como requisito para optar el título de Ingeniero Civil

Director

ANDREA LORENA VERGEL ROMERO

Ingeniera Civil

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OCAÑA FACULTAD DE INGENIERAS INGENIERIA CIVIL

Ocaña, Colombia

Octubre de 2017

Agradecimientos

A la ingeniera Andrea Vergel por compartir con nosotras sus conocimientos y su tiempo y ser nuestra guía durante todo el proceso.

A nuestros compañeros que nos brindaron su ayuda en los aforos vehiculares, sin importar el clima y las largas jornadas, sin ustedes nada de esto hubiese sido posible.

A la Universidad Francisco de Paula Santander Ocaña, por el acompañamiento técnico en la realización del estudio topográfico.

Y a todos los que se vincularon al proyecto con una idea, una opinión o una palabra de ánimo.

Resumen

Las congestiones causadas por el tráfico vehicular son un problema que acosa al mundo entero, pues la necesidad de movilizarnos de un punto a otro recorriendo largas distancias trae consigo la aparición de medios de transporte públicos y particulares que se traducen en externalidades del tráfico como congestión por aumento de los volúmenes vehiculares; Ocaña norte de Santander en sus arterias principales, como las vías que conducen al centro de la ciudad y las vías que rodean el parque 29 de mayo, se ve afectada por este caso en particular, pues el mal uso que le dan los conductores y en algunas partes el poco espacio para la circulación de los automóviles se convierte en un caos en especial en las horas de máxima demanda. Es por ello que surge la necesidad de plantear alternativas que mejoren el tránsito vehicular en la zona en estudio haciendo uso del software de origen alemán PTV VISSIM, que recrea las situaciones actuales y las posibles alternativas mediante la simulación de características de vías, conductores y vehículos; además de la información de campo recolectada mediante aforos vehiculares, estudios topográficos, de velocidad, y de colas y demoras. Las tres alternativas propuestas son: creación de un carril rápido exento de controladores semafóricos, cambio de sentido de circulación a las carreras 12 y 13 y, por último, el ajuste a los ciclos de los controladores semafóricos; tras la simulación se determina que la alternativa con mejores resultados, pues disminuye las colas a la mitad y permite en ingreso de 250 nuevos vehículos es el ajuste a los ciclos semafóricos.

Palabras clave: tránsito, congestión, ptv Vissim, semáforos, modelación.

Abstract

Congestion caused by vehicular traffic is a problem that affects the entire world, because the urge to move from one point to another traveling long distances brings the appearance of means of transport, a fact that translates into traffic externalities such as congestion by increasing the vehicular volume; Ocaña Norte de Santander, in its main arteries, such as the roads leading to the center of the city and the roads surrounding the park 29 de mayo, is affected by this particular case by the reduction of the car's circulation space as a consequence of the improper parking that generates chaos, especially in the maximum demand hours and the lack of citizen culture. This is why there is a need to propose alternatives to improve the vehicular traffic in the area under study, using the german software PTV VISSIM, which recreates the current situation and the possible alternatives through the simulation of road, vehicular and traffic characteristics and driving behaviors; it is also added to the software the field information collected through vehicular gauges, topographic, speed and delays studies. The three proposed alternatives are: creation of a quick lane free of traffic lights, change of traffic direction to streets 12 and 13 and, finally, the adjustment to the cycles of the traffic lights; after the simulation it is determined that the alternative with better results, because it diminishes the queues in half and allows in the entrance of 250 new vehicles, is the adjustment to traffic light cycles.

Keywords: transit, congestion, ptv Vissim, traffic lights, modeling.

Índice

niroduccion	1
Capítulo 1: Modelación de la movilidad vehicular de las vías circundantes a la plaza parque le mayo de la ciudad de Ocaña (Norte de Santander), mediante el software PTV Vissim	
1.1. Planteamiento del problema	3
1.2. Formulación del problema	4
1.2. Objetivos	4
1.3.1.Objetivo general.	4
1.3.2.Objetivos específicos.	5
1.4.Justificación	6
1.5.Delimitaciones	7
1.5.1.Geográficas	7
1.5.2.Temporales	8
1.5.3.Conceptuales	8
1.5.4.Operativas	8
Capítulo 2: Marco referencial	9
2.1.Marco histórico	9
2.2.Marco contextual	13
2.3.Marco conceptual	13
2.3.1.Estudios de ingeniería de tránsito.	13
2.3.2.Carretera.	14
2.4.Marco teórico	16
2.4.1.Semáforos	24
2.4.2.PTV Vissim	25
2.4.3.Norma RILSA	29
2.4.4.Modelo de seguimiento de Wiedemann 74.	30
2.4.5.Tipología de intersecciones.	32
2.5.Marco legal	40
Capítulo 3: Diseño metodológico	
3.1.Tipo de investigación	43

3.2.Población
3.3.Muestra
3.4.Recolección de la información
3.4.1.Fuentes Primarias
3.4.2.Fuentes secundarias. 44
3.4.3.Trabajo de campo
3.4.4.Trabajo de oficina
3.5.Análisis y evaluación de la información procesada
Capítulo 4: Presentación de resultados
4.1. Caracterizar el área de estudio mediante un levantamiento topográfico para determinar las propiedades altimétricas y planimétricas a tener en cuenta para el modelado
4.2.Definir el transito circundante a la plaza Parque 29 de mayo por medio de estudios de tránsito y aforos, recolectando los datos necesarios para cargar el software
4.3.Modelar el flujo vehicular estudiado, los controladores de tránsito existentes y las posibles alternativas que mejoren la movilidad de las vías circundantes a la plaza Parque 29 de mayo; utilizando el software PTV Vissim
4.3.1.Planteamiento de alternativa 1. Creación de un carril exclusivo, exento de controladores semafóricos
4.3.2.Planteamiento de alternativa 2. Modificación del sentido de las carreras 12 y 13 104
4.3.3.Planteamiento de alternativa 3. Ajuste de los ciclos semafóricos existentes en las intersecciones y eliminación de paradas de servicio público en las vías que rodean el parque Plaza 29 de mayo
4.4. Analizar los resultados obtenidos de la modelación realizada en el software que permita establecer con seguridad la alternativa a aplicar en el lugar objeto de estudio
4.4.1. Análisis de resultados de la modelación en VISSIM 7 de la situación actual del flujo vehicular a la plaza parque 29 de mayo de la ciudad de Ocaña
4.4.2. Análisis de resultados de la modelación en VISSIM 7 alternativa 1, creación de un carril exclusivo, exento de controladores semafóricos
4.4.3. Análisis de resultados de la modelación en VISSIM 7 alternativa 2, cambio de sentido a la carrera 13 y carrera 12
4.4.4.Análisis de resultados de la modelación en VISSIM 7 alternativa 3, cambios de tiempos en los ciclos semafóricos
4.5.Definir el presupuesto de evaluación de la mejor alternativa, mediante la elaboración del APU para establecer si la propuesta es viable

Conclusiones	135
Recomendaciones	138
Referencias bibliográficas	139
Apéndices	142
Apéndice a: Resumen por entradas de la Recolección de datos de campos en el afo	ro vehicular
de los días jueves, sábado y martes consecutivamente.	143

Lista de Tablas

Tabla 1. Movimientos en intersecciones Norma RILSA	30
Tabla 2. Volumen de vehículos mixtos en la hora de máxima demanda el jueves 25 de mayo	60
Tabla 3. Volumen de vehículos mixtos en la hora de máxima demanda el sábado 27 de mayo .	60
Tabla 4. Composición vehicular por acceso	62
Tabla 5. Composición vehicular porcentual por acceso	62
Tabla 6. Velocidades máximas definidas para cada tipo de vehículo	
Tabla 7. Composición vehicular por accesos	
Tabla 8. Composición vehicular porcentual por accesos	73
Tabla 9. Composición vehicular por accesos en período de pre-carga	74
Tabla 10. Composición vehicular porcentual por accesos en período de pre-carga	
Tabla 11. Composición vehicular por accesos en período de pos-carga	75
Tabla 12. Composición vehicular porcentual por accesos en período de pos-carga	75
Tabla 13.Total de vehículos por entradas y salidas	79
Tabla 14. Tasa de servicio para rutas de transporte público en Ocaña	88
Tabla 15. Resumen de estudio de colas y demoras	94
Tabla 16. Arreglo tabular de los datos del estudio de velocidad de punto	98
Tabla 17. Rutas que podrían usar el carril rápido	104
Tabla 18. Ajuste de rutas para la alternativa 2: cambio de sentidos	107
Tabla 19. Ciclos semafóricos existentes	109
Tabla 20. Volumen vehicular promedio para la modelación de la situación actual	117
Tabla 21. Longitud promedio de las colas para la modelación de la situación actual	118
Tabla 22. Demoras promedio para la modelación de la situación actual	119
Tabla 23. Determinación de los porcentajes de error para calibración de modelo	120
Tabla 24. Resumen de los porcentajes de error por accesos	120
Tabla 25. Alternativa 1: volúmenes vehiculares promedio	122
Tabla 26. Comparación entre los volúmenes actuales y los de la alternativa 1	123
Tabla 27. Comparación longitudes de colas, alternativa 1	124
Tabla 28. Comparación de demoras promedio, alternativa 1	125
Tabla 29. Comparación de volúmenes vehiculares, alternativa 1	125
Tabla 30. Volúmenes promedio, alternativa 2	127
Tabla 31. Volúmenes vehiculares promedio, alternativa 3	129
Tabla 32. Comparación de volúmenes vehiculares, alternativa 3	130
Tabla 33. Comparación longitudes de cola, alternativa 3	131
Tabla 34. Comparación demoras, alternativa 3	132
Tabla 35. Resumen diferencia de vehículos por intersecciones	132
Tabla 36. Análisis de precios unitarios	133
Tabla 37. Costos totales	134
Tabla 35. Análisis de precios unitarios.	.136
Tabla 34. Costos totales	137

Lista de figuras

Figura 1. Delimitación geográfica de la zona de estudio.	8
Figura 2. Nomenclatura de movimientos Norma RILSA.	29
Figura 3. Modelo de seguimiento vehicular.	31
Figura 4. Tipos de intersecciones.	
Figura 5. Intersecciones en T y en Y	34
Figura 6. Intersecciones en Raqueta y Falsa glorieta.	35
Figura 7. Intersecciones en Cruz y en X.	36
Figura 8. Intersecciones en T.	
Figura 9. Intersecciones en Y.	38
Figura 10. Intersecciones de 4 ramales.	
Figura 11. Estaciones no. 1, 2 y 3	47
Figura 12. Cuarta estación del levantamiento topográfico Separador Banco Caja – social	49
Figura 13. Nube de puntos del levantamiento topográfico en AutoCAD	49
Figura 14. Plano topográfico	50
Figura 15. Detalle de las capas en el plano	51
Figura 16. Aforadores en gradas de Crediservir	52
Figura 17. Aforadores en gradas Banco Caja Social	53
Figura 18. Aforadores Edificio Azul	54
Figura 19. Aforador en el parque 29 de mayo	55
Figura 20. Codificación de movimientos según Norma RILSA	56
Figura 21. Movimientos vehiculares registrados en los conteos	57
Figura 22. Encabezado del formato de aforo	58
Figura 23. Variación del flujo vehicular jueves 25 de mayo	58
Figura 24. Variación del flujo vehicular sábado 27 de mayo	59
Figura 25. Variación del flujo vehicular martes 30 de mayo	59
Figura 26. Composición vehicular entrada droguería alemana	63
Figura 27. Composición vehicular entrada Movistar	63
Figura 28. Composición vehicular entrada Torre de Pisa	64
Figura 29. Composición vehicular entrada Banco de Bogotá	64
Figura 30. Inserción de fondo topográfico	66
Figura 31. Creación de tramos de vías	67
Figura 32. Creación de conectores	68
Figura 33. Distribución de modelos	69
Figura 34. Visualización de los modelos de vehículos en 3D	70
Figura 35. Modelo 3D de un Taxi	70
Figura 36. Creación de tipos de vehículos	71
Figura 37. Determinación de las clases de vehículos	72
Figura 38. Asignación de porcentajes a las composiciones vehiculares	
Figura 39. Entrada Alemana: Rutas de salida	77

Figura 40. Entrada Movistar: Rutas de salida	77
Figura 41. Entrada Catedral: Rutas de salida	78
Figura 42. Entrada Banco de Bogotá: Rutas de salida	78
Figura 43. Asignación de rutas	81
Figura 44. Visualización de las zonas de conflicto en las intersecciones	81
Figura 45. Determinación de prioridad en las zonas de conflicto	82
Figura 46. Opciones predefinidas en Vissim para el comportamiento de los conductores	83
Figura 47. Ajuste de parámetros de seguimiento del comportamiento de los conductores	84
Figura 48. Ajuste de parámetros de cambio de carril del comportamiento de los conductores.	84
Figura 49. Ajuste de parámetros del comportamiento lateral de los conductores	85
Figura 50. Ingreso de los parámetros para comportamiento Lateral motocicleta: Seguimiento	86
Figura 51. Parámetros de comportamiento, Lateral motocicleta: Cambio de carril	86
Figura 52. Ingreso de los parámetros para comportamiento Lateral motocicleta	87
Figura 53. Creación de nodos en las intersecciones	87
Figura 54. Creación de rutas de transporte público	89
Figura 55. Creación de paradas de transporte público	
Figura 56. Activación de parada PT	
Figura 57. Programación del ciclo en los semáforos de una intersección	91
Figura 58. Ajuste de parámetros en un nuevo semáforo	92
Figura 59. Edición de la apariencia de un semáforo	93
Figura 60. Modificación de la apariencia de un semáforo	
Figura 61. Configuración de los ajustes de evaluación	95
Figura 62. Configuración de los parámetros de simulación	95
Figura 63. Listas de resultados producto de la evaluación	96
Figura 64. Histograma de frecuencia del estudio de velocidad de punto	99
Figura 65. Línea de distribución de frecuencia relativa del estudio de velocidad de punto	99
Figura 66. Línea porcentual de frecuencia acumulada (ojiva) del estudio de velocidad de punt	
Figura 67. Coeficientes de fricción máximo.	
Figura 68. Situación actual modelada en el software Vissim	
Figura 69. Modelación de la alternativa 1: Carril rápido.	
Figura 70. Reajuste de la codificación de movimientos para los nuevos sentidos de circulación de movimientos para los nuevos de circulación de movimientos para los nuevos de circulación de movimientos de circulación de ci	
según la norma RILSA	
Figura 71. Modelación de la situación actual con los sentidos de circulación establecidos	
Figura 72. Modelación de la alternativa 2: cambio de sentido de circulación	
Figura 73. Identificación de las fases de los ciclos semafóricos de la intersección Catedral	111
Figura 74. Identificación de las fases de los ciclos semafóricos de la intersección Banco de	
Bogotá	
Figura 75. Programa semafórico intersecciones catedral y Banco de Bogotá en Vissim	
Figura 76. Identificación de las fases de los ciclos semafóricos de la intersección Movistar	113

Figura 77. Identificación de las fases de los ciclos semafóricos de la intersección alemana	ı 113
Figura 78. Programa semafórico intersecciones Movistar y alemana	114
Figura 79. Lista de resultados por nodos	115
Figura 80. Reajuste de movimientos según norma RILSA	116
Figura 81. Modelación de la situación actual	121
Figura 82. Modelación de la alternativa 1: Carril rápido	122
Figura 83. Codificación de movimientos norma RILSA para el cambio de sentidos de	
circulación vehicular	126

Introducción

El origen de los medios de transporte se remonta a la época de la revolución industrial y la forma en la que esta etapa histórica rompió los esquemas del estilo de vida del hombre en la esfera social, económica, y dio inicio a la transformación de las ciudades para acoger al automóvil, invento representativo de la segunda etapa de la revolución, cuyo uso se extendería a las masas y modificaría el aspecto de las urbes con la creación de carreteras eficientes para su circulación. Sumado a la aparición de los medios de transporte que agilizaran la forma en que nos movilizamos, aparecen las externalidades del tráfico aquejando en menor o mayor escala a todas las ciudades del mundo.

La ingeniería de tránsito busca plantear alternativas y explorar nuevas soluciones que permitan a las personas movilizarse de manera más eficiente con tiempos de viaje que se ajusten a los recorridos, y haciendo de las ciudades y sus corredores, lugares por donde transitar sea una experiencia agradable. Una forma de averiguar si una alternativa es viable y arroja resultados que justifiquen su implementación, es la modelación mediante softwares de simulación que recrean las características de la zona que se estudia, y permita jugar con las variables que supondrían una mejora en la situación analizada.

El caso de estudio del presente trabajo es la problemática de las vías que rodean al parque plaza 29 de mayo de la ciudad de Ocaña, y tras el análisis de los datos que arrojó la simulación de cada una de las modelaciones realizadas, se planteó el presupuesto de la alternativa más viable. Las siguientes fueron las opciones analizadas: creación de un carril rápido exento de controladores semafóricos, el cambio de sentidos de circulación vehicular por las

carreras 12 y 13, y el ajuste de los ciclos de los controladores semafóricos existentes. Para llevar a cabo dicho análisis fue necesario recolectar la información en campo, referente a volúmenes vehiculares, estudios de colas, demoras y velocidades.

Capítulo 1: Modelación de la movilidad vehicular de las vías circundantes a la plaza parque 29 de mayo de la ciudad de Ocaña (Norte de Santander), mediante el software PTV

Vissim

1.1. Planteamiento del problema

Históricamente la ciudad de Ocaña ha sido protagonista en el desarrollo de la región, convirtiéndose en la plaza para que los agricultores vendan sus productos y el destino para una gran cantidad de estudiantes, que cada año se trasladan desde pueblos de la provincia, la región Caribe o departamentos lejanos, como el Putumayo, para acceder a la educación superior. El creciente aumento demográfico se ve reflejado positivamente en el desarrollo económico de la ciudad, pero a su vez enfrenta a la población a externalidades como la congestión vehicular.

La red vial se caracteriza por tener calles angostas, en las que el tráfico en dos sentidos a veces se torna difícil, y sumado a esto el panorama en la educación vial de la población Ocañera no es muy alentador, lo que se traduce en imprudencias por parte de los conductores, carriles repletos de vehículos en vías donde no se permite el parqueo y un sistema de movilidad insostenible.

El plan de Acción de la Secretaría de Movilidad y Transito de Ocaña, en año 2013, proponía el cambio de sentido vial y el fortalecimiento de la señalización y semaforización en los sectores claves de la ciudad, como medida para disminuir los tiempos de desplazamiento (Alcaldía municipal de Ocaña, 2013). No obstante, en la actualidad y principalmente durante las

horas pico, se forman largas colas en los semáforos haciendo que el recorrido entre dos esquinas consecutivas del parque se vea entorpecido por demoras.

El presente proyecto busca analizar la situación de movilidad en la zona céntrica de la ciudad, de las vías inmediatamente circundantes a la Plaza 29 de mayo, sector donde se concentra gran parte de la actividad comercial y administrativa, y es paso obligado para casi todas rutas del servicio de transporte público y ciudadanos que van a sus destinos atravesando la ciudad, lo que obliga a tomar medidas que reduzcan las externalidades que se presentan.

Por tanto, la modelación en Vissim constituye una herramienta que permitirá observar lo que sucede actualmente y simular cambios que arrojen soluciones para presentar una propuesta con la restructuración de los mecanismos de control de tránsito.

1.2. Formulación del problema

¿Cuál sería la mejor alternativa para mejorar la movilidad vehicular de la plaza Parque 29 de mayo, modelada mediante el software PTV Vissim?

1.3. Objetivos

1.3.1. Objetivo general. Realizar el estudio para la modelación de la movilidad vehicular de las vías circundantes a la plaza parque 29 de mayo de la ciudad de Ocaña (Norte de Santander), mediante el software PTV Vissim.

1.3.2. Objetivos específicos.

- Caracterizar el área de estudio mediante un levantamiento topográfico para determinar las características altimétricas y planimétricas a tener en cuenta para el modelado.
- Definir el transito circundante a la plaza Parque 29 de mayo por medio de estudios de tránsito y aforos, recolectando los datos necesarios para cargar el software.
- Modelar el flujo vehicular estudiado, los controladores de tránsito existentes y las
 posibles alternativas que mejoren la movilidad de las vías circundantes a la plaza
 Parque 29 de mayo; utilizando el software PTV Vissim.
- Analizar los resultados obtenidos de la modelación realizada en el software que permita establecer con seguridad la alternativa a aplicar en el lugar objeto de estudio.
- Definir el presupuesto de evaluación de la mejor alternativa, mediante la elaboración del APU para establecer si la propuesta es viable.

1.4. Justificación

Una de las necesidades inaplazables de las ciudades es garantizar la eficiencia de su sistema de movilidad en la estructura vial.

Ocaña posee una organización jerárquica, como afirmó Ortiz "Ocaña presentó un tipo de crecimiento denominado 'mancha de aceite'" (Alcaldía municipal de Ocaña, 2013), desde la Plaza 29 de mayo hacia los alrededores, de ahí la importancia de garantizar la fluidez de la movilidad en la zona. Este tipo de crecimiento ha centralizado las actividades administrativas y de comercio en el centro lo cual se traduce en una alta concentración de personas y vehículos a diario.

Es apremiante estudiar la problemática de la invasión por vehículos parqueados en dos de los tres carriles que tienen las calles circundantes a la plaza, simular en el software las condiciones actuales y luego las ideales para observar que pasaría si la descongestión de este espacio permite que la movilidad sea sostenible.

La modelación ayuda a escoger la mejor alternativa sin incomodar al usuario, ni realizar ninguna inversión en infraestructura, por ejemplo, menguando el área de las esquinas del parque asimilándolo más una glorieta, permitiría que los conductores que van por el carril inmediato a la plaza, circulen sin hacer el pare en los semáforos, lo cual evitaría una cola y disminuiría el tiempo de recorrido sin incomodar a los usuarios de este sector.

Es necesario examinar hasta qué punto puede ser solucionada la problemática de movilidad educando a los conductores y a los transeúntes, pues la socialización de la seguridad vial garantiza una mejor dinámica en el tránsito.

Debe considerarse en el contexto global, el rol funcional que cumple Ocaña como centro de intercambio de servicios en el ámbito comercial, financiero y turístico para los municipios de la provincia y del sur del Cesar y Bolívar; eje de intercambio entre la capital del Departamento Norte de Santander y la Costa Atlántica, el cual debe desarrollar en términos de movilidad, una función fundamental en la canalización de flujos, de bienes, personas y servicios y de su redistribución hacia otros horizontes (Alcaldía municipal de Ocaña, 2013).

Por lo anterior, el presente proyecto persigue la búsqueda de alternativas estudiando el comportamiento de los ciudadanos, que de ser aplicadas solucionen los problemas existentes de movilidad y optimicen la calidad de vida de la población.

1.5. Delimitaciones

1.5.1.Geográficas. El proyecto se llevará a cabo en la ciudad de Ocaña ubicado en la zona nororiental del departamento del Norte de Santander, la cual cuenta con una extensión de 8.602 km² con unas coordenadas geográficas de 8° 14′ 15 n 73° 2′ 26 o. y se ejecutará en las vías circundantes a la plaza 29 de mayo, como lo es calle 10 y 11 entre carreras 12 y 13 y carreras 12 y 13 entre calles 10 y 11.

Figura 1. Delimitación geográfica de la zona de estudio.

Fuente: Google Earth

<u>1.5.2.Temporales.</u> Esta investigación se llevará a cabo en un período de 4 meses, tiempo necesario para realizar todas las actividades previstas.

1.5.3.Conceptuales. Para llevar a cabo el estudio para la modelación de las vías circundantes a la plaza Parque 29 de mayo, se necesita la utilización de conceptos como: Plan básico de ordenamiento territorial (PBOT), Plan maestro de movilidad, Modelos de simulación de tránsito, PTV Vissim, Estudios de tránsito (velocidades, colas, volúmenes), Dispositivos para el control del tránsito, Capacidad y niveles de servicio en intersecciones con semáforo.

1.5.4.Operativas. La universidad Francisco de Paula Santander Ocaña se vinculará al proyecto en las actividades de levantamiento topográfico, conteos vehiculares y modelación en el software PTV Vissim cuya licencia fue adquirida por la institución.

Capítulo 2: Marco referencial

2.1. Marco histórico

"La movilidad de los ciudadanos es una fuente de cohesión social que se ha convertido en la cuarta condicion de integracion social, después de la vivienda, la salud y la educación." (Obra social: Caja Madrid, 2010).

Remitir el estudio de la movilidad a sus orígenes en la historia, conduce al hecho que el hambre fue la causa que llevó al hombre a moverse para asegurar su comida y así se inició la forma de transporte tal y como la conocemos hoy. Dado que el ser humano es débil como fuerza de transporte, necesitó, al principio, domesticar a los animales. El perro fue el primero, después utilizó animales más grandes y fuertes para transportar mercancías más pesadas (Cardona, 2016).

El rápido proceso de urbanizacion inciado en la segunda mitad del siglo XX a nivel mundial, trajo como resultado un incremento del número de ciudades y de sus habitantes sin precendentes en la historia reciente. Por lo que, el mundo enfrenta hoy un fenómeno desconocido de hacinamiento y de múltiples retos, entre ellos el de la movilidad (Castro García, 2014).

La movilidad y la urbanización son dos conceptos que van de la mano, en un mundo donde el porcentaje de personas que habitan la zona rural se queda muy abajo frente al numero de los que migran a las ciudades en busca de una mejor calidad de vida. En 1950, más de dos tercios (70 por ciento) de las personas en todo el mundo vivían en asentamientos rurales y menos de un tercio (30 por ciento) en los asentamientos urbanos. Según las naciones unidas en su

Prospecto de Urbanizacion Mundial en 2014, el 54 por ciento de la población mundial era urbana. Todo parece indicar que la urbanización global continuará, por lo que en 2050, el mundo será un tercio rural (34 por ciento) y dos tercios urbano (66 por ciento), más o menos a la inversa de la distribución de la población rural-urbana de mediados del siglo XX (United Nations.

Departament of economic and social affairs, 2014).

Como afirma Castro García (2014), el modelo de movilidad (actual) fomenta la exclusión social, pues limita el ingreso a la ciudad a los sectores ams pobres, ajenos al uso del automovil propio y a expensas de un transporte público deficiente; por lo tanto, la movilidad no debe ser entendida como un medio o forma que permita desplazamientos, ni bajo la óptica económia de un proceso de oferta y demanda; la movilidad tiene que ser vista como factor de equilibruo social y uno de los elementos centrales de las sociedades urbanas, que no incorpora a todos los ciudadanos de la misma manera, la movilidad se encuentra distribuida de manera desigual en el espacio urbano y se relaciona directamente con la condición social de los habitantes de la ciudad, por lo tanto, el acceso a la movilidad se establece como un problema de importancia para sus habitantes y el transporte público se convierte en un media de inclusión social, de esta forma se puede estalecer la premisa siguiente: a menos movilidad, mayor segregación; entendiendo esta última como el origen de desigualdades y conflictos sociales.

Para abordar el tema de movilidad en el país centraremos la atención en la capital colombiana, densamente poblada por los propios y visitantes que llegan cada año buscando oportunidades a la ciudad. A lo largo de su historia se resaltan hechos que ilustran el proceso que ha vivido Bogotá en cuanto a movilidad.

En 1884 se inauguró el primer sistema de transporte público urbano: el tranvía tirado por mulas, propiedad de la empresa Bogotá City Railway Company. En 1889 se inaugura el tren de la Sabana. Luego en 1916 se inicia la construcción de la línea del tranvía a San Cristóbal (Periódico El Tiempo, 2000).

En 1920 Se pasa del tranvía de mulas al tranvía eléctrico. Dos años después aparecen los primeros tres buses de transporte público y en 1925 se funda la primera empresa privada de transporte urbano. Entre los años 1910 y 1940 el principal medio de transporte fue el tranvía de mulas y el eléctrico, donde el pasaje costaba cinco centavos que a finales de los años 30 movilizaba 49000 pasajeros a diario. Para 1947 la Empresa de Buses de Bogotá importa los primeros trolebuses fabricados en Canadá. También se comienzan a traer los autobuses construidos en aluminio. En 1959 se crea la Empresa Distrital de Transporte Urbano (EDTU) que pone a circular los trolebuses y que se acabaría luego en 1990. 1970 es la década en que el transporte público se diversifica con el uso de vehículos como busetas y colectivos. Ya para el año 2000 entra en operación el sistema de transporte masivo Transmilenio que movilizará en sus buses articulados el 12 por ciento de los pasajeros de la ciudad (350.000) (Periódico El Tiempo, 2000).

Según la secretaría distrital de planeación, en su estudio sobre la movilidad de los bogotanos desde una visión socio-económica en el 2005, el estrato social está ligado a las caracteristicas de la movilidad. Una persona de estrato bajo debe desplazarse distancias mas largas para realizar sus actividades, aunque realice menos viajes en comparación a los ciudadanos de estrato alto, su tiempo de viaje es mayor dadas las distancias.

La gestión del tránsito es difícil en la ciudad. La infraestructura, el incumplimiento de normas elementales de seguridad vial (cultura imperante) y el escaso control, hacen difícil la movilidad urbana. Ante la incapacidad para solucionar los problemas se apela, por una parte, a medidas restrictivas como la limitación de circulación en determinadas horas y, por otra, a medidas interesantes como la utilización de carriles reversibles (Banco de desarrollo de América latina, 2011).

La situación actual, y refiriendonos especificamente a la ciudad de Ocaña, obliga a quién esté interesado en intervenir el sistema de movilidad de la región, a analizar de nuevo y consecuentemente reestructurar el modelo de movilidad teniendo en cuenta problematicas como: la optimización del uso de la malla vial en la búsqueda de compensar el lento crecimiento de ésta respecto al del parque automotor, y la necesidad de descentralizar las actividades comerciales y administrativas, esta última abordada en el Documento de seguimiento y evaluación del Plan Básico de Ordenamiento Territorial de Ocaña 2015, como la necesidad de:

Articular la propuesta del plan maestro de movilidad con el modelo de ocupación urbano mediante la restricción de usos y actividades comerciales y de almacenamiento que generan alto impacto vehicular especialmente en el centro de la ciudad y en el área de la plaza de mercado público. Adicionalmente se incluyen nuevas categorías de uso del suelo en sectores propuestos como nodos funcionales hacia el norte, sur y centro de la ciudad que orientan el modelo urbano hacia una estructura policéntrica.

2.2. Marco contextual

El estudio se realizará en las vías circundantes a la plaza Parque 29 de mayo del municipio de Ocaña norte de Santander, específicamente por las carreras 12 y 13 y las calles 10 y 11, y a los tramos de dichas vías que constituyen los accesos y salidas del sistema; dichas arterias vehiculares son vías públicas tipo urbana, por las cuales transitan peatones y vehículos, y que representan un paso obligado para la flota de servicio urbano y los autos particulares, por la ubicación geográfica de la zona, en el corazón de la ciudad de Ocaña.

2.3. Marco conceptual

2.3.1. Estudios de ingeniería de tránsito. La información de la demanda de transporte de pasajeros y de carga y su relación con la oferta, permite conocer las características y necesidades de la población de la región, los niveles de servicio de la vialidad y características de seguridad. Sirve de base para el ordenamiento del sistema vial, proyecto de nuevas vías, el mejoramiento de las existentes o para la regulación del tránsito; también es un indicador del área de influencia de los centros de población (Coronado García, 1991).

La información se obtiene realizando los siguientes estudios:

- Volúmenes de tránsito.
- Velocidad y Demoras.
- Accidentes de Tránsito.
- Origen-Destino, mediante encuesta a conductores en puntos de carretera.
- Origen-Destino, mediante encuesta a pasajeros en centrales de Autobuses.

- Ascenso y Descenso de Pasajeros en Autobuses.
- Estudio de Transporte de Carga.

2.3.2. Carretera. Una carretera es una infraestructura de transporte especialmente acondicionada dentro de toda una faja de terreno denominada derecho de vía, con el propósito de permitir la circulación de vehículos de manera continua en el espacio y en el tiempo, con niveles adecuados de seguridad y comodidad. Las vías deben ser funcionales, seguras, cómodas, estéticas, económicas y compatibles con el medio ambiente (Álvarez Sifuentes & Gaitán, 2015).

Clasificación de las vías. Cárdenas, (2013) en el Manual de diseño geométrico de carreteras clasifica las vías así:

Según la necesidad operacional,

Carreteras primarias o de primer orden. Son aquellas vías troncales, transversales y de accesos a las capitales de los Departamentos, que cumplen la función básica de integración de las principales zonas de producción y de consumo del país y de éste con los demás países. Este tipo de carreteras puede ser de calzadas divididas según las exigencias del proyecto, y deben ser siempre pavimentadas.

Carreteras secundarias o de segundo orden. Son aquellas vías que unen cabeceras municipales entre sí y/o que provienen de una cabecera municipal y conectan con una carretera Primaria. Las carreteras consideradas como Secundarias pueden funcionar pavimentadas o en afirmado.

Carreteras terciarias o de tercer orden. Son aquellas vías de acceso que unen cabeceras municipales con sus veredas, o que unen veredas entre sí. Las carreteras consideradas como Terciarias deben funcionar en afirmado. En caso de pavimentarse deben cumplir con las condiciones geométricas estipuladas para las carreteras SecundariasSegún su competencia.

Según se encuentren a cargo de una determinada administración:

Carreteras nacionales. Son aquellas que están, ya sea directamente bajo la administración del Instituto Nacional de Vías INVIAS, o que se encuentran concesionadas bajo la administración de la Agencia Nacional de Infraestructura ANI. Forman la red primaria de carreteras.

Carreteras departamentales. Son aquellas de propiedad de los Departamentos. Forman la red secundaria de carreteras.

Carreteras veredales o caminos vecinales. Son aquellas vías a cargo del Instituto Nacional de Vías y de los municipios. Forman la red terciaria de carreteras.

Carreteras distritales y municipales. Son aquellas vías urbanas y/o suburbanas y rurales a cargo del Distrito o Municipio.

Según sus características,

Autopistas. Son vías de calzadas separadas, cada una con dos o más carriles y con control total de accesos. Las entradas y salidas de las autopistas se realizan únicamente a través de intersecciones a desnivel comúnmente llamadas distribuidores o intercambiadores.

Carreteras multicarriles. Son carreteras divididas o no, con dos o más carriles por sentido y con control parcial de accesos. Las entradas y salidas se realizan a través de intersecciones a desnivel y a nivel.

Carreteras de dos carriles. Constan de una sola calzada de dos carriles, uno por cada sentido de circulación, con intersecciones a nivel y acceso directo desde sus márgenes.

2.4. Marco teórico

PTV Vissim es el software líder a nivel mundial para la planificación de transporte, ingeniería de tránsito y simulación de tráfico basada en software, es un programa versatil, como lo es su amplia gama de usos que abarca la modelación de: geomtricas de las intersecciones, sistemas multimodales, tráfico en autopistas, medidas de gestión del tráfico, simulación del transporte público y de emisiones (PTV Group, s.f.). Un ejemplo del uso de éste software en el país es la adquissicion de la licencia de Vissim por parte de la Secretaría distrital de movilidad de Bogotá con el propósito de satisfacer de mejor manera sus propias necesidades técnicas y las necesidades de la población bogotana. El hecho de que esta plataforma sea, adicionalmente, la más utilizada por la comunidad académica en el país, se debe en gran medida a su capacidad de analizar tanto las intersecciones semaforizadas en sí mismas, como la interacción entre el flujo vehicular, los peatones y los usuarios de bicicletas. Lo anterior, ligado con la capacidad de generar ambientes de tres dimensiones sobre entornos creados en dos

dimensiones les proporciona a los usuarios de VISSIM numerosas ventajas (Robles, Ñañez, & Quijano, 2009).

Muchos proyectos de investigación se han llevado a cabo en el país, para modelar zonas con anomalías del tráfico vehicular, siguiendo un esquema o secuencia que en gran medida se repite y es el común denominador de dichos proyectos; primero se recolecta información de caracterización del tránsito vehicular, se realiza un levantamiento topográfico de la zona de estudio y se adelantan diversos estudios de tránsito para crear un modelo calibrado que refleje la situación actual y luego recrear sobre éste las alternativas que proponen los autores. Dichas alternativas van desde la creación de carriles que permitan mejorar los niveles de servicio, como se observa en el proyecto "MODELACIÓN DEL TRÁNSITO VEHICULAR EN EL SECTOR BOMBA EL AMPARO - SAO LA PLAZUELA, CARTAGENA POR MEDIO DEL SOFTWARE PTV VISSIM" (Pájaro Zarpadiel & Quezada Narvaez, 2012) hasta la modificación de los ciclos semafóricos, como también existen proyectos con enfoques diferentes como la "COMPARACIÓN DE UN ENFOQUE MACROSCOPICO Y OTRO MICROSCOPICO AL ESTIMAR LAS DEMORAS POR LA CONGESTION URBANA", que busca relacionar las teorías base de los simuladores macroscópicos y microscópicos y encontrar un factor de escala para los resultados de demoras arrojados por ellos (Valladares Mejía, 2016).

La ciudad de Ocaña, aun cuando posee una población relativamente pequeña y su extensión geográfica no supera los 700 km², sufre las externalidades del tránsito vehicular, malestar al que ninguna urbe le es ajena. En el año 2013, se realizó en la región una microsimulación de una zona crítica en cuanto a movilidad, registrada en el trabajo de grado

"MODELACION DEL FLUJO VEHICULAR SOBRE LA AVENIDA FRANCISCO
FERNANDEZ DE CONTRERAS EN EL MUNICIPIO DE OCAÑA NORTE DE
SANTANDER" adelantado por los ingenieros Eider López Angarita y Andrea Lorena Vergel
Romero, que buscaba crear un modelo que dismunuyera la congestión, las colas y las demoras en
ésta que es una arteria de circulación principal dela ciudad. Dicha investigación comienza su
secuencia de pasos con la recolección de información en campo, mediante aforos vehiculares,
estudios de tránsito y topográficos, para obtener el material que luego sería cargado en el
software PTV Vissim, en busqueda de crear un modelo calibrado en el que luego se diseñarían
las alternativas planteadas por los autores, que fueron: semaforización de la intersección primero
de mayo, construcción de una glorieta para la intersección de los seguros. Tras analizar los datos
arrojados por el software los autores concluyen que la alternativa que optimiza la situación de
movilidad en la zona de estudio es la semaforización.

En el año 2016, los ingenieros Kebin Danilo Y Wilson Yamit Pacheco Chinchilla, adelantan una trabajo de grado que busca generar alternativas que agilicen el recorrido de las ambulancias que ingresan al hospital Emiro Quintero Cañizares desde la avenida Francisco Fernandez de Contreras, titulado "MODELACIÓN DE ALTERNATIVAS PARA LA RECUPERACION DEL PASO EXCLUSIVO PARA VEHÍCULOS DE ATENCIÓN A EMERGENCIAS, EN LA AVENIDA FRANCISCO FERNÁNDEZ DE CONTRERAS DEL MUNICIPIO DE OCAÑA, NORTE DE SANTANDER". Las alternativas simuladas en dicho trabajo son: modificación del interceptor ubicado en el K050+088 ruta 70 tramo 7 sobre la avenida y la implementación de un paso elevado en el interceptor. Ambas alternativas reducían el tiempo de viaje de los conductores en al menos dos minutos, cifra que como afirman los autores, podría ser determinante al momento de salvar una vida.

Aforos. Los aforos vehiculares son el conteo y registro de la cantidad de automoviles que pasan por el punto donde se encuentra el aforador. El aforo manual es la forma básica de hacer un conteo, no obstante en la actualidad hay empresas que se dedican a llevar el censo con técnicas mas avanzadas como lazos inductivos y sensores piezoeléctricos.

Luego de la recopilación de datos en campo, se procede a calcular los parámetros de los diversos estudios que existen en la ingeniería de tránsito.

Aforo manual. Este tipo de aforos son los mas costosos dado que emplea personal cualificado para su realización. Su metodología es simple: el observador se coloca en una sección de carretera y realiza un conteo de todos los vehículos que circulan a través de ella, bien por medio de impresos destinados a tal efecto, bien a través de aparatos electrónicos o pulzadores.

La efectividad de este tipo de aforos es mayor que la del resto, ya que permitre distinguir entre los diferentes tipos de vehículos que transitan. En algunas situaciones se antoja imprescindible, como es el caso de las intersecciones, donde interesa cuantificar todos los movimientos posibles. El inconveniente que posee es que solo es recomndable para períodos cortos, no superiores a 24 horas, ya que su alto coste hace injustificable períodos de aforo superiores.

Aforos automáticos. Se basan en la utilización de mecanismos automáticos que detectan el paso de vehículos, procedieno a su conteo y posterior almacenamiento.

Los aparatos mas empleados en ese tipo de aforos son los neumáticos, que constan de un captador formado por un tubo de goma colocado transversalmente sobre la calzada, y un detector compuesto por una membrana formada por dos láminas metálicas que entran en contacto cada vez que un vehículo pisa el captador.

Otro tipo de sistemas empleados –aunque en menor medida- son los detectores de lazo o bucle, basados en la inducción electromagnética e incluso detectores basados en ondas de choque o en el láser.

Aforos móviles. En algunas ocasiones pueden interesar la determiación de aforos en un tramo definido, para lo que se recurre al conteo de vehículos desde otro automovil en movimiento e integrado en la corriente del tráfico.

La intensidad horaria empleando este peculiar método viene determianda por la siguiente expresión:

$$I = \frac{C + A - a}{T}$$

C: Número de vehiculos con el que se cruza el aforador.

A: Numero de vehiculos que nos adelanta.

a: Es el numero de vehiulos adelantados.

T: Tiempo de control.

Para no desvirtuar la medición efectuada interesa que el valor de T no sea excesivamente alto, ya que significaría que la intensidad obtenida no corresponde a una sección determinada, sino mas bien a un tramo de carretera.

Aforos fotográficos. Se basa en el control aéreo de la circulación, aprovechando los medios de los que se dispone para la vigilancia del tráfico, los papulares helicopteros DGT. Aun así, este método es caro y poco usual, aunque puede ofrecer información interesante acerca de las densidades, velocidades e incluso intensidades del trafico (Bañón & Beviá García, 2000).

Modelación del tráfico. El tránsito o tráfico es la circulación de personas en el interior de un sistema. Algunas de ellas pueden estar en vehículos o en el espacio público. Por ello, la ingeniería de tráfico es la aplicación de técnicas para aminorar los impactos sociales, urbanos y ambientales derivados del tránsito (Dextre, 2011).

Esta modelación permite conocer la situación actual del proyecto y predecir la futura condición del flujo vehicular a través de los parámetros considerados para el estudio.

Tipos de modelación del tráfico. Los modelos empleados para los estudios de los proyectos se pueden clasificar de diferentes formas dependiendo del nivel de análisis y detalles que se quiera lograr.

Modelos discretos. Estos modelos se caracterizan por considerar la simulación del proyecto, una variación instantánea de los parámetros de estudio para cada intervalo de tiempo

(Carvalho & Luna, 2002). Por ejemplo, el número de vehículos en una determinada hora del día. Asimismo, este modelo toma en cuenta el comportamiento de los conductores que sufren cambios en intervalos de tiempo. Ellos deciden qué acción tomar frente a cada situación en que se encuentren (Fontalvo Arrieta, 2013).

Modelos continuos. Estos se basan en la variación continua de los parámetros a lo largo del tiempo de estudio. Cambian constantemente en relación al tiempo. Por ejemplo, los vehículos durante su circulación dentro del tráfico cambian de velocidad, posición, etc. (Aguirre, 2015).

Luego de haber presentado los dos primeros modelos, se debe indicar que las simulaciones realizadas podrán tener distinta naturaleza (discreta o continua), en función a lo que se desea estudiar y se complementarán de manera simultánea según el objetivo del proyecto.

Los modelos, también se pueden clasificar por el tipo de evento o aleatoriedad de sus variables, tales como los modelos determinísticos y estocásticos.

Modelos determinísticos. Están basados en un estudio analítico, el cual se rige bajo ecuaciones matemáticas que no varían en relación al tiempo; es decir, no dependen de la incertidumbre. Por ello, se obtienen los mismos resultados para los mismos datos de entrada dentro del análisis del proyecto (Starfield, 2005). SYCNHRO es el software más común que sigue el análisis determinístico.

Modelos estocásticos. Diferencia del modelo determinístico, el estocástico sí presenta variabilidad en las respuestas obtenidas de acuerdo a los datos de entrada y al tiempo de análisis

del proyecto. Vissim es uno de los softwares que cumple con estas condiciones (Karlin & Taylor, 1998). Por ello, las simulaciones desarrolladas por los softwares que se basan en configuraciones matemáticas se asocian a los modelos estocásticos. Estos permiten obtener resultados más cercanos a la realidad con un cierto nivel de aleatoriedad según los datos de ingreso, mientras que los modelos determinísticos brindan resultados en base a ecuaciones matemáticas que a veces no se asemejan a la realidad pues desarrollan una única respuesta.

A continuación se presentan los tipos de modelo según los niveles de detalle de la simulación.

Modelos macroscópicos. La principal característica de estos modelos es la representación del flujo vehicular en forma genérica. Entre las consideraciones a tener están la velocidad espacial al flujo y la densidad del tráfico.

Si bien es cierto que en este tipo de modelo el nivel de detalle no es muy profundo, los resultados obtenidos podrían ser beneficiosos cuando se trata de proyectos de suma importancia en cuanto a eficiencia, ya que implica un menor tiempo de análisis.

Modelos microscópicos. Representan la realidad mediante una interacción vehicular, a través de asignaciones individuales a los vehículos y peatones, es una característica de este modelo (Mathew & Krishna Rao, 2007). Por tal motivo, se pueden obtener resultados con mayor exactitud mediante un correcto estudio de los datos de campo y una adecuada estimación del

tiempo invertido. Por lo general se requiere de un mayor tiempo que el empleado en un modelo macroscópico (Suárez Castaño, 2007).

Modelos mesoscópicos. Este modelo abarca algunas características de los modelos macroscópicos y microscópicos. Sigue el patrón de considerar pelotones de vehículos como una unidad, mientras que los movimientos de giro, tiempo de entrada y salida son determinados de manera singular según el mecanismo simulado (Fontalvo Arrieta, 2013).

2.4.1. Semáforos. Los semáforos son dispositivos de señalización mediante los cuales se regula la circulación de vehículos, bicicletas y peatones en vías, asignando el derecho de paso o prelación de vehículos y peatones secuencialmente, por las indicaciones de luces de color rojo, amarillo y verde, operadas por una unidad electrónica de control (Ministerio de transporte de la república de Colombia, 2004).

El semáforo es un dispositivo útil para el control y la seguridad, tanto de vehículos como de peatones. Debido a la asignación, prefijada o determinada por el tránsito, del derecho de vía para los diferentes movimientos en intersecciones y otros sitios de las vías, el semáforo ejerce una profunda influencia sobre el flujo del tránsito. Por lo tanto, es de vital importancia que la selección y uso de tan importante artefacto de regulación sea precedido de un estudio exhaustivo del sitio y de las condiciones del tránsito (Ministerio de transporte de la república de Colombia, 2004).

Los semáforos se usarán para desempeñar, entre otras, las siguientes funciones:

- Interrumpir periódicamente el tránsito de una corriente vehicular o peatonal para permitir el paso de otra corriente vehicular.
- Regular la velocidad de los vehículos para mantener la circulación continua a una velocidad constante.
- Controlar la circulación por carriles.
- Eliminar o reducir el número y gravedad de algunos tipos de accidentes,
 principalmente los que implican colisiones perpendiculares.
- Proporcionar un ordenamiento del tránsito. (Ministerio de Transporte, 2004).

2.4.2.PTV Vissim. PTV Vissim es un software de microsimulación del paquete de productos del Vision Traffic Suite de la casa Matriz PTV Vision - Planung Transport Verkehr AG. Diseñado para la simulación del tráfico, esta herramienta es ideal para la planificación de transporte y el análisis de operaciones de vanguardia. El software está realizado para ayudar a simular y equilibrar de manera realista la capacidad de la carretera, así como la demanda de tráfico y transporte. (Solutions, n.d.)

La versatilidad del software permite al ususario representar de manera muy fiel a la realidad y a detalle, las características y el comportamiento de los actores involucrados en la zona de estudio. De este modo, se pueden modelar las intersecciones sin importar la complejidad de su geometría, simular todo tipo de interacciones, analizar las características de cola, entre otros. El software es ampliamente empleado a nivel mundial en el campo de la ingeniería de tránsito y la planificación de la movilidad urbana, y su uso se extiende desde la

simulación de peatones, por ejemplo, para planear la evacuación de edificios y eventos especiales, hasta simulaciones de autopistas y de sistemas de transporte público. (Solutions, n.d.)

Usos del software.

- Desarrollo, evaluación y ajuste de la lógica de las señales de prioridad.
- Puede usar varios tipos de lógica de semaforización. Además de la funcionalidad de la construcción de programación de tiempos fijos, hay semaforización accionada por el tránsito idéntica a los paquetes de software de semaforización instalados en el campo. En VISSIM algunos de ellos pueden ser incorporados, algunos se pueden añadir usando agregaciones y otros se pueden simular a través del generador externo del estado de la semaforización (VAP) que permite diseño de la lógica de control definida por la semaforización.
- Evaluación y optimización (interfaces para signal97/TEAPAC) de la operación del tránsito en una red con combinación de semáforos coordinados y actuados.
 - Evaluar la viabilidad y el impacto de integrar trenes ligeros dentro de la red vial urbana.
 - Es aplicado para el análisis de oscilación de velocidades bajas y áreas de mezclamiento.
- Permite la comparación fácil de alternativas que incluyen semáforización e intersecciones controladas con señal de PARE, glorietas e intercambios a desnivel.
 - Análisis de operación y capacidad de estaciones de tren y sistemas de bus.
- Soluciones de tratamientos especiales para buses (Ej.:colas, longitud, carriles solo para bus)
- Con la incorporación de un modelo de asignación dinámica, VISSIM puede responder a un cambio de ruta dependiendo de cuestionamientos tales como es el impacto de las señales de

mensaje variable o del posible tránsito dentro de los barrios vecinos para la red o para ciudades de tamaño mediano (Suárez Castaño, 2007).

Funciones del software.

- Geometría de carriles apegadas a la realidad
- Representa de manera precisa la posición de todos los elementos de red.
- Modelo probado de "car following"
- Simulación detallada de cambios de carril, entrecruzamientos y fusiones.
- Lógica personalizada utilizando un lenguaje simplificado de macros
- Múltiples interfaces para sistemas de control de tránsito.
- Cálculo de emisiones contaminantes.
- Genera animaciones 2D y 3D al mismo tiempo (PTV Group, s.f.).

Creación del modelo. Un modelo en Vissim se crea a partir de tres elementos claves: la red vial, los elementos de control en la red y la demanda vehicular.

Luego de estudiar varias tesis y trabajos de grado que usan PTV Vissim como herramienta para la modelación del tráfico vehícular, se pudo establecer una serie de pasos que los autores han seguido para la creación de sus modelos.

El primer paso es la recopilación de información, ya sea acudiendo a organismos del estado o a empresas de transporte o alumbrado público que puedan suministrar datos sobre la

programación de los ciclos de los semáforos, operación de las rutas de transporte, mapas o caracterizaciones topográficas de la zona de estudio.

La toma de información en campo se incia con una inspección visual y la codificacion de los movimientos vehiculares en cada intersección empleando la Norma Alemana RILSA (RichtlinienfürLichtsignalanlagen). Se realizan aforos vehiculares, peatonales y estudios de velocidades.

Luego del procesamiento y analisis de la información de campo, se obtienen datos como:

- Composición vehicular
- Longitudes de cola
- Velocidad media de cada tipo de vehículo
- Tiempo de demora de los vehículos
- Capacidad y niveles de servicio
- Programación de los semáforos.

Luego, se procede al desarrollo de la red vial, y los datos de entrada del modelo se definen mediante parametros como vehículos, distribucion de velocidades y volumen y composicion vehícular. El siguiente paso es la calibración del modelo y modelación del area de estudio en PTV Vissim. El término "calibración" se define como el ajuste de los parámetros de un modelo de simulación para que haya semejanza en el comportamiento del modelo con lo observado en la realidad (Contreras Avello, 2014).

Por ultimo se realiza la validación, que en la definición realizada por Velasco (2004), el término "validación", dice relación con el ajuste entre las salidas o resultados de la simulación de una red de transporte y lo observado en la realidad, para una red que no haya sido utilizada en el proceso previo de calibración (Contreras Avello, 2014).

2.4.3. Norma RILSA. La Norma Richtlinien für Lichtsignalanlagen (Directrices para señales de tráfico), es la metodología alemana que contempla todas las consideraciones y recomendaciones que se deben tener en cuenta para la localización y puesta en servicio de semáforos en las intersecciones de la malla vial, así como los aspectos más importantes que el ingeniero de tránsito debe tener en cuenta para el cálculo de los programas de señales para intersecciones individuales y redes coordinadas (Alzate Botero & Hurtado Quintero, 2007).

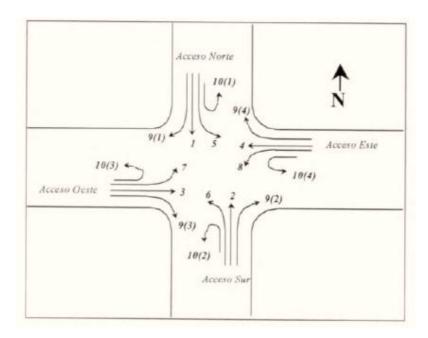


Figura 2. Nomenclatura de movimientos Norma RILSA.

Fuente: Alcaldía mayor de Bogotá DC. (2005). Manual de planeación y diseño para la administración del tránsito y transporte. Bogotá DC: Cal & Mayor asociados

Tabla 1. Movimientos en intersecciones Norma RILSA

	Acceso			
Movimiento	Norte	Sur	Occidental	Oriental
Directo	1	2	3	4
Giro a la izq.	5	6	7	8
Giro a la der.	9 (1)	9 (2)	9 (3)	9 (4)
Giro en U	10(1)	10 (2)	10 (3)	10 (4)

Fuente: Elaboración propia

La norma contempla una nomenclatura unificada para codificar los movimeintos en las intersecciones, como se observa en la figura 2 y dichos movimientos y sus códigos respectivos se consignan en la tabla 1.

2.4.4. Modelo de seguimiento de Wiedemann 74. El software VISSIM utiliza dos implementaciones del modelo de seguimiento de Wiedemann identificados como "74" y "99", en alusión a sus respectivos años de desarrollo. El modelo 74 está recomendado para condiciones urbanas mientras que el modelo 99 está recomendado para manejo en carreteras (Casares & Galarraga, 2015).

El eje de las ordenadas corresponde a la distancia a la cual se encuentra un vehículo del parachoques trasero del vehículo delante de él, y el eje de las abscisas es la diferencia de velocidad entre el vehículo que se acerca y el vehículo de adelante. La zona verde representa las condiciones en las que el vehículo que se acerca no tiene reacción alguna debido a que aún se encuentra muy lejos o va menor velocidad (Flujo Libre). La zona beige representa las

condiciones bajo las cuales el vehículo que se acerca comienza a reaccionar ante la presencia de un vehículo delantero (Acercamiento).

La zona roja clara representa las condiciones en las que el vehículo que se acerca debe desacelerar para evitar una colisión, que depende principalmente de la cercanía con el otro vehículo (Frenado) y la zona roja son las condiciones bajo las cuales se produce una colisión entre ambos vehículos. Finalmente, la zona blanca representa las condiciones bajo las cuales el vehículo que se acerca entra en el proceso iterativo de acelerar y desacelerar de manera inconsciente para encontrar una distancia y velocidad deseada para llevar detrás del vehículo que tiene en frente (Seguimiento).

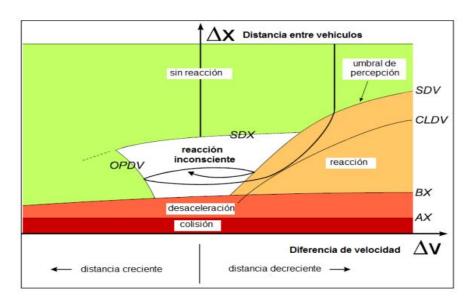


Figura 3. Modelo de seguimiento vehicular.

Fuente: PTV Group. (2012). Vissim 5.4. Manual del usuario. Karlsruhe: PTV AG.

Se puede apreciar en la figura los distintos estados de un vehículo que se acerca a otro mediante la flecha negra que entra por la parte superior derecha de la zona verde. Lo que ocurre es que el vehículo se va acercando a velocidad constante a otro, hasta alcanzar una distancia a la

cual comienza a disminuir gradualmente su velocidad, hasta entrar a la zona de reacción inconsciente, para finalizar acelerando y desacelerando hasta alcanzar una distancia y velocidad deseada.

Los principales parámetros asociados al modelo de Wiedemann (1974) son los siguientes:

- 1. Distancia de detención promedio (ax): corresponde a la distancia, deseada por el conductor, a la cual se mantiene en estado de detención. Esta variable tiene una variación fija de \pm 1 metro.
- 2. Parte Aditiva de la distancia de seguridad deseada (bx_{add}) y parte multiplicativa (bx_{mult}): Ambos parámetros afectan el cálculo de la distancia de seguridad.

La distancia entre dos vehículos consecutivos (d) es calculada de la siguiente manera:

$$d = ax + b$$

 $bx = bx_{add} + bx_{mult} * z * \sqrt{v}$

Donde v es la velocidad del vehículo en m/s, y z un valor entre 0 y 1 que tiene una distribución Normal con una desviación estándar de 0,15. Según Miller (2009), esta fórmula es utilizada para calcular la distancia entre dos vehículos consecutivos en todo momento, alterando con este resultado, la aceleración y el deseo de sobrepasar el vehículo. (Contreras Avello, 2014)

2.4.5. Tipología de intersecciones. Aunque la variedad de intersecciones que pueden proyectarse es casi ilimitada, puede establecerse una tipología de las mismas en función del número de vías o ramales que concurran. Dentro de algunos de estos grupos, pueden distinguirse dos subgrupos en función de la disposición geométrica que adoptan los ramales (figura 4).

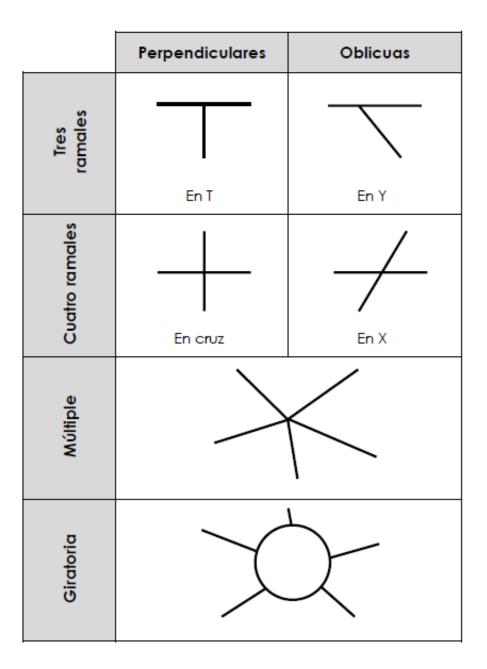


Figura 4. Tipos de intersecciones.

Fuente: Bañón, L., & Beviá García, J. F. (2000). Manual de carreteras.

Volumen I: elementos y proyecto. Alicante: Ortiz e Hijos, Contratista de

Obras, S.A.

Intersecciones en Y. Al menos uno de los ángulos formados entre los ramales es menor de 60 grados.

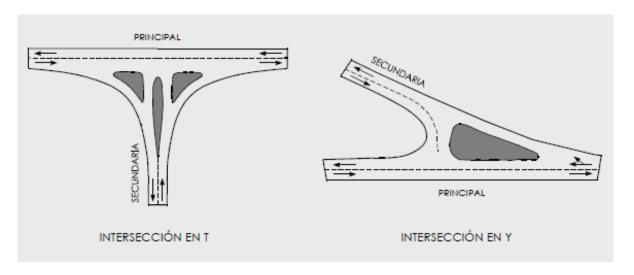


Figura 5. Intersecciones en T y en Y.

Fuente: Bañón, L., & Beviá García, J. F. (2000). Manual de carreteras. Volumen I: elementos y proyecto. Alicante: Ortiz e Hijos, Contratista de Obras, S.A.

En un principio, las intersecciones en T son mas recomndables, al concurrir perpendicularmete las vías, lo que aumenta la visiblidad en el cruce; por otro lado, la intersección en Y facilita determinados movimientos principales, aunque debe procurarse que si la intersección se produce en una curva de la carretera principal, la alinación de la carretera secundaria no quede tangente a ella para evitar confusión. Aun así, es desaconsejable el poyecto de insersecciones en Y, salvo en circunstancias excepcionales.

Conforme aumenta el tamaño de los radios de giro utilizados, aumenta la superficie del área pavimentada, lo que puede producir confusiones y dudas entre los conductores respecto de que trayectoria seguir. Esto se evita canalizando la intersección mediante isletas alargadas o lágrimas e isletas de tipo triangular.

Para favorecer determiandos movimientos pueden construirse raquetas o carriles independientes que facilitan la incorporación del vehículo mediante un giro indirecto, así como intersecciones en T. Aunque en algunos casos resulten mas económicas, no son recomendables, ya que el cruce de dos carriles es siempre mas peligroso que el de uno solo, aunque se realice perpendicularmente a los mismos. Unicamente, este tipo de variantes pueden considerarse si se hallan reguladas mediante semaforos.

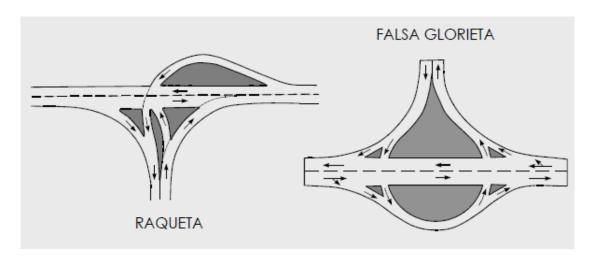


Figura 6. Intersecciones en Raqueta y Falsa glorieta.

Fuente: Bañón, L., & Beviá García, J. F. (2000). Manual de carreteras. Volumen

I: elementos y proyecto. Alicante: Ortiz e Hijos, Contratista de Obras, S.A.

Intersecciones de 4 ramales. En ellas se produce un cruce de dos vías – cuatro ramales en total- generalemnte de rango similar. Al igual que en las anteriores, se distinguen dos tipos.

Intersecciones en cruz. Los ramales concurren formando en cualquier caso ángulos mayores de 60°, con direcciones sensiblemtne perpendiculares.

Intersecciones en X. Los ramales forman dos angulos menores de 60°.

Figura 7. Intersecciones en Cruz y en X.

Fuente: Bañón, L., & Beviá García, J. F. (2000). Manual de carreteras. Volumen I: elementos y proyecto. Alicante: Ortiz e Hijos, Contratista de Obras, S.A.

Las intersecciones poco importantes pueden mantenerse sin canalizar; según vaya aumentando el tráfico será conveniente colocar isletas o vías de espera tanto en la vía principal como en la secundaria.

Al igual que en intersecciones de tres ramales, cuando el tráfico en la vía principal tiende a no desviarse de dicha vía puede ser conveniente un proyecto de intersecciones con falsa glorieta, aunque en este caso –dada su mayor peligrosidad- conviene que estén semaforizadas (Bañón, & Beviá García, 2000).

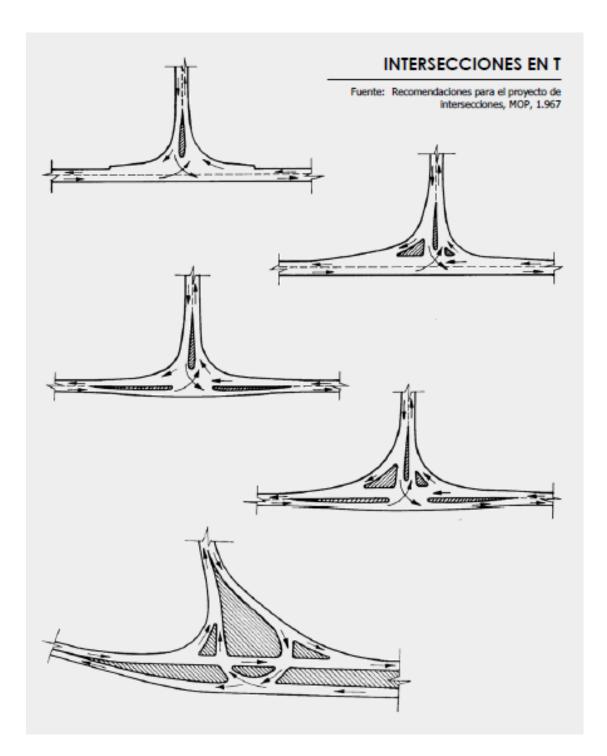


Figura 8. Intersecciones en T.

Fuente: Bañón, L., & Beviá García, J. F. (2000). Manual de carreteras. Volumen I: elementos y proyecto.

Alicante: Ortiz e Hijos, Contratista de Obras, S.A.

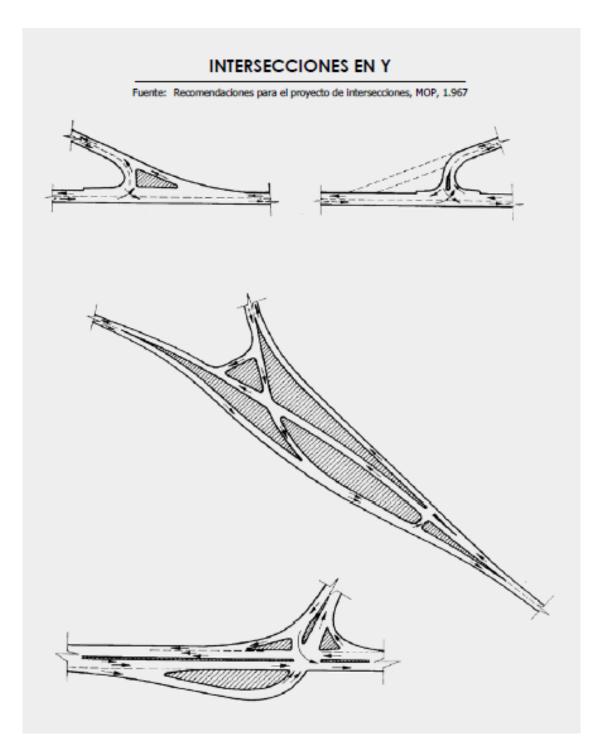


Figura 9. Intersecciones en Y.

Fuente: Bañón, L., & Beviá García, J. F. (2000). Manual de carreteras. Volumen I: elementos y proyecto.

Alicante: Ortiz e Hijos, Contratista de Obras, S.A.

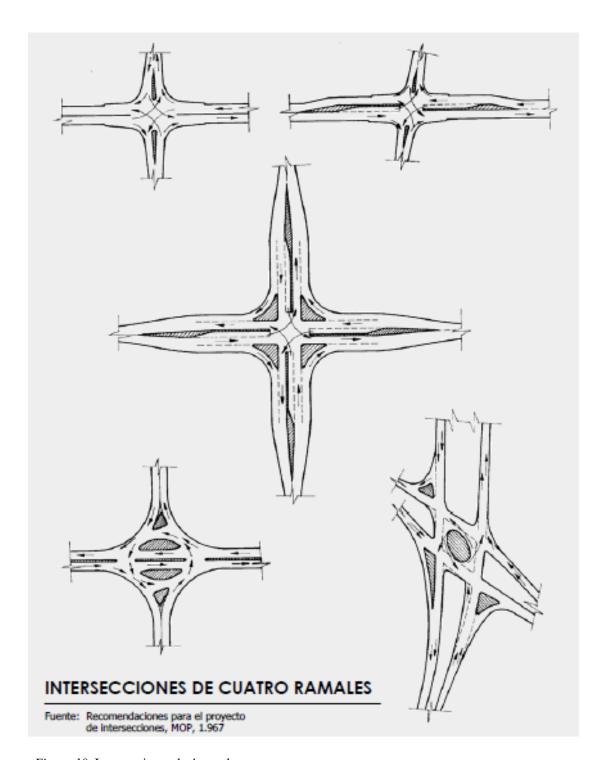


Figura 10. Intersecciones de 4 ramales.

Fuente: Bañón, L., & Beviá García, J. F. (2000). Manual de carreteras. Volumen I: elementos y proyecto. Alicante: Ortiz e Hijos, Contratista de Obras, S.A.

2.5. Marco legal

Entre los derechos fundamentales y de los colectivos de la constitución política de Colombia, se distinguen los siguientes, por su conexión con la movilidad:

Artículo 24. Todo colombiano, con las limitaciones que establezca la ley, tiene derecho a circular libremente por el territorio nacional, a entrar y salir de él, y a permanecer y residenciarse en Colombia.

Artículo 52. Se reconoce el derecho de todas las personas a la recreación, a la práctica del deporte y al aprovechamiento del tiempo libre

El Estado fomentará estas actividades e inspeccionará las organizaciones deportivas, cuya estructura y propiedad deberán ser democráticas.

Artículo 79. Todas las personas tienen derecho a gozar de un ambiente sano. La ley garantizará la participación de la comunidad en las decisiones que puedan afectarlo.

Es deber del Estado proteger la diversidad e integridad del ambiente, conservar las áreas de especial importancia ecológica y fomentar la educación para el logro de estos fines.

Artículo 80. El Estado planificará el manejo y aprovechamiento de los recursos naturales, para garantizar su desarrollo sostenible, su conservación, restauración o sustitución.

Además, deberá prevenir y controlar los factores de deterioro ambiental, imponer las sanciones legales y exigir la reparación de los daños causados.

Así mismo, cooperará con otras naciones en la protección de los ecosistemas situados en las zonas fronterizas.

Artículo 82. Es deber del Estado velar por la protección de la integridad del espacio público y por su destinación al uso común, el cual prevalece sobre el interés particular.

Las entidades públicas participarán en la plusvalía que genere su acción urbanística y regularán la utilización del suelo y del espacio aéreo urbano en defensa del interés común."

Artículo 365. Los servicios públicos son inherentes a la finalidad social del Estado. Es deber del Estado asegurar su prestación eficiente a todos los habitantes del territorio nacional.

Los servicios públicos estarán sometidos al régimen jurídico que fije la ley, podrán ser prestados por el Estado, directa o indirectamente, por comunidades organizadas, o por particulares. En todo caso, el Estado mantendrá la regulación, el control y la vigilancia de dichos servicios. Si por razones de soberanía o de interés social, el Estado, mediante ley aprobada por la mayoría de los miembros de una y otra cámara, por iniciativa del Gobierno decide reservarse determinadas actividades estratégicas o servicios públicos, deberá indemnizar previa y plenamente a las personas que en virtud de dicha ley, queden privadas del ejercicio de una actividad lícita.

Artículo 366. El bienestar general y el mejoramiento de la calidad de vida de la población son finalidades sociales del Estado. Será objetivo fundamental de su actividad la solución de las necesidades insatisfechas de salud, de educación, de saneamiento ambiental y de agua potable.

Para tales efectos, en los planes y presupuestos de la Nación y de las entidades territoriales, el gasto público social tendrá prioridad sobre cualquier otra asignación.

MANUAL DE DISEÑO GEOMETRICO DE CARRETERAS. Ministerio de transporte República de Colombia. Instituto nacional de vías. 2008

PLAN BÁSICO DE ORDENAMIENTO TERRITORIAL. Departamento de Norte de Santander, Municipio de Ocaña. 2002 – 20011

Capítulo 3: Diseño metodológico

3.1. Tipo de investigación

El tipo de investigación adelantada en el proyecto es por su nivel de profundidad o alcances, una investigación DESCRIPTIVA, pues busca describir las variables del fenómeno por estudiar. Por diseño, la presente investigación es DE CAMPO pues la información acá utilizada se ha extraído directamente de la zona de estudio. Por su propósito es una investigación APLICADA y su enfoque es CUANTITATIVO.

3.2. Población

La población implicada dentro de este proyecto abarca a todas las personas que hacen parte del tránsito y transporte de la ciudad de Ocaña, pues en este punto confluyen todos los habitantes en algún momento, dado que las oficinas administrativas y gran parte del comecio de la región se asienta en el centro de la ciudad.

La ciudad de Ocaña para el año 2017 proyecta una població de 99.741 habitantes (López Dávila & Sarabia Durán, 2012). En la región se encuentran matriculados 34.000 motocicletas y 5.685 automóviles (Secretaria de Movilidad, Tránsito y Transporte, 2016), que transitan por las vías circundantes a la plaza parque 29 de mayo, zona céntrica de la ciudad.

3.3. Muestra

El presente proyecto de investigación, se realizará en la ciudad de Ocaña, Norte de Santander, la muestra utilizada para este proyecto corresponde a los volúmenes vehiculares que

transitan por las intersecciones que delimitan las esquinas de la plaza Parque 29 de mayo, y los tramos de vías que constituyen los accesos y salidas del sistema (calles 10 y 11 y carreras 12 y 13), conseguidos por medio de aforos que arrojan información de gran importancia como la hora de máxima demanda y los volúmenes vehiculares.

3.4. Recolección de la información

La recolección de información para la realización del proyecto consta de actividades que permitan caracterizar topográficamente el terreno, conocer las cantidades y los tipos de vehículos, velocidades, colas y demoras que se presentan en la dinámica del tránsito vehicular de la zona. Con la información recopilada se realizará un trabajo de oficina donde se buscarán la modelación de alternativas que supongan una mejora para la movilidad del tramo en estudio.

3.4.1. Fuentes Primarias. Los instrumentos que se utilizaran para recolectar la información serán la observación directa pues la observación y recolección de datos se lleva a cabo por parte de las autoras. La observación es estructurada pues se diseñarán formatos para recolectar de manera odenada los datos de la caracterización topográfica de la planimetría y altimetría del terreno, de los aforos vehiculares que arrojen datos necesarios para adelantar los estudios de volumen de tránsito, de colas y demoras y de velocidad de punto, necesarios para el montaje del modelo calibrado que refleje la situación vehicular actual mediante el software PTV Vissim.

3.4.2. Fuentes secundarias. Para la recolección de información secundaria se recurrirá a la técnica de revisión de literatura, tal como: los manuales vigentes de diseño geometrico de vías urbanas e inter-urbanas, la normatividad que contemple los criterios tecnicos para la

intervención de vías y el diseño de alternativas de control del tráfico, la información suministrada por oficinas de la administración municipal como la secretaría de movilidad y tránsito y la oficina de planeación, y bibligrafia de corporaciones e institutos como el instituto nacional de vías (INVIAS).

3.4.3. Trabajo de campo. El trabajo de campo se ejecutará inicialmente con el levantamiento topográfico, luego se efectuarán los conteos vehiculares por tres días (dos típicos y uno atípico), cumpliendo tres jornadas de 4 horas cada día. La caracterización del tránsito vehicular se complementará con los conteos vehiculares y con un estudio de velocidades de punto y otro de colas y demoras.

3.4.4.Trabajo de oficina. El trabajo de oficina consistirá en cargar al software PTV Vissim la información recolectada anteriormente y así crear un modelo de la red vehicular que posea las características de la red existente, que será posteriormente calibrada para cerciorar que dicho modelo recrea a cabalidad la situación de la zona de estudio mediante la comparación de parámetros como las longitudes de colas. Basado en la bibliografía recopilada y en los datos que arroje las simulaciones de las alternativas planteadas, se formulará la solución que optimice la movilidad del sector.

3.5. Análisis y evaluación de la información procesada

Con base en el registro fotografico realizado, los aforos vehiculares y demas estudios e tránsito expuestos en la etapa de recolección de información, se desarrollará un análisis estadístico por medio de tablas y graficas, que permita un analisis a profundidad del tráfico vehicular que frecuenta la zona en estudio, además de identificar las variables que deducen el

comportamiento del flujo vehicular. La recopilación de la información es fundamental para la realización de la modelación y posteriormente para la simulación de las alternativas en el software VISSIM, que permitirá tener una interpretación de la situación actual, creando un modelo que permita escoger la alternativa que solucione la problemática del flujo vehicular presente en las vias alternas a la plaza parque 29 de mayo

La información será presentada a lo largo del documento y soportada por planos, cuadros, fotografias, diseños, memorias, etc.

Capítulo 4: Presentación de resultados

4.1. Caracterizar el área de estudio mediante un levantamiento topográfico para determinar las propiedades altimétricas y planimétricas a tener en cuenta para el modelado.

La universidad Francisco de Paula Santander Ocaña se vinculó a nuestro proyecto con la prestación del equipo y el acompañamiento topográfico del ingeniero Jonathan Ascanio y el estudiante Jeison Stiven Sepulveda Sanchez, quienes guiaron el proceso del levantamiento los días 13, 14, 19 y 27 de Julio del 2017.

Figura 11. Estaciones no. 1, 2 y 3

Fuente: Autoras del proyecto

El levantamiento topográfico se llevó a cabo dividiendo el área de estudio en cuatro zonas, ubicando la estación total en cada una de las esquinas del parque, tratando de abarcar la mayor cantidad de puntos en el levantamiento posibles. Por cada punto en el que se ubicó la estación, se observaban dos vías (accesos o salidas).

Primero se ubicó la estación en el separador de la calle 10, y se levantaron datos del acceso de Movistar que va en dirección Oeste hasta la mitad de la vía que bordea el parque y de la calle 10 hasta la salida desde el centro comercial Santa María hacia el Sur, además de los puntos del separador y la zona del parque que resultaba visible (figura 11).

El segundo punto de la estación se ubicó en el separador de la carrera 12 ubicado al frente de la iglesia Catedral de Santa Ana (figura 11), y se levantaron puntos del acceso en dirección sur-norte desde la capilla de la Torcoroma, y de la salida de la carrera 12 que llega hasta la calle de las notarias. Además, la mitad de la carrera 12 y calle 11 que bordean el parque.

El tercer punto en el que se ubicó la estación total fue la esquina del parque donde se intersectan la calle 11 y la carrera 13 (figura 11), levantando los puntos de la salida de la calle 11 que baja hasta el edificio la Guaca hacia el Norte y del acceso de la carrera 13 en dirección esteoeste. Además de los tramos de vía que bordean el parque que eran visibles desde allí.

Desde el separador de la calle 11 al frente de la droguería Alemana, se levantaron los puntos del acceso mas concurrido que viene desde la Escuela de Bellas Artes en dirección norte-

sur y la salida hacia la calle del Dulce Nombre. Desde este último punto (figura 12) se recolectaron los datos de los puntos del parque y de las vías que faltaban.

Figura 12. Cuarta estación del levantamiento topográfico Separador Banco Caja – social

Fuente: Autoras del proyecto

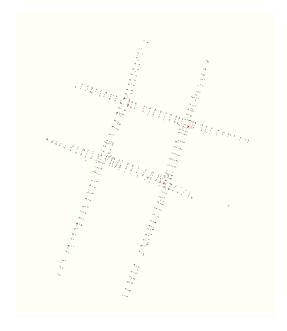


Figura 13. Nube de puntos del levantamiento topográfico

en AutoCAD

Fuente: Autoras del proyecto

En la figura 13 se observa la nube de puntos generada en AutoCAD luego de exportar el archivo SDR que contiene los datos recolectados con la estación total.

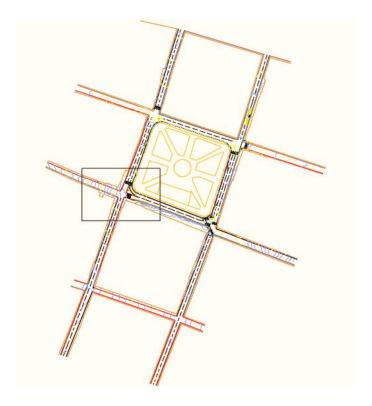


Figura 14. Plano topográfico

Fuente: Autoras del proyecto

EL plano (figura 14) contiene el dibujo de los elementos básicos necesarios para cargar la imagen de fondo (Background) en el software Vissim al momento de la modelación. En la figura 25 se observa un detalle del plano y las diferentes capas establecidas para diferenciar dichos elementos. En azul se dibujan las curvas de nivel, amarillo para las líneas de paramento y los puntos tomados con la estación, gris para delimitar el andén, color rojo para el borde de vía, y por último las señales de tránsito y los semáforos también están delimitados (figura 15).

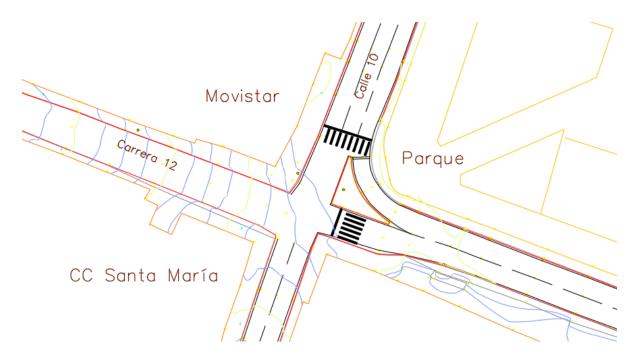


Figura 15. Detalle de las capas en el plano

4.2. Definir el transito circundante a la plaza Parque 29 de mayo por medio de estudios de tránsito y aforos, recolectando los datos necesarios para cargar el software.

En búsqueda de recrear en la simulación una situación fiel a la realidad del tránsito de la zona de estudio, se recolectaron datos de conteos vehiculares dos días típicos y un día atípico. Los vehículos que ingresan al parque principal lo hacen por cuatro accesos, a los que se les ha asignado el nombre de algún establecimiento como punto de referencia, el cual se encuentra localizado en el tramo de vía, generalmente en las esquinas, para facilitar posteriormente el manejo de datos.

En la intersección Movistar (figura 16) los carros ingresan por la carrera 12 en dirección oeste-este, el carril derecho es acceso y el izquierdo salida. Este el segundo acceso en orden de importancia, luego del acceso de droguería Alemana por la calle 10, por donde ingresan los vehiculos que del norte llegan al centro de la ciudad. La salida de Movistar que va hacia el este tiene un carril desde el parque en dirección norte y la salida del Centro comercial Santa María que baja en dirección sur por la calle 10 hacia la librería Obregón cuenta con dos carriles y fue semaforizada hace poco por la administración actual.

Figura 16. Aforadores en gradas de Crediservir

Fuente: Autoras del proyecto

El acceso en el que confluye menor cantidad de vehículos es el de la iglesia Catedral (figura 17) por la calle 11, está semaforizado sobre la carrera 12 y la calle 11 y tiene dos carriles. Los vehículos que ingresan al sistema por la calle 11, circulan en sentido norte-sur y en sentido

este-oeste por la carrera 12 (figura 17). La salida del sistema por la carrera 12 se realiza en dirección este hacia Davivienda. Éste último tramo está ocupado por vendedores ambulantes y vehiculos parqueados casi en la totalidad del tiempo.

Figura 17. Aforadores en gradas Banco Caja Social

Fuente: Autoras del proyecto

La intersección del banco de Bogotá (figura 18) tiene el acceso por la carrera 13, en dirección este-oeste, se caracteriza por el alto porcentaje de circulación de vehículos de servicio de transporte público, pues todas las rutas están trazadas por allí. La salida se hace por la calle 11. El carril derecho tiene demarcada una zona de taxis, y en adelante el carril es ocupado casi la totalidad del tiempo por vehículos que se parquean al frente del centro comercial City Gold y por vendedores ambulantes.

Figura 18. Aforadores Edificio Azul

El acceso de la intersección de la Droguería Alemana es por la calle 10 (figura 19), comunica la zona norte de la ciudad con el centro, convirtiéndose en el tramo de vía con mayor flujo vehicular registrado durante los conteos; está semaforizado sobre la calle 10 y la carrera 12 y posee dos carriles.

La salida del sistema se realiza en el sentido este-oeste por la calle del Dulce Nombre en la carrera 13, altamente congestionada por la presencia de vendedores ambulantes que mengua casi a la mitad la capacidad de la vía.

El parque está bordeado por las calles 10 y 11, estos tramos tienen tres carriles y las carreras 12 y 13 con dos carriles cada una. Dada la amplitud del conjunto de movimientos

posibles en la red vial, fue necesario realizar una codificación de movimientos bajo los lineamientos de la norma alemana RILSA - Richtlinier fuer lichtsignalanlagen. (figura 20).

Figura 19. Aforador en el parque 29 de mayo

Fuente: Autoras del proyecto

Utilizar la programación de los semáforos en las intersecciones es clave para la planeación del conteo de los movimientos vehiculares y la ubicación de las estaciones de aforo. De este modo, el aforador registra dos movimientos por ciclo, es decir, la cantidad de vehículos que transitan en el verde del primer semáforo de la intersección y cuando éste cambia a rojo observa los vehículos del verde del segundo semáforo.

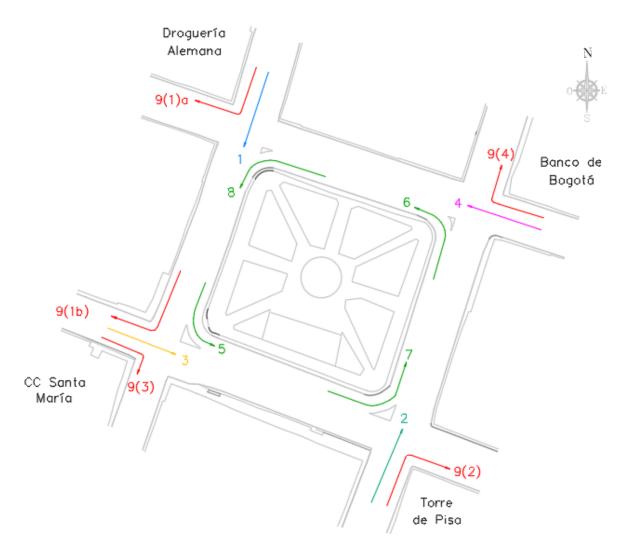


Figura 20. Codificación de movimientos según Norma RILSA

Los movimientos con menor cantidad de flujo son los asignados al carril más próximo al parque, por ende, cada aforador cuenta un movimiento de acceso o salida (los más congestionados) en el primer ciclo de verde y un movimiento del carril que bordea el parque.

Con un máximo de 5 movimientos por intersección (ver figura 31), se asignan dos aforadores a cada estación.

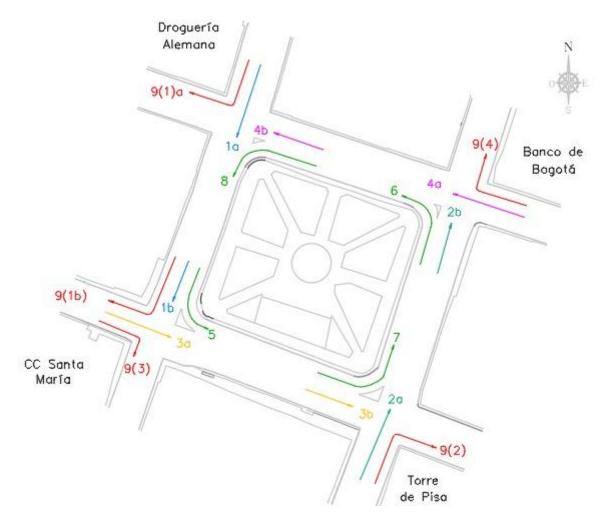


Figura 21. Movimientos vehiculares registrados en los conteos

Los conteos vehiculares en días típicos se realizaron el jueves 25 de mayo y el martes 30, y cómo día atípico se planeó un aforo el día sábado 27 de mayo para culminar la determinación de los volúmenes de tránsito. Se determinaron tres jornadas para realizar los conteos, la primera de 6 am a 10 am, luego de una hora se inició la segunda jornada desde las 11 am hasta las 3 pm, donde se preveía encontrar el flujo más alto y la hora de máxima demanda, y la última jornada de 4pm a 8 pm. El formato para los aforos permite registrar el paso de vehículos como: autos, taxis, buses, C-2P, C-2G, C-3 4, motocicletas y bicicletas. (Figura 22).

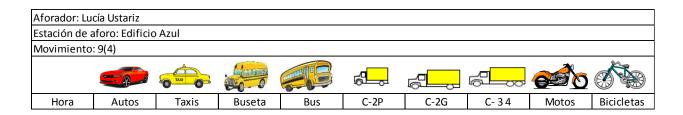


Figura 22. Encabezado del formato de aforo

El comportamiento dinámico del flujo de vehículos se refleja en las figuras 23, 24 y 25. A primera vista el flujo se dibuja de una manera parcialmente similar en los tres días en la jornada de la mañana y en la tarde con picos en la mitad de dichos períodos.

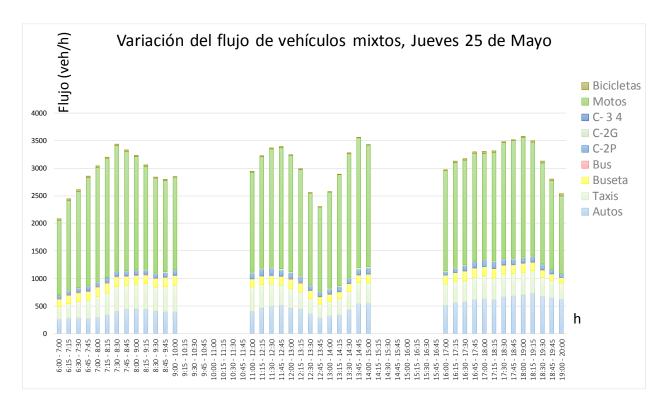


Figura 23. Variación del flujo vehicular jueves 25 de mayo

Fuente: Autoras del proyecto

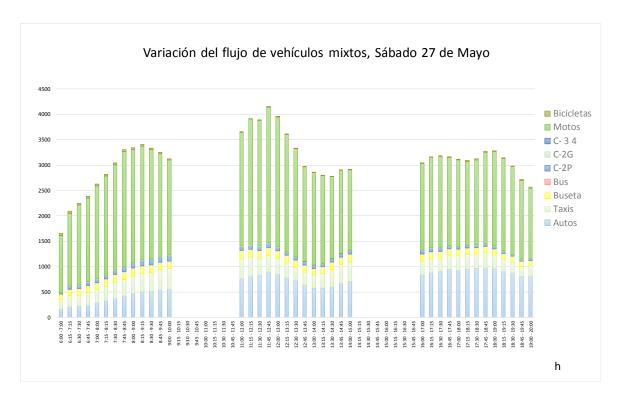


Figura 24. Variación del flujo vehicular sábado 27 de mayo

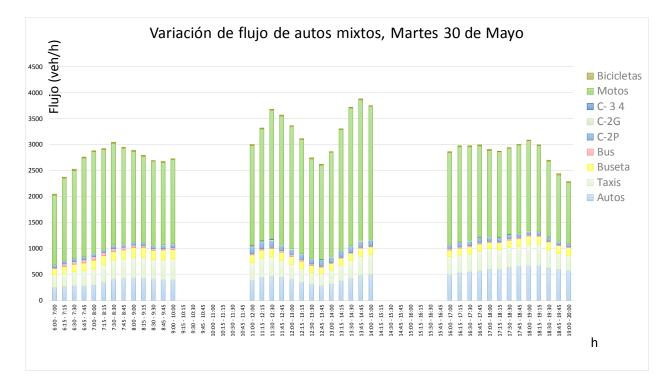


Figura 25. Variación del flujo vehicular martes 30 de mayo

Fuente: Autoras del proyecto

En base a los conteos se determina que, en las condiciones actuales de operación en la zona de estudio, la hora de máxima demanda se presentó el día sábado 27 de mayo, de 11:45 am a 12:45 pm, con un volumen de 4152 vehículos mixtos, como se observa en las tablas 2, 3 y 4, donde se especifica el volumen por cada tipo de vehículo en la hora de máxima demanda de cada jornada.

Tabla 2. Volumen de vehículos mixtos en la hora de máxima demanda el jueves 25 de mayo

		= 7		•	0	F	= 4		⊕	3 0 3
	Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
Mañana	7:30 - 8:30	405	446	174	21	80	11	0	2276	23
Medio										
día	13:45 - 14:45	544	374	145	5	103	21	0	2356	12
	18:00 -									
Noche	19:00	705	406	162	9	93	11	0	2173	17

Fuente: Elaboración propia

Tabla 3. Volumen de vehículos mixtos en la hora de máxima demanda el sábado 27 de mayo

				000		g <mark>e</mark>			6	
	Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
Mañana	8:15 - 9:15	506	350	153	8	112	6	0	2237	38
Medio día	11:45 - 12:45	894	321	155	3	85	11	0	2674	14
Noche	18:00 - 19:00	970	261	117	4	49	6	0	1859	17

Fuente: Elaboración propia

Tabla 4. Volumen de vehículos mixtos en la hora de máxima demanda martes 30 de mayo

			0 Tau	000					6 0	
	Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
Mañana	7:30 - 8:30	406	361	172	59	62	11	0	1953	20
Medio día	13:45 - 14:45	482	370	149	16	117	24	0	2707	13
Noche	18:00 - 19:00	672	408	152	28	64	12	1	1742	6

Fuente: Elaboración propia

61

Recordemos que el flujo de vehículos en la hora de máxima demanda no está

uniformemente distribuido en ese lapso. Para tomar esto en cuenta, es conveniente determinar la

proporción del flujo para un periodo máximo dentro de la hora de máxima demanda. Usualmente

se acostumbra un periodo de 15 minutos, y como se realizó en los conteos de flujo vehiculares;

matemáticamente el FHP se calcula de la siguiente manera:

$$FHMD_{15} = \frac{VHMD}{4 * (q_{m\acute{a}x \ 15})}$$

$$FHMD_{15} = \frac{4152}{4 * (1950)}$$

$$FHMD_{15} = 0.5323 \approx 0.54$$

Dónde:

VHMD: Volumen horario de máxima demanda

 $q_{m\acute{a}x\ 15}$: Flujo máximo durante 15 minutos

Las composiciones vehiculares definen la distribución de los diversos tipos de vehículos

que circulan por la zona de estudio y permite elaborar una idea de cómo luce la congestión en el

lugar. Las motocicletas como mínimo duplican la cantidad de autos para cada acceso y es el tipo

de vehículo que más se observa, precedido de los autos y los taxis respectivamente, como se

consigna en las tablas 4 y 5 y se ilustra en las figuras 26 a 29.

Tabla 4. Composición vehicular por acceso

			Con	posició	n vehi	cular				
Ubicación	Cantidad total de vehículos		C TANK	O O		=		6		
		Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
Alemana	1406	326	143	60	1	48	3	0	818	7
Movistar	1006	201	44	22	2	15	2	0	719	1
Catedral	824	227	36	9	0	12	5	0	531	4
Banco de Btá	921	140	98	64	0	10	1	0	606	2

Fuente: Elaboración propia

Tabla 5. Composición vehicular porcentual por acceso

		Com	posició	in vehicu	ılar po	orcentu	al (%)			
Ubicación	Cantidad total de vehículos		6 mg	Contract of the Contract of th		4			<u>&</u>	
		Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
Alemana	1406	23.19	10.17	4.27	0.07	3.41	0.21	0.00	58.18	0.50
Movistar	1006	19.98	4.37	2.19	0.20	1.49	0.20	0.00	71.47	0.10
Catedral	824	27.55	4.37	1.09	0.00	1.46	0.61	0.00	64.44	0.49
Banco de Btá	921	15.20	10.64	6.95	0.00	1.09	0.11	0.00	65.80	0.22

Fuente: Elaboración propia

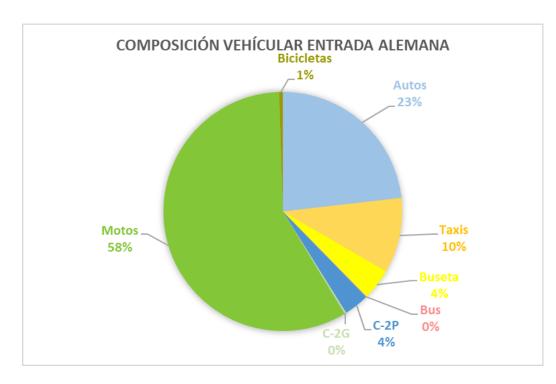


Figura 26. Composición vehicular entrada droguería alemana

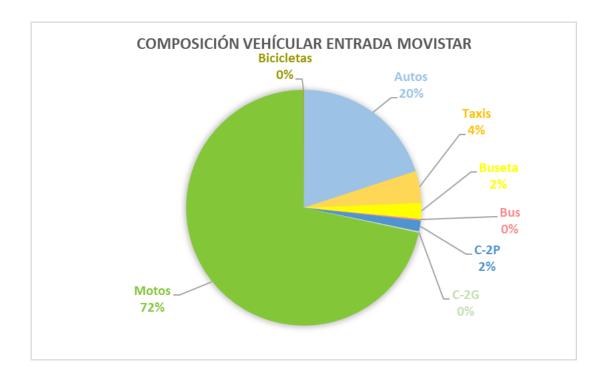


Figura 27. Composición vehicular entrada Movistar

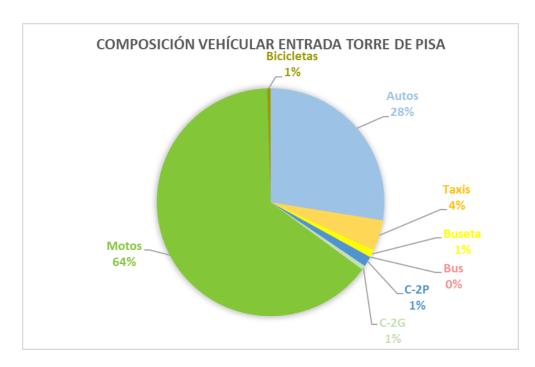


Figura 28. Composición vehicular entrada Torre de Pisa

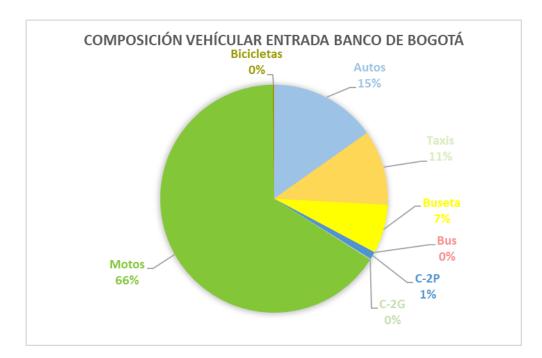


Figura 29. Composición vehicular entrada Banco de Bogotá

Al momento de calibrar el modelo con la situación actual es necesario conocer las velocidades máximas para cada tipo de vehículo que se cargará al software (tabla 6). Dichas velocidades fueron previemente determinadas en un estudio que consiste en medir el tiempo de recorrido de un vehículo que viaja de un punto A hasta un punto B. En el presente estudio se escogieron como puntos de referencia dos esquinas de una cuadra, y se registraron tiempos en períodos de 15 minutos para cada tipo de vehículo a incluirse en la modelación, para calcular luego las velocidades.

Tabla 6. Velocidades máximas definidas para cada tipo de vehículo

Tipo de Vehículo	Velocidades máximas km/h
Autos	40
Motos	30
Taxis	30
Busetas	40
C2P	30

Fuente: Elaboración propia

4.3. Modelar el flujo vehicular estudiado, los controladores de tránsito existentes y las posibles alternativas que mejoren la movilidad de las vías circundantes a la plaza Parque 29 de mayo; utilizando el software PTV Vissim.

Para la modelación del flujo vehicular en las vías alternas a la plaza 29 de mayo se implementa el software PTV Vissim 7.00 - 16, versión estudiantil en la etapa de creación de la red, para posteriormente ser corrida en la versión licenciada de la Universidad Francisco de Paula Santander Ocaña. La calibración del modelo al ambiente local se realiza cargando en el software los datos de caracterización de los volúmenes vehiculares de la zona de estudio, recolectados previamente en los aforos vehiculares y los estudios de tránsito.

El primer paso para iniciar la modelación en Vissim, es cargar el fondo sobre el que se va a trabajar desde la opción Background, en este caso un archivo de AutoCAD de extensión .dwg que contiene el plano topográfico (figura 30).

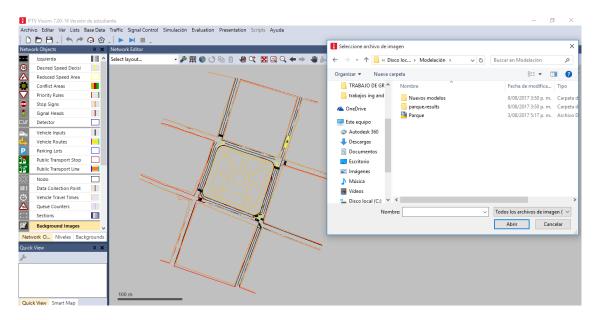


Figura 30. Inserción de fondo topográfico

La opción IZQUIERDA o LINKS del menú Objetos de red de red ubicada en el costado izquierdo de la pantalla, permite la creación de las vías que están demarcadas en la imagen de fondo. Se dibujan los tramos de vía y en la ventana que emerge se editan la cantidad y el ancho de los carriles (figura 31), el tipo de comportamiento de los vehículos que la transiten, la presentación, la pendiente, entre otros parámetros que pueden ser modificados luego regresando a las propiedades del tramo seleccionado.

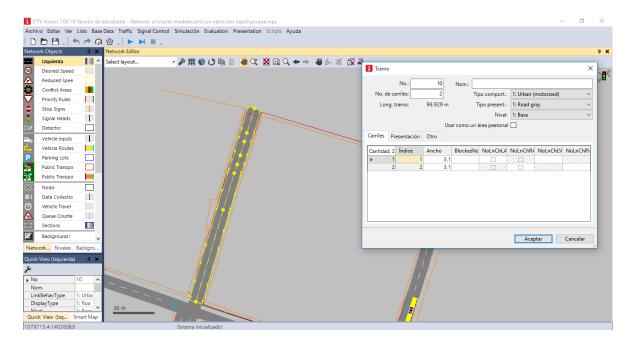


Figura 31. Creación de tramos de vías

Fuente: Autoras del proyecto

Los tramos de vía se enlazan con ubicando los conectores desde el extremo de una vía hasta el inicio del segundo tramo al que se quiere llegar (figura 32). Entre los muchos casos en los que se hace necesario el uso de esta herramienta está, por ejemplo, la necesidad de conectar vías que no son continuas, construidas con dos tramos que se intersectan en una esquina y deben ser unidas con un conector. La forma dada al conector y a los tramos de vía puede ser suavizada

con la inserción de puntos en dichos elementos, convirtiéndolos en una poli-línea que puede ser modificada con mayor facilidad, alcanzando la geometría deseada.

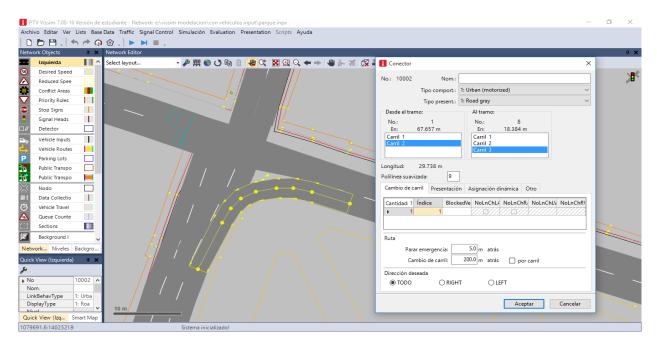


Figura 32. Creación de conectores

Fuente: Autoras del proyecto

Una vez creadas las vías y los conectores, se procede a incluir los vehículos que circulan por el área en estudio, cifras que fueron determinadas previamente en los aforos vehiculares.

Cabe mencionar que la herramienta informática VISSIM ofrece al usuario una gama de vehículos representativos en su biblioteca de modelos dinámicos en 3D que usualmente se encuentran en la mayoría de zonas de estudio, como: auto, camión, bus, tranvía, peatón y bicicleta. No obstante, en la investigación actual se requiere crear nuevos vehículos que no se encuentran contemplados en la lista inicial, como lo son: taxi, auto, bus, buseta, C-2P, C-3G, C-3-4 y motocicleta, que fueron descargados en formato .v3d del buscador de flota de vehículos de Visism.

La distribución de modelos se realiza en el menú BASE DATA, y se cargan los modelos de vehículos para cada categoría (figura 33). Por ejemplo, a los vehículos C-2P se les asignó el modelo Truck Chevrolet S10 1987.

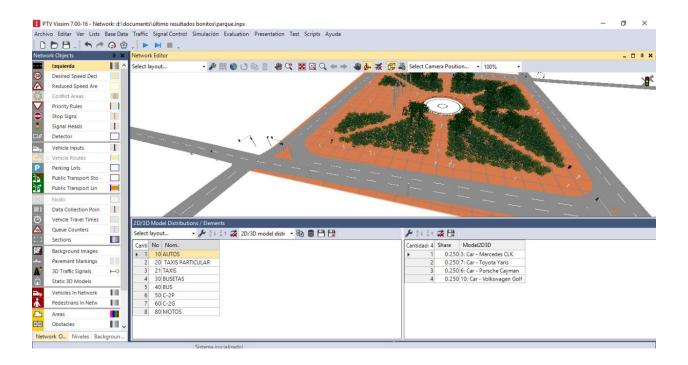


Figura 33. Distribución de modelos

Fuente: Autoras del proyecto

El programa permite pre-visualizar los modelos de vehículos en 2D/3D en el menú BASE DATA opción 2D/3D MODEL SEGMENTS (figura 34). Los atributos de los modelos pueden ser editados para que las dimensiones se ajusten al tamaño de los carriles o la necesidad del usuario.

Al momento de cargar los archivos .v3d de los nuevos tipos de vehículos que se quieren incorporar al software, se elige NUEVO en la opción Modelos, y se seleccionan de la carpeta donde se encuentra la descarga (figura 35).

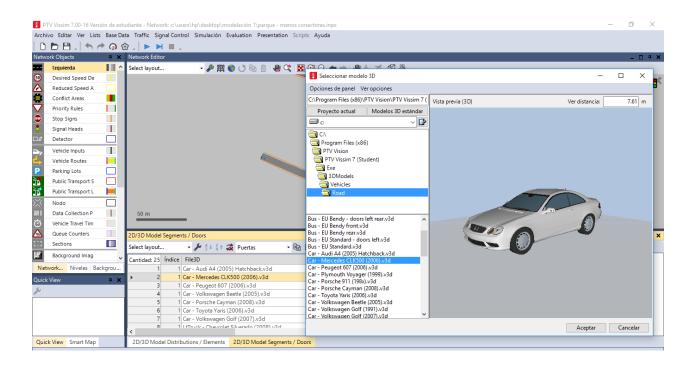


Figura 34. Visualización de los modelos de vehículos en 3D

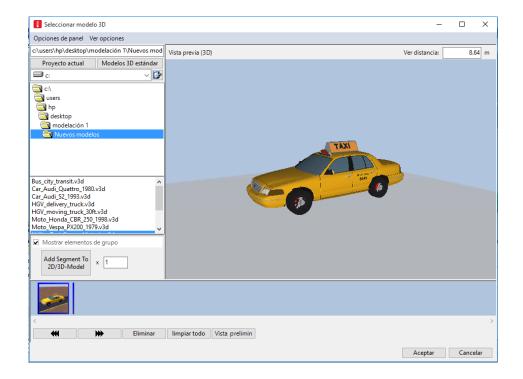


Figura 35. Modelo 3D de un Taxi

En el menú BASE DATA se crean los tipos de vehículos, desde la opción VEHICLE TYPES donde se agrupan los modelos con características similares físicas y de conducción.

Desde la ventana emergente se debe revisar que el número, nombre y modelo coincidan con los establecidos anteriormente en lola distribución de modelos (figura 36).

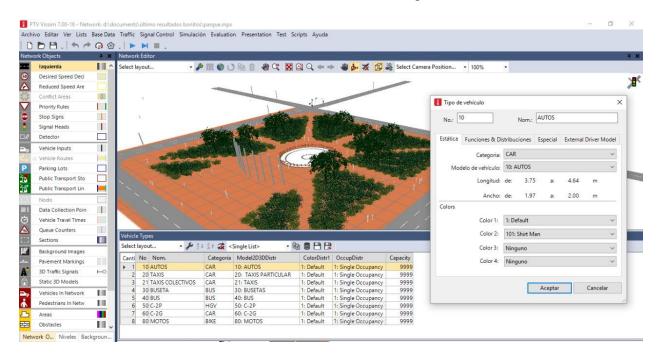


Figura 36. Creación de tipos de vehículos

Fuente: Autoras del proyecto

Las clases de vehículos se eligen de la lista de Tipos de vehículos definidos anteriormente desde el menú BASE DATA, en la opción VEHICLE CLASSES (figura 37). Se ajusta el número, nombre y color según corresponda. Para este trabajo a los taxis se les asignó el color amarillo y a los buses y busetas, color blanco para facilitar su identificación al momento de correr la simulación.

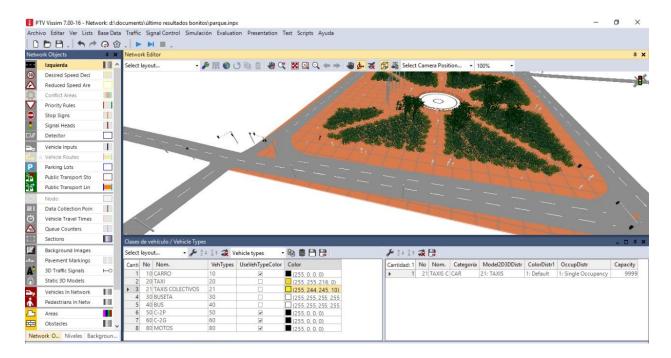


Figura 37. Determinación de las clases de vehículos

Tras la inclusión de vehículos se procede a ingresar las velocidades que fueron previamente determinadas en un estudio en el que se registró el tiempo en el que los vehículos transitaban por un punto A y por un punto B, con una separación de 100 metros entre puntos. Los porcentajes dados a los vehículos de las composiciones vehiculares fueron tomados de un análisis estadístico realizado para la hora de máxima demanda (ver tabla 7 y 8). El transporte público (ruta urbana) no fue incluido en la composición vehicular y se despreció su porcentaje a consecuencia de que el software no lo incorpora así, sino que éste se trabaja de forma independiente.

Tabla 7. Composición vehicular por accesos

Ubicación	Cantidad total de vehículos		TAXI	g <mark>-</mark>		
	veniculos	Autos	Taxis	C-2P	C-2G	Motos
Alemana	1289	327	85	48	3	826
Movistar	973	204	32	15	2	720
Catedral	823	236	36	12	5	534
Banco Btá	810	143	48	10	1	608

Fuente: Elaboración propia

Tabla 8. Composición vehicular porcentual por accesos

	% COMPOSICION VEHICULAR PORCENTUAL								
Ubicación	Cantidad total de		TAXI			6			
	vehículos	Autos	Taxis	C-2P	C-2G	Motos			
Alemana	1289	25,37%	6,59%	3,72%	0,23%	64,08%			
Movistar	973	20,97%	3,29%	1,54%	0,21%	74,00%			
Catedral	823	28,68%	4,37%	1,46%	0,61%	64,88%			
Banco Btá	810	17,65%	5,93%	1,23%	0,12%	75,06%			

Fuente: Elaboración propia

Para representar de manera más exacta la realidad de la situación vehicular en la modelación, se carga el software con datos de 15 minutos previos y 15 minutos posteriores a la hora de máxima demanda (ver de tabla 9 a 12).

PRECARGA

Los conteos del periodo de precarga contemplan los mismos movimientos vehiculares y tipos de vehículos, pero el período va desde el segundo 0 hasta el 900, 15 minutos antes de la hora de máxima demando determinada anteriormente.

Tabla 9. Composición vehicular por accesos en período de pre-carga

	% COMPOSICION VEHICULAR PORCENTUAL								
Ubicación	Cantidad total de		TAXI	g <mark>-</mark>		6			
	vehículos	Autos	Taxis	C-2P	C-2G	Motos			
Alemana	315	76	17	8	3	211			
Movistar	80	13	1	2	0	64			
Catedral	132	44	14	3	1	70			
Banco Btá	160	24	16	1	0	119			

Fuente: Elaboración propia

Tabla 10. Composición vehicular porcentual por accesos en período de pre-carga

	% COMPOSION	CION VEHI	CULAR POI	RCENTUA	AL	
Ubicación	Cantidad total de		TAXI			S
	vehículos	Autos	Taxis	C-2P	C-2G	Motos
Alemana	315	24,13%	5,40%	2,54%	0,95%	66,98%
Movistar	80	16,25%	1,25%	2,50%	0,00%	80,00%
Catedral	132	33,33%	10,61%	2,27%	0,76%	53,03%
Banco Btá	160	15,00%	10,00%	0,63%	0,00%	74,38%

Fuente: Elaboración propia

POSCARGA

Los conteos del periodo de poscarga contemplan los mismos movimientos vehiculares y tipos de vehículos, pero el período va desde el segundo 4500 hasta el 5400, 15 minutos después de la hora de máxima demando determinada anteriormente.

Tabla 11. Composición vehicular por accesos en período de pos-carga

	COMPOSICION VEHICULAR PORCENTUAL								
Ubicación	Cantidad total de		TAXI	g <mark>-</mark>		6 0			
	vehículos	Autos	Taxis	C-2P	C-2G	Motos			
Alemana	272	66	16	6	2	182			
Movistar	213	41	8	1	1	162			
Catedral	204	71	16	3	1	113			
Banco Btá	122	25	6	1	0	90			

Fuente: Elaboración propia

Tabla 12. Composición vehicular porcentual por accesos en período de pos-carga

	% COMPOSICION VEHICULAR PORCENTUAL									
Ubicación	Cantidad total de		TAXI	g <mark>-</mark>						
	vehículos	Autos	Taxis	C-2P	C-2G	Motos				
Alemana	272	24,26%	5,88%	2,21%	0,74%	66,91%				
Movistar	213	19,25%	3,76%	0,47%	0,47%	76,06%				
Catedral	204	34,80%	7,84%	1,47%	0,49%	55,39%				
Banco Btá	122	20,49%	4,92%	0,82%	0,00%	73,77%				

Fuente: Elaboración propia

Teniendo los anteriores datos mencionados en el menú TRAFFIC opción VEHICLE COMPOSITIONS se asigna el porcentaje y velocidad para cada tipo de vehículo (figura 38).



Figura 38. Asignación de porcentajes a las composiciones vehiculares

Fuente: Autoras del proyecto

El siguiente paso es la definición de las posibles rutas por las que los usuarios del sistema transitarán, tomando como base la cantidad total de vehículos por entrada como lo son: droguería Alemana, Movistar, Catedral y Banco de Bogotá y vehículos por las salidas: Dulce nombre, Movistar-cementerio, CC Santa María- Obregón, Torre de pisa-Davivienda, Banco de Bogotá-San Agustín y así asignar el porcentaje de vehículos a todos los movimientos que se pueden generar en el sistema a modelar, rutas representadas en las figuras 39, 40, 41 y 42.

Figura 39. Entrada Alemana: Rutas de salida

Figura 40. Entrada Movistar: Rutas de salida

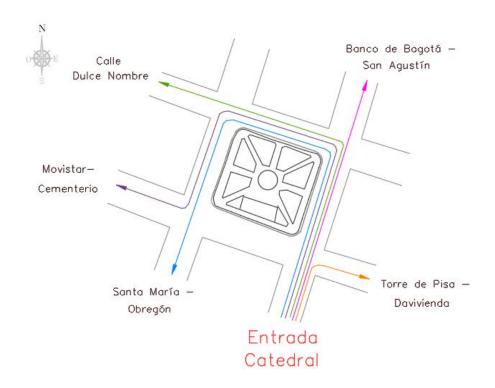


Figura 41. Entrada Catedral: Rutas de salida

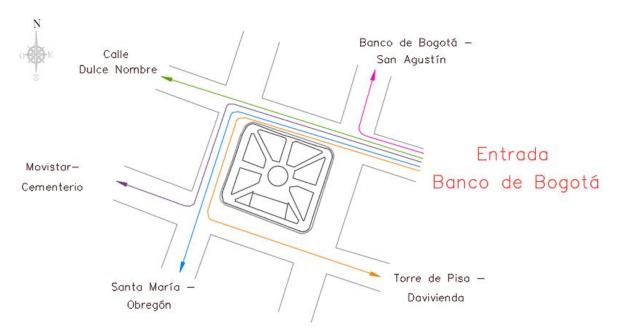


Figura 42. Entrada Banco de Bogotá: Rutas de salida

Previamente se ha tabulado la cantidad total de vehículos que ingresan por las cuatro entradas del sistema y las cantidades que salen por las cinco vías que existen para tal fin, como se muestra en la tabla 13.

Tabla 13. Total de vehículos por entradas y salidas

Entradas	Cantidad total de vehículos	Salidas	Cantidad total de vehículos
Alemana	1289	Calle Dulce Nombre	551
Movistar	973	Movistar - Cementerio	431
Catedral	823	Santa María - Obregón	1207
Banco Btá	810	Torre de Pisa - Davivienda	622
		Banco Btá - San Agustín	1084
total	3895	-	3895

Fuente: Elaboración propia

Para el trazado de las rutas se elige la opción VEHICLE ROUTE usando Ctrl + click derecho sostenido sobre el plano, se dibuja la ruta visualizada en la vía de color amarillo que comienza con una línea transversal de color fucsia y termina en una línea transversal de color verde; después de haber dibujado cada ruta para cada salida y acceso se agregan los porcentajes previamente calculados en la tabla 14.

Luego de haber designado en el software las clases, tipos de vehículos, composiciones vehículares y rutas se procede a cargar el volumen de vehículos o cantidad total de vehículos por entrada durante los 15 minutos previos, hora de máxima demanda y 15 minutos posteriores, en rangos de: 0-900 segundos, 900-4500 segundos y 4500-5400 segundos.

Tabla 14. Porcentajes de uso por salidas

Acceso	Salida	Cantidad de Vehículos mixtos	Porcentaje de Uso
	Cll Dulce Nombre	187	14,51%
Entrada Alemana	Movistar - Cementerio	215	16,68%
	Santa María - Obregón	520	40,34%
Entrada Alemana	Torre de Pizza - Davivienda (a)	135	10,47%
	Torre de Pizza - Davivienda (b)	135	10,47%
	Banco Btá - San Agustín	97	7,53%
	Cll Dulce Nombre (b)	20	2,06%
	Cll Dulce Nombre (a)	19	1,95%
	Santa María - Obregón	449	46,15%
Entrada Movistar	Torre de Pizza - Davivienda (a)	95	9,76%
Litt ada Movisui	Torre de Pizza - Davivienda (b)	95	9,76%
	Banco Btá - San Agustín	295	30,32%
	Cll Dulce Nombre (a)	65	7,90%
	Cll Dulce Nombre (b)	65	7,90%
	Movistar - Cementerio	111	13,49%
Entrada catedral	Santa María - Obregón	38	4,62%
	Torre de Pizza - Davivienda (a)	41	4,98%
	Torre de Pizza - Davivienda (b)	42	5,10%
	Banco Btá - San Agustín	461	56,01%
	Cll Dulce Nombre (a)	97	11,98%
	Cll Dulce Nombre (b)	98	12,10%
Entrada Banco de	Movistar - Cementerio	105	12,96%
Entrada Banco de Bogotá	Santa María - Obregón	200	24,69%
Dogotta	Torre de Pizza - Davivienda (a)	40	4,94%
	Torre de Pizza - Davivienda (b)	39	4,81%
	Banco Btá - San Agustín	231	28,52%

Fuente: Elaboración propia

Tras la creación de las vías y las rutas, el software resalta áreas de conflicto en zonas donde se encuentran dos conectores en las intersecciones (figura 44); queda a voluntad del modelador definir la prioridad en dichas zonas para generar un mejor comportamiento de los vehículos.

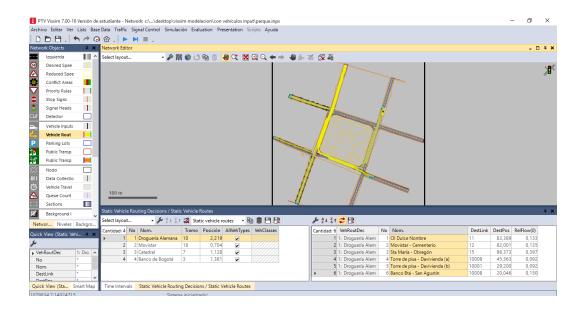


Figura 43. Asignación de rutas

Para este proceso se usa la opción CONFLICT AREAS, se muestra de color amarillo todas las zonas de conflicto presentadas en la modelación la cual se cambia al color verde si lleva la prioridad, color rojo si debe ceder el derecho al paso, color amarillo si es una zona pasiva y ambos tramos rojos si no existe derecho de vía en las bifurcaciones (figura 45).

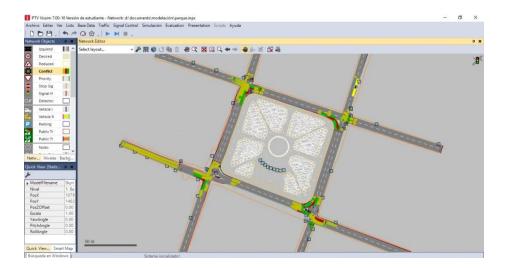


Figura 44. Visualización de las zonas de conflicto en las intersecciones

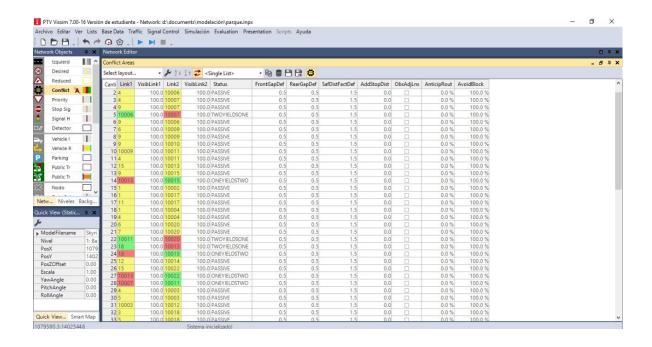


Figura 45. Determinación de prioridad en las zonas de conflicto

Es claro que todos los procesos realizados son necesarios para que la modelación en VISSIM sea los más real posible, sin embargo, no es solamente el tipo, la clase, los volúmenes, las rutas y los accesos lo que define el comportamiento del vehículo; el software también considera los patrones de comportamiento del conductor al cambiar de carril, las distancias visuales, pérdida de atención temporal y el comportamiento lateral.

El software VISSIM es de origen alemán, por tal motivo su programación está diseñada por defecto para simular el comportamiento de conducción europeo (figura 46), que difiere enormemente del comportamiento de los latinoamericanos, por esta razón es necesario realizar algunos cambios para ajustarlo al comportamiento de los ocañeros basados en la investigación "Modelación del flujo vehicular sobre la avenida Francisco Fernández de Contreras en el municipio de Ocaña Norte de Santander" (López & Vergel, 2013).

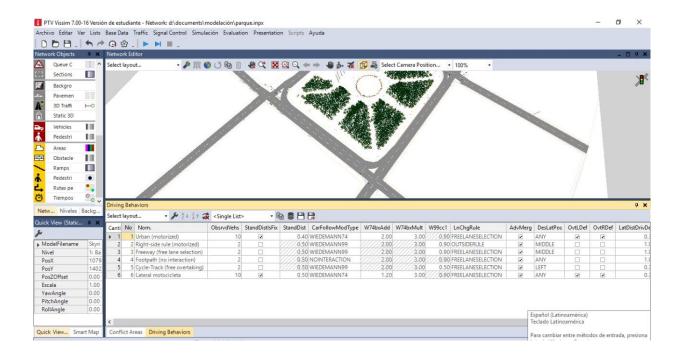


Figura 46. Opciones predefinidas en Vissim para el comportamiento de los conductores

Los parámetros modificados en DRIVING BEHAVIORS del menú BASE DATA fueron los siguientes: distancia visual hacia adelante, distancia visual hacia atrás, perdida de atención temporal, modelo de seguimiento de vehículos y separación media en detención este último es un valor arrojado en un estudio realizado por la Universidad Nacional de Colombia en el que se recomienda utilizar una distancia de 1.2 m.

Para el caso de la modelación se escoge la opción Urban (motorized) y se le realizan los ajustes necesarios según López & Vergel, 2013 (ver figuras 47 a 49).

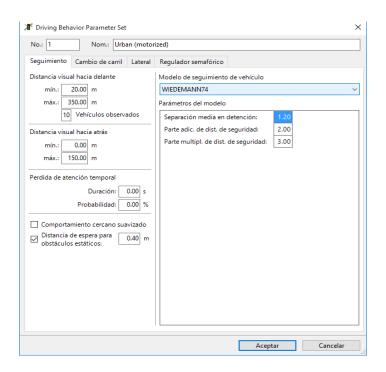


Figura 47. Ajuste de parámetros de seguimiento del comportamiento de los conductores

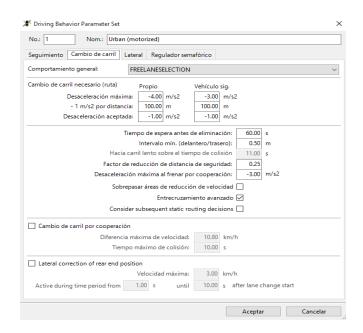


Figura 48. Ajuste de parámetros de cambio de carril del comportamiento de los conductores

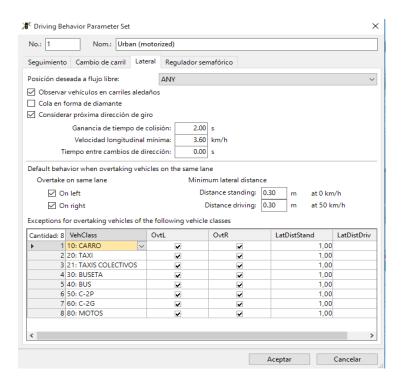


Figura 49. Ajuste de parámetros del comportamiento lateral de los conductores

Como se mencionó anteriormente además de editar los comportamientos que incluye por defecto el software, es posible agregar comportamientos para los conductores; para ésta modelación se implementa un nuevo patrón de comportamiento denominado LATERAL MOTOCICLETAS, puesto que el comportamiento del motociclista difiere al resto de los conductores el cual se ajusta de la siguiente manera según López & Vergel, 2013 (ver figura 50 a 52).

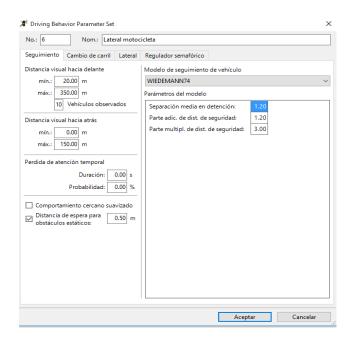


Figura 50. Ingreso de los parámetros para comportamiento

Lateral motocicleta: Seguimiento

Fuente: Autoras del proyecto

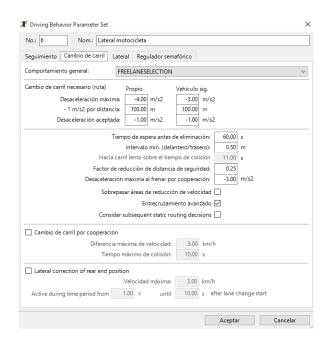


Figura 51. Parámetros de comportamiento, Lateral

motocicleta: Cambio de carril

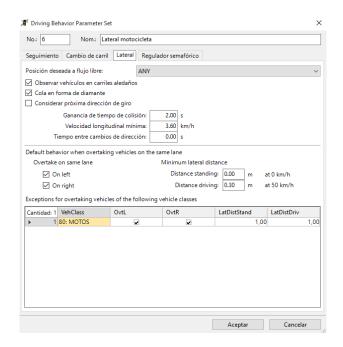


Figura 52. Ingreso de los parámetros para comportamiento Lateral motocicleta

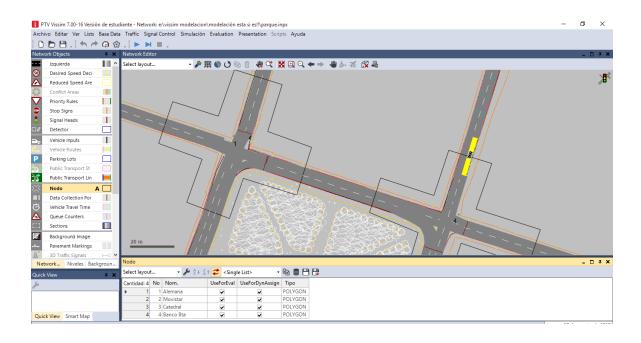


Figura 53. Creación de nodos en las intersecciones

Para la obtención de resultados se definen los nodos en las intersecciones, creados desde la paleta de objetos de red ubicada en el costado izquierdo de la pantalla. Es recomendable dibujarlos siguiendo la geometría de las vías en dichas intersecciones (figura 53).

La frecuencia del tránsito del transporte público es definida por el tiempo asignado a cada ruta por las empresas se servicio público Cootransunidos y CotransHacaritama (tabla 14).

Tabla 14. Tasa de servicio para rutas de transporte público en Ocaña

Busetas				
Nombre de la ruta	Entrada	Salida	Tasa de servicio (segundos)	
Banco Btá- san				
Directo	Alemana	Agustín	180 seg	
Llano	Alemana	Dulce nombre	240 seg	
Hatillo	Alemana	Dulce nombre	1200 seg	
Cristo rey	Alemana	circunvalar	600 seg	
Marabel	Movistar	Dulce nombre	240 seg	
Nueva España	Movistar	Dulce nombre	480 seg	
Taxis				
Llano Hacaritama	Alemana	Dulce nombre	240 seg	
Llano Cootransunidos	Alemana	Dulce nombre	120 seg	
		Banco Btá- san	_	
Directo Hacaritama	Alemana	Agustín	240 seg	
		Banco Btá- san		
Directo Cootransunidos	Alemana	Agustín	120 seg	
Marabel Hacaritama	Movistar	Dulce nombre	240 seg	
Marabel Cootransunidos	Movistar	Dulce nombre	120 seg	

Fuente: Elaboración propia

Con las rutas y tiempos definidos se procede a incluir el transporte público en la modelación, desde la opción PUBLIC TRANSPORT LINES (figura 51); a medida que se crea cada nueva ruta se edita la información en la ventana emergente, asignándole: nombre,

velocidad, tipo y color de vehículo, además de un desfase de 30 segundos para el presente proyecto (figura 54).

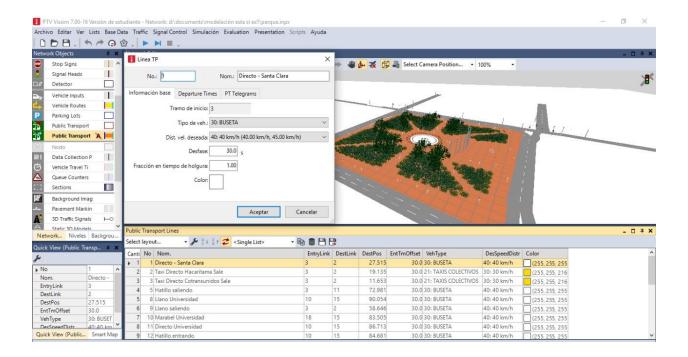


Figura 54. Creación de rutas de transporte público

Fuente: Autoras del proyecto

Una vez creado el transporte público en la modelación se establecen las paradas para los vehículos de servicio público (ver figura 55), en la opción PUBLIC TRANSPORT STOPS, con Ctrl + clic derecho sostenido sobre el plano se dibuja la parada en el tramo de vía, se genera una ventana emergente en la cual se indica el nombre y la longitud para dicha parada.

Actualmente hay establecidas solo dos paradas, pero fue necesario crear 6 más en zonas donde los conductores a menudo acostumbran a recoger y dejar pasajeros.

Las paradas de transporte público deben ser activadas, como se muestra en la figura 56.

La ventana emergente ofrece la opción de posibilidad de paso de vehículo sin detención, lo que

evita que, por ejemplo, al momento de circular por la parada 6 busetas algunas hagan caso omiso a la parada y representar mejor la dinámica de dichos vehículos.

Figura 55. Creación de paradas de transporte público

Fuente: Autoras del proyecto

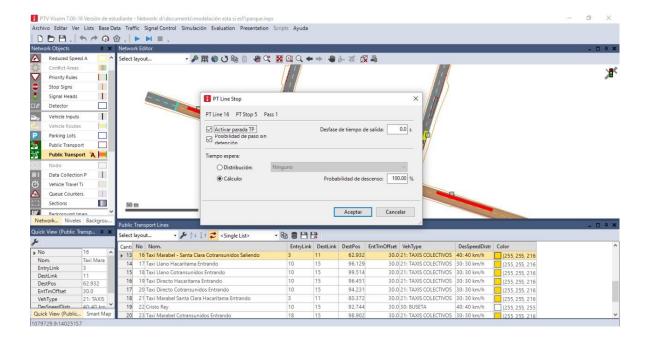


Figura 56. Activación de parada PT

Para la inserción de semáforos al software es necesario programar primero los ciclos en el menú Signal Control de la cinta superior (figura 57), y en Signal controlers se agrega un nuevo semáforo a la lista. Al pinchar sobre el elemento se edita el regulador semafórico con los datos de los ciclos que se han recolectado en campo.

Al tener los ciclos se crea el objeto desde la opción Signal Heads de la red de objetos en la vía a semaforizar, y se editan los parámetros en la ventana que emerge, como se observa en la figura 58.

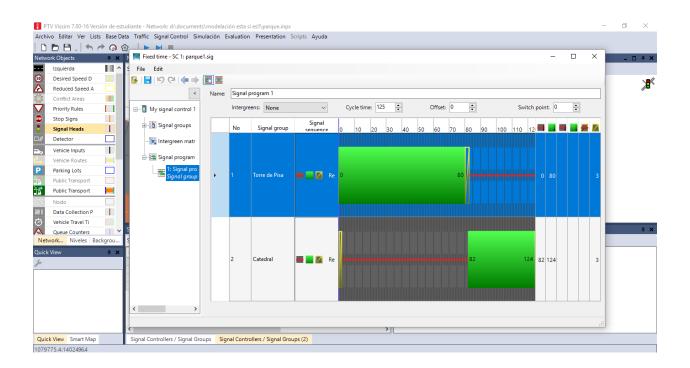


Figura 57. Programación del ciclo en los semáforos de una intersección

Fuente: Autoras del proyecto

Vissim permite la inserción de modelos 3d de los semáforos, y aunque su función se limita a la apariencia visual le aporta realismo a la modelación. La programación de los ciclos semafóricos se hace de manera independiente en la opción Signal Heads.

Para crear el semáforo en 3d se elige 3D Traffic Signal en la paleta Network objects que aparece al costado izquierdo de la pantalla. El objeto se crea con Ctrl + click derecho, que es la forma más sencilla de insertar elementos en el software. Inmediatamente emerge una nueva ventana para editar los parámetros del semáforo que se está creando.

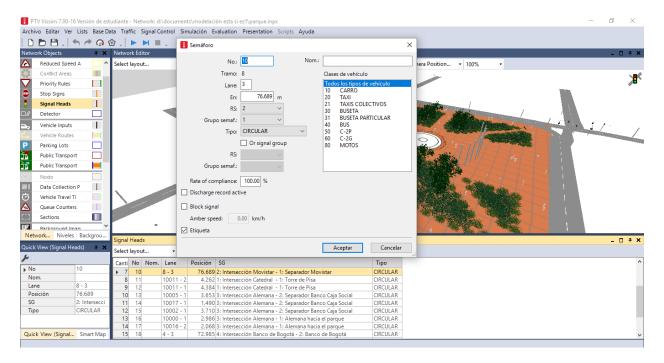


Figura 58. Ajuste de parámetros en un nuevo semáforo

Fuente: Autoras del proyecto

Es posible editar la apariencia de los semáforos cambiando la longitud y le diámetro de los postes, insertando brazos que sostengan nuevos semáforos, señales de tránsito y alumbrados (figura 59).

Para que las luces del semáforo funcionen acorde a los ciclos programados anteriormente, se elige el programa y grupo semafórico que corresponda, como se muestra en la figura 60.

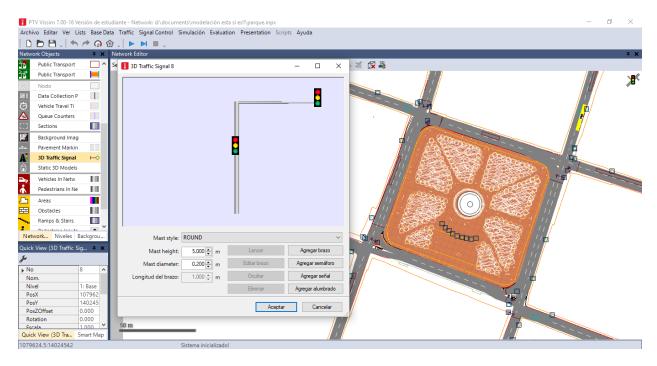


Figura 59. Edición de la apariencia de un semáforo

Comprobar que el modelo creado refleja la realidad de la situación que se presenta en la zona de estudio, es un paso importante y obligado antes de continuar con el planteamiento y la modelación de las alternativas. Vissim evalúa y arroja resultados de varios parámetros, lista que el usuario puede ajustar, seleccionando las variables que desea analizar. En el presente estudio se comprobará si el modelo está calibrado comparando las listas de resultados de colas, demoras y los volúmenes vehiculares. Dichos parámetros fueron determinados en campo, en un estudio de colas y demoras, que medía las longitudes de las colas de vehículos que se formaban en la hora pico, es decir, el sábado de 11:45 am a 12:45 pm (tabla 15). Los volúmenes vehiculares se determinaron con aforos vehiculares realizados los días 25, 27 y 30 de mayo del 2017.

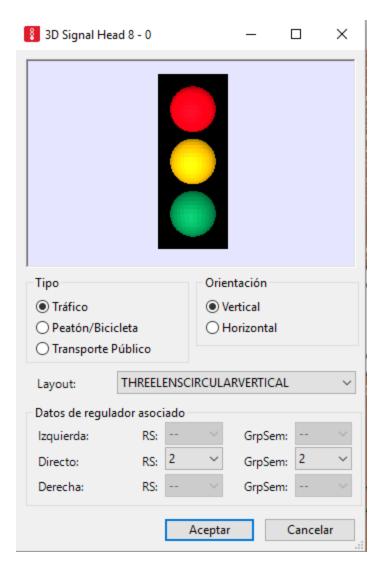


Figura 60. Modificación de la apariencia de un semáforo

Tabla 15. Resumen de estudio de colas y demoras

Entrada	Hora	Longitud máxima situación actual	Longitud máxima situación real
Alemana	11:45 - 12:00	101,4 m	102 m
	12:00 - 12:15	101,4 m	102,5 m
	12:15 - 12:30	95,1 m	97 m
	12:30 - 12:45	95,1 m	95 m

Fuente: Elaboración propia

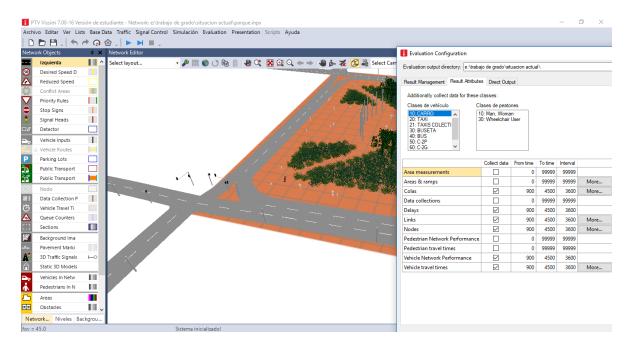


Figura 61. Configuración de los ajustes de evaluación

Para este proceso se configura el programa desde el menú EVALUATION, activando los parámetros de colas, demoras, nodos y comportamientos de la red, como se muestra en la figura

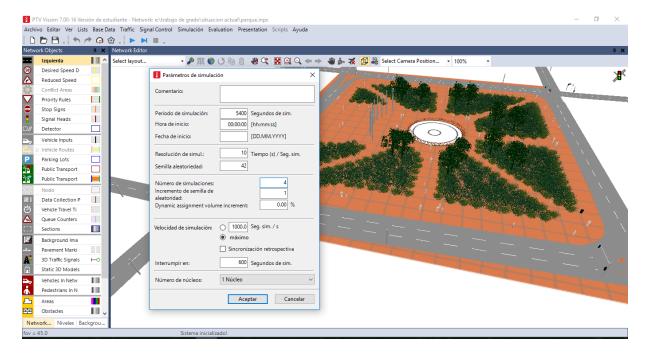


Figura 62. Configuración de los parámetros de simulación

El periodo de tiempo y la cantidad de veces que se desea simular el modelo, se ajustan desde el menú SIMULACION como se muestra en la figura 62. Se recomienda obtener resultados tras varias corridas, pues a mayor cantidad de reproducciones la semilla de aleatoriedad del software funciona mejor.

Y, por último, se buscan las listas de resultados de los parámetros configurados anteriormente por el usuario, en el menú LISTS, opción Results, escogiendo los nodos que se dibujaron en las intersecciones (figura 63).

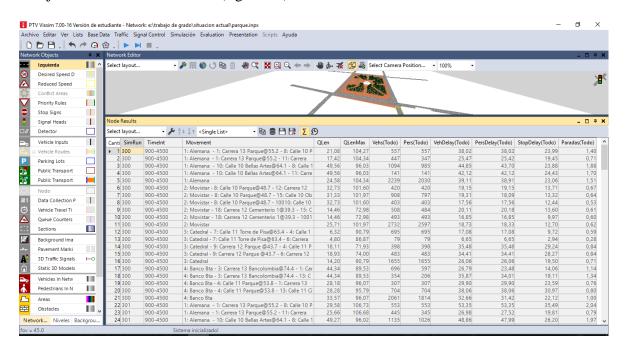


Figura 63. Listas de resultados producto de la evaluación

4.3.1. Planteamiento de alternativa 1. Creación de un carril exclusivo, exento de controladores semafóricos. Se propone el replanteo de la infraestructura existente, interviniendo las esquinas del parque para la creación de un nuevo tramo de carril adyacente a las curvas, en el que los vehículos estarán exentos de los semáforos. En Colombia existe bibliografía para el diseño de carreteras inter-urbanas como, el mencionado a lo largo del presente trabajo, Manual de diseño geométrico de carreteras de James Cárdenas Grisales o el manual del instituto nacional de vías (INVIAS), que exponen los parámetros técnicos y científicos para el diseño y trazado de dichas vías; el instituto de desarrollo urbano ha desarrollado una guía para el diseño de vías urbanas en Bogotá DC donde establecen los procedimientos y criterios pertinentes para la creación de las vías de este orden, no obstante, para el presente proyecto dada la carencia de literatura se llevó a cabo el diseño de los elementos de vía utilizando la ecuación de radio mínimo formulada para carreteras inter-urbanas.

El parámetro básico para el diseño de los elementos de vía es la velocidad de diseño, que, según James Cárdenas en Diseño geométrico de vías, se define como la máxima velocidad segura y cómoda que puede ser mantenida en un tramo determinado de una vía, cuando las condiciones son tan favorables, que las características geométricas de la vía predominen.

La velocidad de diseño para los elementos que se desean crear se determinó con el estudio de velocidades de punto realizado previamente, siguiendo los lineamientos establecidos en el libro de INGENIERÍA DE TRANSITO FUNDAMENTOS Y APLICACIONES de Rafael Cal, Mayor Reyes Espíndola y James Cárdenas Grisales como se muestran a continuación.

El sábado 24 de junio, se realizó el estudio de velocidades de punto, ubicando un observador en cada extremo del tramo de vía sobre el que se ubica la salida Santa María – Obregón, con una longitud de 92.1 metros, para conocer y registrar la hora en la que un vehículo pasa por un primer punto ubicado al inicio del tramo (esquina del Centro comercial Santa María), y la hora exacta en la que dicho vehículo circula por un segundo punto (esquina de Distraves). Conociendo el tiempo de recorrido que le tomó a cada vehículo de la muestra de 50 vehículos de composición mixta, se calcula la velocidad con la que circula, y se procede a realizar el arreglo tabular de los datos (tabla 16) para luego ser representados gráficamente.

Tabla 16. Arreglo tabular de los datos del estudio de velocidad de punto

Intervalos	Y	fi	hi	Fi	Hi	\mathbf{Y}^2	fi*Y	fi*Y ²
9.00 13.99	11.50	2	4.00%	2	4.00%	132.14	22.99	264.27005
14.00 18.99	16.50	4	8.00%	6	12.00%	272.09	65.98	1088.3401
19.00 23.99	21.50	6	12.00%	12	24.00%	462.04	128.97	2772.2102
24.00 28.99	26.50	11	22.00%	23	46.00%	701.99	291.445	7721.8353
29.00 33.99	31.50	13	26.00%	36	72.00%	991.94	409.435	12895.155
34.00 38.99	36.50	9	18.00%	45	90.00%	1331.89	328.455	11986.965
39.00 43.99	41.50	5	10.00%	50	100.00%	1721.84	207.475	8609.1751
		50	100.00%					

El histograma de frecuencias (figura 64) y la línea de distribución de frecuencia relativa (figura 65), muestran las clases o grupos de velocidades que han sido registradas y la frecuencia relativa observada para cada grupo. Se aprecia de la figura que casi el 50% de los vehículos transitan a velocidades entre 24 y 33,99 km/h, es decir entre los grupos de velocidades 4 y 5. La línea porcentual de frecuencia acumulada (figura 66), en el percentil 50 P_{50} , es utilizada como una medida de la calidad del flujo vehicular, y es aproximadamente igual a la velocidad media (Cal y Mayor & Cárdenas Grisales, 1994).

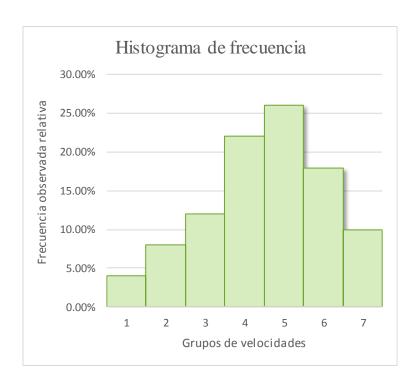


Figura 64. Histograma de frecuencia del estudio de velocidad de punto. Fuente: Autoras del proyecto

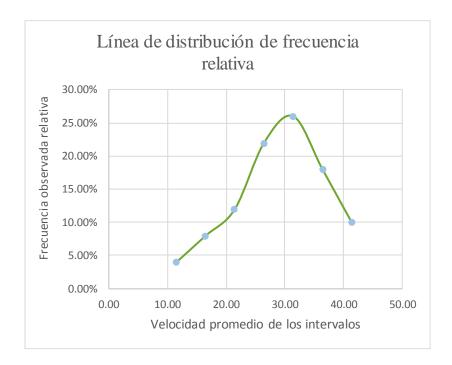


Figura 65. Línea de distribución de frecuencia relativa del estudio de velocidad de punto.

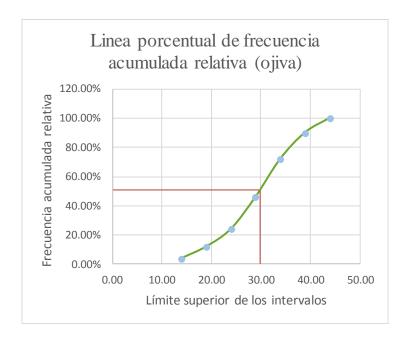


Figura 66. Línea porcentual de frecuencia acumulada (ojiva) del estudio de velocidad de punto.

Fuente: Autoras del proyecto

Además de la velocidad de diseño debe establecerse la velocidad máxima más probable con que sería abordado cada elemento geométrico, que es justamente su velocidad específica y es con la que se debe diseñar ese elemento, en el presente proyecto la velocidad para el diseño de los elementos será de 30 km/h.

Todas las curvas tienen la misma velocidad porque en este caso de estudio, los conductores al salir de la curva anterior, juzgan que la longitud del segmento recto es inferior a la distancia recorrida en aproximadamente 5 segundos a la velocidad de diseño del tramo (150 metros en promedio). En este caso no disponen del tiempo suficiente para obtener plena claridad sobre la situación y en consecuencia no alcanzan a realizar ajustes a su velocidad. La condición de seguridad indica que a la curva horizontal siguiente se le

debe asignar la misma velocidad específica que la asignada a la curva que se acaba de recorrer (Cal y Mayor & Cárdenas Grisales, 1994).

Realizar el diseño con un único radio, implica que el empalme de las dos vías tangentes al parque se hace con una curva circular simple, y para su diseño uno de los principales parámetros a calcular es el radio de curvatura mínimo que garantice que con el radio determinado los vehículos contrarresten el efecto de la fuerza centrífuga, adoptando vales apropiados de peralte y fricción transversal.

$$R_{C_{min}} = \frac{(V_{CH})^2}{127 * (e_{máx} + F_{T_{máx}})}$$

 $R_{C_{min}}$ = radio de curvatura mínimo

 V_{CH} = velocidad específica

 $e_{m\acute{a}x}$ = peralte máximo

 $F_{T_{m\acute{a}x}}$ = coeficiente de fricción transversal máxima

Se escoge un peralte máximo del 8 por ciento establecido en Colombia para carreteras *primarias y secundarias*, que evita incomodar a aquellos vehículos que viajan a velocidades menores, y un valor de 0.28 que corresponde a la velocidad especifica establecida de 30 km/h (figura 64).

VELOCIDAD ESPECÍFICA Voн (Km/h)	20	30	40	50	60	70	80	90	100	110	120	130
COEFICIENTE DE FRICCIÓN TRANSVERSAL MÁXIMO frméx									0.12	0.11	0.09	0.08
Fuente: AASHTO. A Policy on Geometric Design of Highways and Streets. Washington D.C. 2004.												

Figura 67. Coeficientes de fricción máximo.

Fuente: Cal y Mayor, R., & Cárdenas Grisales, J. (1994). Ingeniería de tránsito: Fundamentos y aplicaciones. México: Alfaomega.

$$R_{C_{min}} = \frac{(30 \ km)^2}{127 * (0.08 + 0.28)}$$

$$R_{C_{min}} = 19.69 m \approx 20 m$$

Tras la determinación de los elementos a modificarse en la zona de estudio para la modelación de esta alternativa, se procede a hacer los cambios en el plano topográfico, trazando las nuevas curvas que unen las vías tangentes al parque, creando un nuevo carril por la parte interna del carril existente (figuras 66), permitiendo que los vehículos que van a pasar por dos o más intersecciones en su recorrido por el parque, circulen sin hacer las paradas de los semáforos y permitiéndole así a los conductores unos tiempos de viaje más cortos. De las 19 rutas posibles que realizan los vehículos del sistema, 9 podrían usar el carril rápido, lo que representaría una disminución en las colas ya que estos automóviles no pararían en los semáforos (tabla 16). En la figura 65 se observa una toma de la simulación del modelo calibrado en la intersección del banco de Bogotá, de la calle 10 semaforizada en su totalidad como es común; en la figura 66 el carril siguiente al parque es más amplio en la esquina, pues tiene el doble del ancho de la situación actual y no está semaforizado. Es por ello que se observan dos carriles congestionados por las colas de los vehículos que esperan el cambio del semáforo, y a su vez por el carril que plantea la alternativa, se observan los vehículos transitando libremente, exentos de reguladores semafóricos.



Figura 68. Situación actual modelada en el software Vissim

Fuente: Autoras del proyecto

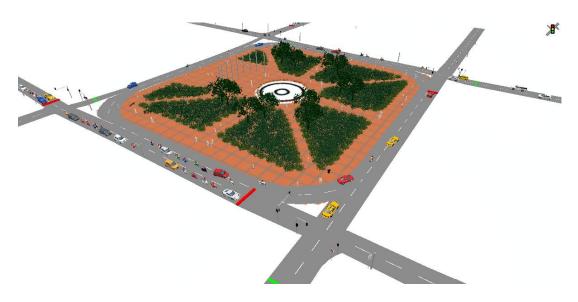


Figura 69. Modelación de la alternativa 1: Carril rápido.

Tabla 17. Rutas que podrían usar el carril rápido

	Ruta	Numero de in	tersecciones recorridas
Acceso	Salida	En la ruta	Por el carril rápido
Alemana	Davivienda (Cra 12)	2	1
Alemana	San Agustín (Calle 11)	3	2
3.6			
Movistar	Cll Dulce Nombre (Cra 13)	3	2
	San Agustín (Calle 11)	2	1
	Cll Dulce Nombre (Cra 13)	2	1
Catedral	Cementerio (Cra 12)	3	2
	Obregón (Calle 10)	3	2
Banco de	Cementerio (Cra 12)	2	1
Bogotá	Obregón (Calle 10)	2	1
	Davivienda (Cra 12)	3	2

Se espera que esta alternativa disminuya los tiempos de viaje de los vehículos, en vista de que suprimiría los tiempos de las paradas en los semáforos para el 47% de las rutas de vehículos particulares, además de menguar las colas, lo que traduce en una mejora de la movilidad de los vehículos que generalmente se embotellan en los tramos de vía que rodean el parque y entorpecen el tránsito de los vehículos que ingresan al parque cuando el semáforo anterior al controlador semafórico del parque pasa a verde.

4.3.2. Planteamiento de alternativa 2. Modificación del sentido de las carreras 12 y13. El cambio de sentido de los corredores viales es una de las estrategias que implementan las

administraciones de las ciudades para aliviar las anomalías del tránsito vehicular. Modificar el sentido de las vías implica la implementación de un plan completo que contemple el cambio de

las rutas de servicio publico sin afectar a la población que se moviliza en estos vehiculos, una reestructuración de los movimientos vehiculares y encontrar nuevas vías para encausar el tráfico descongestionando las vías donde hay caos, procurando no entorpecer las actividades de la zona.

En esta alternativa se plantea el cambio de sentido de las carreras 12 y 13 (figura 68), lo que traduce en la supresión de los movimientos que giran bordeando el parque en las esquinas. Los vehículos que transitaban por la carrera 12 en dirección Oeste-Este, ingresando por el acceso de movistar o por la calle 10, ahora lo harán por el nuevo acceso de la carrera 13, conocido como calle del Dulce nombre, o también por el nuevo acceso de Davivienda. El tránsito de la carrera 13 ingresará por la calle del Dulce nombre y desembocaría en la calle 10 en sentido Oeste-Sur, en sentido Oeste-Este por el banco de Bogotá, y en sentido Oeste-Norte por la calle 11 hacia San Agustín (figura 69). La figura 67 ilustra la nueva codificación de movimientos.

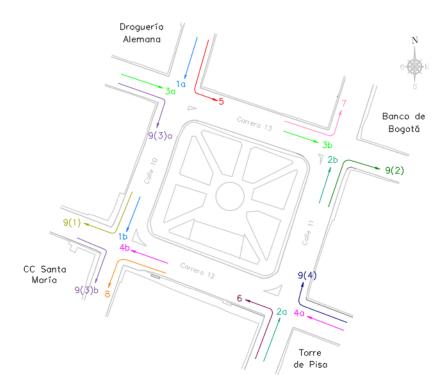


Figura 70. Reajuste de la codificación de movimientos para los nuevos sentidos de circulación, según la norma RILSA

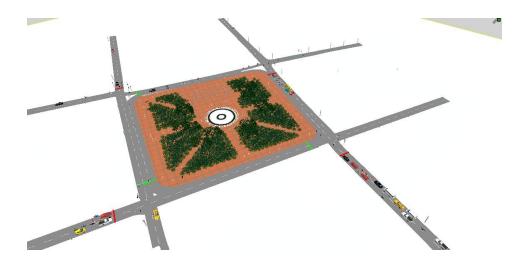


Figura 71. Modelación de la situación actual con los sentidos de circulación establecidos Fuente: Autoras del proyecto

Figura 72. Modelación de la alternativa 2: cambio de sentido de circulación Fuente: Autoras del proyecto

Una de las vías más congestionadas es el tramo de la carrera 12 entre calles 11 y 12 que, para facilidad del lector, en el desarrollo del trabajo se conoce como acceso Banco de Bogotá, lograría un tránsito más fluido dado que las rutas de servicio público no llegarán a ella en la misma proporción. Existen puntos geográficos en la ciudad por donde gran mayoría de las rutas de servicio público están trazadas, y por donde casi la totalidad de los vehículos de transporte publico transitan; En el extremo sureste de la ciudad se encuentra la Universidad Francisco de Paula Santander Ocaña, destino obligado para todas las rutas de servicio público. Estos vehículos

ingresan luego al centro de la ciudad por la carrera 13, en el acceso del Banco de Bogotá, pero en esta alternativa se propone que las rutas que circulan con desino norte hacia Santa Clara ingresen por el acceso Davivienda en la carrera 12. Las rutas Marabel y Nueva España ingresan y salen del sistema por la carrera 12, desde Davivienda hasta la vía de doble sentido que va desde movistar hasta el cementerio. La ruta Directo centro sale de la carrera 12 y gira con sentido norte para salir por la calle 11 hasta san Agustín. Con el propósito de no congestionar la vía, las rutas que transitan con menor frecuencia, tales como: Hatillo, Llano y Cristo Rey siguen circulando por la carrera 13. El ajuste de las rutas se muestra en la tabla 17.

Tabla 18. Ajuste de rutas para la alternativa 2: cambio de sentidos

Entrada Alemana Entrada movistar Entrada catedral Entrada catedral Entrada catedral Entrada catedral El Ba Ba	ovistar - Cementerio anta María - Obregón anta María - Obregón martillo
Entrada Alemana Sa El Ba Entrada movistar Sa Entrada catedral El Ba El Ba El Ba El Ba Ba	nnta María - Obregón
Entrada movistar Entrada catedral Entrada catedral Entrada catedral El El El El El El El El El	-
Entrada movistar Entrada catedral Entrada catedral Entrada catedral El Ba Ba	martillo
Entrada movistar Sa M Sa Entrada catedral El Ba Ba	
Entrada catedral El Ba Ba	anco Btá - San Agustín
Entrada catedral Entrada catedral El Ba Ba	anta María - Obregón
Entrada catedral El Ba Ba	ovistar - Cementerio
Entrada catedral El Ba	anta María - Obregón
El Ba Ba	martillo
Ba	martillo
	anco Btá - San Agustín
R	anco Btá - San Agustín
De	anco Btá - San Agustín
Entro do Domos	ovistar - Cementerio
Entrada Banco Sa Agrario	anta María - Obregón
Agrario El	martillo
Ва	anco Btá - San Agustín
M	ovistar - Cementerio
Entrada dulce Ba	anco Btá - San Agustín
nombre El	martillo
El	martillo
Sa	nnta María - Obregón
Sa Fuente: Flaboración propia	anta María - Obregón

De este modo, los vehículos que antes debían rodear el parque para encontrar una salida, ahora tienen opciones más directas para salir del sistema de una manera más eficiente, sin tener que pasar por todas las intersecciones semaforizadas del parque, mejorando los tiempos de viaje, lo que descongestionaría las vías evitando que un mismo vehículo transite por varios puntos de la zona de estudio.

4.3.3. Planteamiento de alternativa 3. Ajuste de los ciclos semafóricos existentes en las intersecciones y eliminación de paradas de servicio público en las vías que rodean el parque Plaza 29 de mayo. En búsqueda de una movilidad óptima y basado en un análisis de la situación actual, se estudian los controladores semafóricos existentes en las cuatro intersecciones de la zona de estudio. Actualmente los tiempos están distribuidos en ciclos desde 101 segundos para el ciclo más corto hasta 125 para el ciclo de mayor duración. El semáforo de la catedral, tiene dos fases y la duración del ciclo es de 125 segundos, la intersección de Movistar tiene un ciclo de 101 segundos, el ciclo semafórico de la droguería alemana es de 110 segundos y por último los reguladores semafóricos de la intersección del Banco de Bogotá tiene una duración de 123 segundos.

El cálculo de los tiempos semafóricos se hace siguiendo el modelo de Webster, para calcular el intervalo de cambio de fase, que considere el tiempo de reacción del conductor, tiempo y espacio de deceleración y el tiempo necesario de despeje de la intersección, el proceso para el cálculo se realiza basado en el libro INGENIERÍA DE TRANSITO FUNDAMENTOS Y APLICACIONES de Rafael Cal, Mayor Reyes Espíndola y James Cárdenas Grisales.

La tabla 18 muestra un resumen de la semaforización de las cuatro intersecciones que se encuentran en la zona de estudio; existe una fase para cada vía que confluye en el punto de la intersección, es decir, hay dos fases por grupo semafórico.

Tabla 19. Ciclos semafóricos existentes

Grupo semafórico	Intersección	Tiempo de ciclo (s)	Fase	Vía	Sentido
1	Catedral	125	1	Calle 11	S - N
	Cateurai		2	Carrera 12	O - E
2	Movistar	100	1	Calle 10	N - S
	Wovistai		2	Carrera 12	O - E
3	Alemana	110	1	Calle 10	N - S
	Alemana		2	Carrera 13	E - O
4	Banco de	124	1	Carrera 13	E - O
	Bogotá		2	Calle 11	S - N

Fuente: Elaboración propia

$$Co = \frac{1.5 L + 5}{1 - \Sigma_{i=1}^{\beta} Y_i}$$

$$Y = \left(t + \frac{v}{2a}\right) + \frac{w+l}{v}$$

Donde:

y = intervalo de cambio de fase, ámbar mas todo-rojo (s)

t = tiempo de percepción – reacción del conductor (usualmente 1.00 s)

v = velocidad de aproximación de los vehículos (m/s)

a =tasa de aceleración (valor usual 3.05 m/s²)

W = ancho de la intersección (m)

L =longitud del vehículo (valorsugerido 6.10 m)

$$\beta_i = \frac{flujo \ actual}{flujo \ de \ saturación}$$

$$Co = \frac{1.5 L + 5}{1 - \Sigma_{i=1}^{\Phi} \beta_i}$$

Tiempo perdido por ciclo:

$$\Sigma = (A_i + TR_i)$$

Co= Tiempo óptimo de ciclo (s)

L= Tiempo total perdido por ciclo (s)

βi= Máximo valor de la relación entre el flujo actual y el flujo de saturación para el acceso o movimiento o carril crítico de la fase

φ= Número de fases del semáforo

Cálculo del tiempo verde efectivo total

$$g_T = C - L$$

Cálculo de la fase verde

$$g_1 = \frac{\beta_1}{\beta_1 + \beta_n} * gT$$

Tras realizar los cálculos necesarios para ajustar los tiempos de los ciclos semafóricos actuales, se obtienen los siguientes resultados:

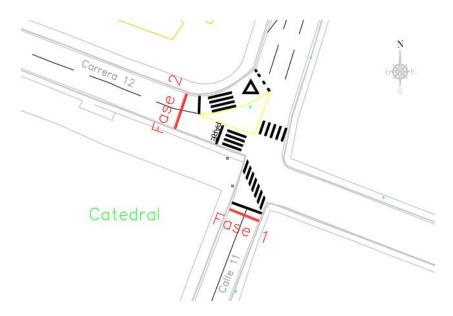


Figura 73. Identificación de las fases de los ciclos semafóricos de la intersección Catedral.

Fuente: Autoras del proyecto

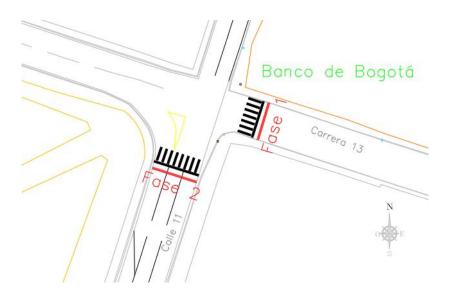


Figura 74. Identificación de las fases de los ciclos semafóricos de la intersección Banco de Bogotá.

Para las intersecciones de la catedral (figura 70) y el banco de Bogotá (figura 71), se redujo el ciclo semafórico a la mitad, la sumatoria de amarillos y todo rojo es de 7.70 segundos, el verde total de 59.79 segundos distribuidos en dos verdes de 27 y 33 segundos.

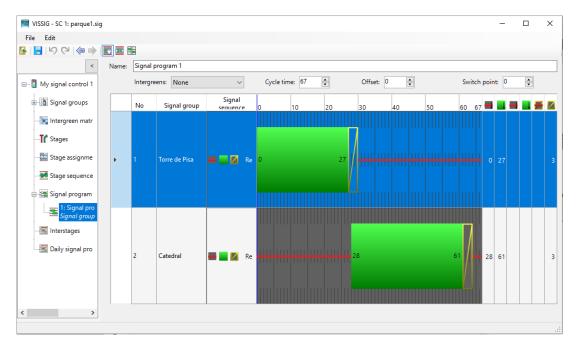


Figura 75. Programa semafórico intersecciones catedral y Banco de Bogotá en Vissim

Fuente: Autoras del proyecto

En la intersección de movistar (figura 73) y la droguería alemana (figura 74) se obtuvo un ciclo de 90 segundos, la sumatoria de amarillos y todo rojo es de 7.81 segundos, el verde total de 82.18 segundos distribuidos en dos verdes de 51 y 32 segundos.

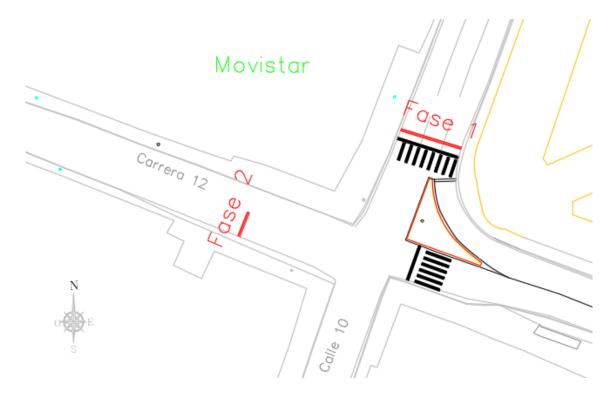


Figura 76. Identificación de las fases de los ciclos semafóricos de la intersección Movistar.

Fuente: Autoras del proyecto

Figura 77. Identificación de las fases de los ciclos semafóricos de la intersección alemana.

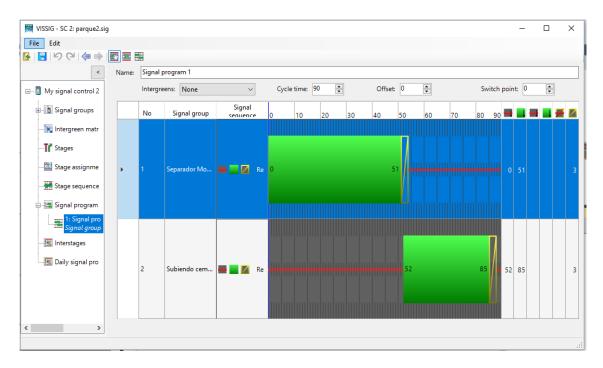


Figura 78. Programa semafórico intersecciones Movistar y alemana.

4.4. Analizar los resultados obtenidos de la modelación realizada en el software que permita establecer con seguridad la alternativa a aplicar en el lugar objeto de estudio

4.4.1.Análisis de resultados de la modelación en VISSIM 7 de la situación actual del flujo vehicular a la plaza parque 29 de mayo de la ciudad de Ocaña. El análisis de resultados se lleva a cabo tras la calibración del modelo, y la intervención a la situación actual para simular las alternativas propuestas en el capítulo anterior; se prosigue a obtener los datos que permitirán conocer el comportamiento vehicular de la zona en estudio para efectuar las comparaciones necesarias con la situación actual del flujo vehicular.

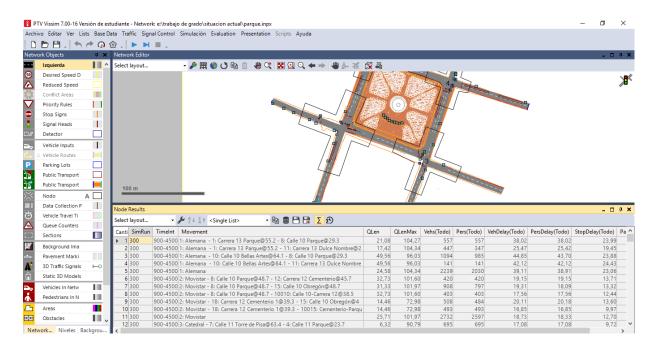


Figura 79. Lista de resultados por nodos

Fuente: Autoras del proyecto

Alcanzar resultados más confiables que se reflejen en los datos obtenidos tras efectuar las micro-simulaciones es posible, configurando el software para que realice más de una corrida,

aumentando así la semilla de aleatoriedad del programa. Para el presente estudio se efectuaron 4 corridas por simulación, obteniendo las tablas que genera Vissim de datos específicos de los nodos dispuestos en cada una de las intersecciones del parque, de parámetros tales como: volumen de vehículos, longitud de colas y tiempo de demoras.

El software muestra el nombre de las vías anteriormente incluidas para cada movimiento, como se pudo apreciar en la figura 76, sin embargo, se organizaron los movimientos bajo los lineamientos de la norma RILSA.

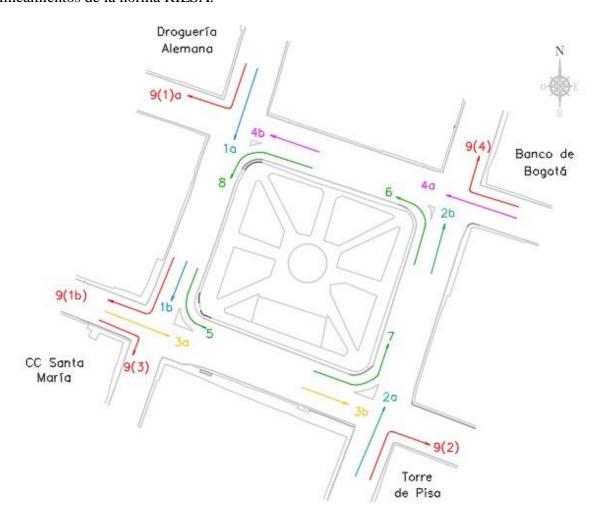


Figura 80. Reajuste de movimientos según norma RILSA

A continuación, se muestran las tablas de volumen vehicular (tabla 19), longitudes de colas y tiempo de demoras de los vehículos en la situación actual, donde se especificará los datos arrojados de las diferentes corridas realizadas y el promedio de valores para cada parámetro por movimiento.

Tabla 20. Volumen vehicular promedio para la modelación de la situación actual

Intersecció	Direcció	Movimiento norma		Mode	lación		Volumen	Desviació
n	n	RILSA	1	2	3	4	promedio	n estándar
	E-S	8	557	553	502	504	529	30
	E-W	4b	447	445	438	461	448	10
Alemana	N-S	1a	1094	1135	1132	1167	1132	30
	N-W	9(1)a	141	143	179	158	155	18
	total nodo		2239	2276	2251	2290	2264	23
	N-W	9(1)b	420	418	417	404	415	7
	N-S	1b	908	906	835	835	871	42
Movistar	N-E	5	403	396	400	454	413	27
Movistar	W-S	9(3)	508	507	478	460	488	23
	W-E	3(a)	493	490	510	494	497	9
	tota	total nodo		2717	2640	2647	2684	47
	S-N	2(a)	695	706	734	754	722	27
	S-E	9(2)	79	80	99	79	84	10
Catedral	W-N	7	398	399	400	410	402	6
	W-E	3(b)	483	470	501	535	497	28
	tota	al nodo	1655	1655	1734	1778	1705	61
	E-W	4(a)	696	696	636	634	666	35
Banco de	E-N	9(4)	354	350	372	371	362	11
Bogotá	S-W	6	307	309	298	320	309	9
Dogota	S-N	2(b)	704	709	753	752	730	27
total nodo		al nodo	2061	2064	2059	2077	2067	8
RED TOTAL			8687	8712	8684	8792	8720	

La tabla de longitudes de colas (tabla 20) está organizada por entradas, y muestra las distancias de las filas de carros que se presentan al momento de esperar el paso del semáforo a verde, o los trancones que se forman producto de las paradas que los vehículos de transporte publico hacen a menudo en lugares no destinados para tal fin.

Tabla 21. Longitud promedio de las colas para la modelación de la situación actual

Intersección	Dirección	Movimiento según norma		Modela	ación	Longitud	Desviación	
		RILSA	1	2	3	4	promedio	estándar
	E-S	8	104,27	106,73	91,12	103,67	101,45	7,01
Alemana	E-W	4b	104,34	106,68	91,20	103,75	101,49	6,98
	N-S	1a	96,03	96,02	96,00	92,54	95,15	1,74
	N-W	9(1)a	96,03	96,02	96,00	92,54	95,15	1,74
Movistar	N-W	9(1)b	101,60	98,17	97,33	97,34	98,61	2,03
	N-S	1b	101,97	98,53	97,70	97,69	98,97	2,04
	N-E	5	101,60	98,17	97,33	97,34	98,61	2,03
	W-S	9(3)	72,98	72,95	67,38	69,55	70,72	2,75
	W-E	3(a)	72,98	72,95	67,38	69,55	70,72	2,75
	S-N	2(a)	90,79	72,71	50,87	51,95	66,58	19,01
Catedral	S-E	9(2)	86,87	68,78	46,95	48,03	62,66	19,01
Cateurar	W-N	7	71,93	102,43	83,92	101,59	89,97	14,75
	W-E	3(b)	74,00	104,49	85,99	102,15	91,66	14,36
	E-W	4(a)	89,53	89,53	90,48	89,56	89,77	0,47
Banco de	E-N	9(4)	89,53	89,53	90,48	89,56	89,77	0,47
Bogotá	S-W	6	96,07	99,32	96,60	101,71	98,43	2,61
	S-N	2(b)	95,79	99,03	96,31	101,43	98,14	2,61

Tabla 22. Demoras promedio para la modelación de la situación actual

		Movimiento		Mode	lación	Volumen	Demoras	
Intersección	Dirección	según norma RILSA	1	2	3	4		promedio
	E-S	8	38,02	53,35	37,61	35,33	529	41,08
Alemana	E-W	4b	25,47	26,98	26,00	25,08	448	25,88
THOMAIN	N-S	1a	44,85	48,86	37,23	39,90	1132	42,71
	N-W	9(1)a	42,12	45,22	33,70	33,30	155	38,58
Movistar	N-W	9(1)b	19,15	20,19	21,75	18,49	415	19,89
	N-S	1b	19,31	20,88	18,71	20,56	871	19,87
	N-E	5	17,56	21,01	16,86	18,52	413	18,49
	W-S	9(3)	20,11	20,24	19,78	20,46	488	20,15
	W-E	3(a)	16,85	19,61	16,89	18,18	497	17,88
	S-N	2(a)	17,08	19,98	16,12	17,34	722	17,63
Catedral	S-E	9(2)	6,65	8,70	8,68	8,48	84	8,13
Catcurar	W-N	7	35,48	47,93	37,86	40,08	402	40,34
	W-E	3(b)	34,41	38,76	35,12	40,05	497	37,08
	E-W	4(a)	26,79	32,33	32,74	40,34	666	33,05
Banco de	E-N	9(4)	35,87	36,84	45,88	51,12	362	42,43
Bogotá	S-W	6	29,90	42,52	32,92	36,22	309	35,39
	S-N	2(b)	38,06	38,56	37,99	36,62	730	37,80

VISSIM 7 permite un porcentaje de error en la simulación entre el 15% y 20%, determinado haciendo la comparación entre los valores estimados en campo y los que arroja la modelación (tabla 22), y aunque en uno de los movimientos se excede el valor, tras promediar todos los errores se llega a un valor admisible del 3.05%, y se afirma que el modelo está calibrado (tabla 23).

Tabla 23. Determinación de los porcentajes de error para calibración de modelo

Intersección	Dirección	Movimiento según norma RILSA	Volumen promedio situación actual	Volúmenes reales	Porcentaje de error
	E-S	8	529	533	0,75%
Alemana	E-W	4b	448	419	6,92%
manu	N-S	1a	1132	1215	6,83%
	N-W	9(1)a	155	187	17,11%
Movistar	N-W	9(1)b	415	440	5,68%
	N-S	1b	871	856	1,75%
	N-E	5	413	446	7,40%
	W-S	9(3)	488	482	1,24%
	W-E	3(a)	497	524	5,15%
	S-N	2(a)	722	740	2,43%
Catedral	S-E	9(2)	84	83	1,20%
Cateurar	W-N	7	402	431	6,73%
	W-E	3(b)	497	539	7,79%
	E-W	4(a)	666	635	4,88%
Banco de	E-N	9(4)	362	286	26,57%
Bogotá	S-W	6	309	318	2,83%
	S-N	2(b)	730	860	15,12%
· Ell ·	RED TOTAL		8720	8994	3,05%

Tabla 24. Resumen de los porcentajes de error por accesos

Intersección	Volumen promedio	Volúmenes reales situación actual	Porcentaje de error
Alemana	2264	2354	3,82%
Movistar	2684	2748	2,33%
Catedral	1705	1793	4,91%
Banco de Bogotá	2067	2099	1,52%
TOTAL	8720	8994	3,05%

4.4.2. Análisis de resultados de la modelación en VISSIM 7 alternativa 1, creación de un carril exclusivo, exento de controladores semafóricos. Una vez calibrada la situación actual y en base a ésta, se hacen efectivos los cambios para simular la primera alternativa, obteniendo datos de volumen, longitudes de colas y tiempo de demoras por vehículos. Para esta y todas las alternativas se realizaron también 4 corridas para tener mayor exactitud en los resultados, y se comparan con los números arrojados por la micro-simulación de la situación actual.

Figura 81. Modelación de la situación actual

Fuente: Autoras del proyecto

Se modifica el plano y sobre él se traza el nuevo tramo de vía que bordea las esquinas de la plaza, reacomodando los conectores que unen las vías y ajustando las rutas para que los vehículos transiten por el nuevo carril. En la figura 78 se observa una imagen de la situación actual comparada con la modelación de la alternativa (figura 79); la forma en la que están dispuestos los semáforos difiere, dado que el carril rápido funciona sin ellos.

Figura 82. Modelación de la alternativa 1: Carril rápido

Fuente: Autoras del proyecto

Tabla 25. Alternativa 1: volúmenes vehiculares promedio

Intersección	Dirección	Movimiento norma RILSA	Volumen promedio alternativa 1
	E-S	8	522
	E-W	4b	449
Alemana	N-S	1a	1105
	N-W	9(1)a	211
	tota	l nodo	2287
	N-W	9(1)b	512
Movistar	N-S	1b	473
	N-E	5	650
	W-S	9(3)	463
	W-E	3(a)	469
	tota	l nodo	2567
	S-N	2(a)	731
	S-E	9(2)	86
Catedral	W-N	7	426
	W-E	3(b)	573
	tota	l nodo	1817
	E-W	4(a)	662
Banco de	E-N	9(4)	290
	S-W	6	314
Bogotá	S-N	2(b)	782
	tota	l nodo	2048
F	8719		

La tabla 24 contiene los valores de volúmenes vehiculares promedio por entradas, que serán comparados con la situación actual en la tabla 25.

Tabla 26. Comparación entre los volúmenes actuales y los de la alternativa 1

Intersección	Dirección	Movimiento según norma RILSA	Situación actual	Alternativa 1	Diferencia Vehículos
	E-S	8	529	522	7
Alemana	E-W	4b	448	449	-1
	N-S	1a	1132	1105	27
	N-W	9(1)a	155	211	-56
	tota	l nodo	2264	2287	-23
	N-W	9(1)b	415	512	-97
Movistar	N-S	1b	871	473	398
	N-E	5	413	650	-237
	W-S	9(3)	488	463	25
	W-E	3(a)	497	469	28
	tota	l nodo	2684	2567	117
	S-N	2(a)	722	731	-9
	S-E	9(2)	84	86	-2
Catedral	W-N	7	402	426	-24
	W-E	3(b)	497	573	-76
	tota	l nodo	1705	1817	-112
	E-W	4(a)	666	662	4
Danas da	E-N	9(4)	362	290	72
Banco de Bogotá	S-W	6	309	314	-5
	S-N	2(b)	730	782	-52
	tota	l nodo	2067	2048	19
R	RED TOTAL	L	8720	8719	1

Fuente: Elaboración propia

La diferencia en las longitudes de colas entre ambos resultados es de 5,50% (tabla 26). La entrada de la droguería alemana se descongestionó en dos de las vías que salen de ella, pero además de esta cifra, ninguna vía o intersección mostró una mejora.

Tabla 27. Comparación longitudes de colas, alternativa 1

		Movimiento Longitudes de cola (m)		Diferencia	Diferencia	
Intersección	Dirección	según norma RILSA	Actual	Alternativa	(m)	(%)
	E-S	8	101,45	66,38	35,07	34,57%
Alemana	E-W	4b	101,49	66,38	35,11	34,59%
Alemana	N-S	1a	95,15	91,70	3,45	3,63%
	N-W	9(1)a	95,15	91,70	3,45	3,63%
	N-W	9(1)b	98,61	98,82	-0,21	-0,21%
	N-S	1b	98,97	95,85	3,12	3,15%
Movistar	N-E	5	98,61	95,94	2,67	2,71%
	W-S	9(3)	70,72	69,20	1,52	2,14%
	W-E	3(a)	70,72	69,20	1,52	2,14%
Catalan	S-N	2(a)	66,58	72,21	-5,63	-8,46%
	S-E	9(2)	62,66	68,29	-5,63	-8,99%
Catedral	W-N	7	89,97	78,39	11,58	12,87%
	W-E	3(b)	91,66	86,40	5,26	5,74%
	E-W	4(a)	89,77	88,14	1,64	1,82%
Banco de	E-N	9(4)	89,77	88,14	1,64	1,82%
Bogotá	S-W	6	98,43	103,37	-4,94	-5,02%
_	S-N	2(b)	98,14	104,28	-6,14	-6,25%
	RED TOTA	L	1517,8	1434,36	83,48	5,50%

Las demoras de los vehículos disminuyeron en un 28% en general, pero si se observa los resultados de manera más detallada, en dos de las vías que confluyen en la intersección de movistar las demoras se duplicaron lo que abona a la idea de descartar esta alternativa como viable (tabla 27).

Tabla 28. Comparación de demoras promedio, alternativa 1

		Movimiento	Demoras promedio (s)			
Intersección	Dirección	según norma RILSA	Situación actual	Alternativa 1	Diferencia (s)	Diferencia (%)
	E-S	8	41,08	7,737857	33,34	81,16%
Alemana	E-W	4b	25,88	23,537281	2,35	9,06%
Ancinana	N-S	1a	42,71	25,401716	17,31	40,53%
	N-W	9(1)a	38,58	24,602769	13,98	36,24%
	N-W	9(1)b	19,89	9,408824	10,48	52,70%
	N-S	1b	19,87	18,043797	1,82	9,18%
Movistar	N-E	5	18,49	10,884749	7,60	41,12%
	W-S	9(3)	20,15	42,286335	-22,14	-109,90%
	W-E	3(a)	17,88	42,366767	-24,48	-136,92%
	S-N	2(a)	17,63	16,819451	0,81	4,61%
Catedral	S-E	9(2)	8,13	10,403196	-2,27	-27,97%
Cateurar	W-N	7	40,34	1,923852	38,41	95,23%
	W-E	3(b)	37,08	41,273178	-4,19	-11,29%
	E-W	4(a)	33,05	20,591085	12,46	37,69%
Banco de	E-N	9(4)	42,43	27,269576	15,16	35,73%
Bogotá	S-W	6	35,39	3,228861	32,16	90,88%
	S-N	2(b)	37,80	30,563567	7,24	19,15%
	RED TOTA	AL	496,39	356,34	140,04	28,21%

Tabla 29. Comparación de volúmenes vehiculares, alternativa 1

Volu	Diferencia de vehículos			
Intersección	Alternativa 1 Modelación tersección			
Alemana	2287	2264	23	
Movistar	2567	2684	-117	
Catedral	1817	1705	112	
Banco de Bogotá	2048	2067	-19	
Total	8719	8720	-1	

Aunque se observan mejoras en parámetros como la longitud de colas y demoras de los vehículos, en algunos movimientos los valores obtenidos no son representativos, e incluso se encuentran datos negativos con respecto a la situación actual; además si se comparan las cantidades de vehículos que pasan por el sistema se observa que hace falta un vehículo en la alternativa propuesta (tabla 28).

4.4.3. Análisis de resultados de la modelación en VISSIM 7 alternativa 2, cambio de sentido a la carrera 13 y carrera 12.

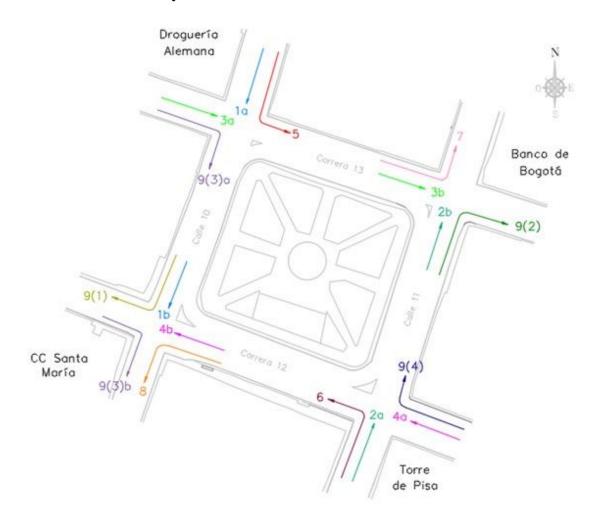


Figura 83. Codificación de movimientos norma RILSA para el cambio de sentidos de circulación vehicular

Debido a que esta alternativa plantea un cambio de sentido se hace necesario volver a plantear los movimientos según RILSA para el respectivo análisis por nodos (figura 80); aparecen nuevos movimientos y otros desaparecen y se ajustan las nuevas rutas para los vehículos particulares y para los de servicio público.

Tras la realización de los cambios necesarios se simula la alternativa con las características planteadas anteriormente y a continuación se muestran los datos obtenidos.

Tabla 30. Volúmenes promedio, alternativa 2

Intersección	Dirección	Movimiento según norma RILSA	Volumen promedio Alternativa 2
	N-E	5	202
	N-S	1a	1054
Alemana	W-E	3a	538
	W-S	9(3)a	247
	tot	tal nodo	2040
	N-W	9(1)	237
	N-S	1b	1067
Movistar	E-W	4b	547
Movistai	E-S	8	266
	W-S	9(3)b	517
	tot	2633	
	E-N	9(4)	422
	E-W	4(a)	542
Catedral	S-N	2(a)	401
	S-W	6	285
	tot	1650	
	W-E	3(b)	390
Banco de	W-N	7	350
Banco de Bogotá	S-E	9(2)	232
Dogotta	S-N	2(b)	581
	tot	1553	
	7876		

Para esta alternativa no es posible comparar las colas y demoras puesto que la red está funcionando de forma diferente, y aunque entre la misma cantidad de carros al sistema la posición de las entradas es otra, sin embargo, se puede hacer la comparación por cantidad de vehículos y se puede apreciar que la alternativa 2 tiene un total de 7876 un valor menor a la situación actual que es de 8720, para una diferencia de 884 vehículos.

4.4.4. Análisis de resultados de la modelación en VISSIM 7 alternativa 3, cambios de tiempos en los ciclos semafóricos. En el capítulo anterior se determinan los nuevos ciclos semafóricos calculados para llevar a cabo el reajuste a los controladores semafóricos existentes, que propone esta alternativa. Los ciclos se ubicaron procurando que el vehículo que ingresaba por un acceso al sistema, alcanzara a llegar al siguiente semáforo en verde sin hacer paradas.

Los volúmenes vehiculares de la tabla 30, son comparados con los volúmenes vehiculares de la situación actual (tabla 31), evidenciando una optimización de la capacidad de la infraestructura vial existente, pues 250 nuevos vehículos ingresan al sistema. La mayor parte de estos nuevos vehículos ingresan por el acceso de la droguería alemana, donde el ciclo fue reducido 20 segundos.

Tabla 31. Volúmenes vehiculares promedio, alternativa 3

	E-S E-W	8	558
		41-	
	NI C	4b	462
Alemana	N-S	1a	1176
	N-W	9(1)a	177
	tota	al nodo	2373
	N-W	9(1)b	455
	N-S	1b	911
Movistar	N-E	5	465
Movisiai	W-S	9(3)	455
	W-E	3(a)	428
	tota	2714	
	S-N	2(a)	762
	S-E	9(2)	116
Catedral	W-N	7	358
	W-E	3(b)	506
	tota	1742	
	E-W	4(a)	692
Danas de	E-N	9(4)	322
Banco de Bogotá	S-W	6	338
Dogota	S-N	2(b)	789
	tota	2141	
R	ED TOTAI		8970

Las longitudes de colas disminuyeron en un 73%, y en una suma total de la reducción de todas las colas existe una diferencia de más de mil metros con la situación actual. La reducción de las colas (tabla 32), trae consigo la rebaja en las demoras (tabla 33) y los tiempos de viaje, pues la circulación se realiza por una vía más despejada sin la necesidad de hacer paradas.

Tabla 32. Comparación de volúmenes vehiculares, alternativa 3

		Movimiento	Cantidad		
Intersección	Dirección	según norma RILSA	Situación actual	Alternativa 3	Diferencia Vehículos
	E-S	8	529	558	29
	E-W	4b	448	462	14
Alemana	N-S	1a	1132	1176	44
	N-W	9(1)a	155	177	22
	to	tal nodo	2264	2373	109
	N-W	9(1)b	415	455	40
	N-S	1b	871	911	40
Marriatan	N-E	5	413	465	52
Movistar	W-S	9(3)	488	455	-33
	W-E	3(a)	497	428	-69
	total nodo		2684	2714	30
	S-N	2(a)	722	762	40
	S-E	9(2)	84	116	32
Catedral	W-N	7	402	358	-44
	W-E	3(b)	497	506	9
	to	tal nodo	1705	1742	37
	E-W	4(a)	666	692	26
D 1	E-N	9(4)	362	322	-40
Banco de	S-W	6	309	338	29
Bogotá	S-N	2(b)	730	789	59
	total nodo		2067	2141	74
	RED TOTA	L	8720	8970	250
					0

Tabla 33. Comparación longitudes de cola, alternativa 3

		Movimiento	Longitud	Longitud de cola (m)		Diferencia
Intersección	Dirección	según norma RILSA	Situación Actual	Alternativa 3	Diferencia (m)	Diferencia (%)
	E-S	8	101,45	29,77	71,68	70,66%
Alemana	E-W	4b	101,49	31,38	70,11	69,08%
Alemana	N-S	1a	95,15	21,65	73,50	77,25%
	N-W	9(1)a	95,15	20,67	74,48	78,28%
	N-W	9(1)b	98,61	25,32	73,29	74,33%
	N-S	1b	98,97	19,88	79,09	79,91%
Movistar	N-E	5	98,61	13,75	84,86	86,05%
	W-S	9(3)	70,72	7,73	62,99	89,07%
	W-E	3(a)	70,72	61,88	8,83	12,49%
	S-N	2(a)	66,58	57,56	9,02	13,55%
Catedral	S-E	9(2)	62,66	28,50	34,15	54,51%
Cateurai	W-N	7	89,97	18,59	71,38	79,33%
	W-E	3(b)	91,66	14,65	77,01	84,02%
	E-W	4(a)	89,77	10,74	79,03	88,04%
Banco de Bogotá	E-N	9(4)	89,77	11,57	78,20	87,11%
	S-W	6	98,43	14,69	83,74	85,07%
	S-N	2(b)	98,14	18,18	79,96	81,48%
	RED TOTA	L	1517,84	406,50	1111,34	73,22%

Tabla 34. Comparación demoras, alternativa 3

		Movimiento	Demoras promedio (s)		Diferencia	Difanancia
Intersección	Dirección	según norma RILSA	Situación actual	Alternativa 3	(s)	Diferencia (%)
	E-S	8	41,08	29,767549	11,31	27,53%
Alamana	E-W	4b	25,88	31,377136	-5,49	-21,23%
Alemana	N-S	1a	42,71	21,64501	21,07	49,32%
	N-W	9(1)a	38,58	20,665838	17,92	46,44%
	N-W	9(1)b	19,89	19,879688	0,01	0,07%
	N-S	1b	19,87	13,752758	6,11	30,78%
Movistar	N-E	5	18,49	7,730056	10,76	58,19%
	W-S	9(3)	20,15	61,882155	-41,74	-207,17%
	W-E	3(a)	17,88	57,561239	-39,68	-221,88%
	S-N	2(a)	17,63	18,592322	-0,96	-5,44%
Catedral	S-E	9(2)	8,13	14,648537	-6,52	-80,19%
Cateurar	W-N	7	40,34	10,739316	29,60	73,38%
	W-E	3(b)	37,08	11,568905	25,52	68,80%
	E-W	4(a)	33,05	18,176385	14,87	45,00%
Banco de	E-N	9(4)	42,43	22,042251	20,39	48,05%
Bogotá	S-W	6	35,39	8,34587	27,04	76,42%
	S-N	2(b)	37,80	20,033972	17,77	47,01%
	RED TOTA	L	496,39	388,41	107,98	21,75%

Tabla 35. Resumen diferencia de vehículos por intersecciones

	Volum	Diferencia		
Intersección	Alternativa 3	Situación actual	de vehículos	
Alemana	2373	2264	109	
Movistar	2714	2684	30	
Catedral	1742	1705	37	
Banco de Bogotá	2141	2067	74	
Total	8970	8720	250	

4.5. Definir el presupuesto de evaluación de la mejor alternativa, mediante la elaboración del APU para establecer si la propuesta es viable.

Implementar una nueva programación de los ciclos semafóricos de los controladores que regulan las cuatro intersecciones del sistema, es la alternativa más viable según la cantidad de vehículos nuevos que ingresan, tras observar los datos arrojados por la modelación. Poner en marcha esta alternativa requiere del acompañamiento de un técnico que se dirija al equipo de control y ajuste los tiempos de los ciclos según las cifras calculadas para tal fin, y que han sido previamente modeladas y comprobadas en el software VISSIM; garantizando que pueda recibir y enviar información a un centro de control o controlador maestro con el fin de operar en forma coordinada, conjugar la implementación de programas o planes predefinidos y proveer los elementos que garanticen la seguridad de los usuarios y reportar al centro de control el tipo de falla que se pueda presentar.

El técnico contratado para esta labor tendrá que intervenir 14 semáforos en total, la actividad toma de 15 a 20 minutos por cada uno, además de un tiempo extra para comprobar que el sistema esté funcionando en las condiciones establecidas; el día que se realicen estos ajustes a los ciclos semafóricos será preciso contar con personal de seguridad, dos por intersección, que controlen y coordinen el tránsito vehicular en el momento que los controladores estén siendo intervenidos.

Tabla 36. Análisis de precios unitarios

ITEM	ACTIVIDAD	UND
1	Programación semáforos	
1.1	programación controladores	pto
1.2	personal seguridad	pto

MANO DE OBRA	UND	CANTIDAD	VR UNITARIO	VR TOTAL
Técnico profesional	Hh	4,667 horas	240000	1120000
Personal de seguridad	Hh	4,667 horas	51424	240816
			sub total	1.360816

Fuente: Elaboración propia

Es prudente estimar un rubro que cobije cualquier tipo de daño, que suele ser usual cuando se intervienen los controladores semafóricos; para este fin se destinan \$300.000.

Tabla 37. Costos totales

COSTO TOTAL	VALOR
Mano de obra	1360816
imprevisto	300000
TOTAL	1660816

Fuente: Elaboración propia

El valor total para la implementación de esta alternativa es de \$1 660 816.

Esta información fue suministrada por el ingeniero eléctrico Carlós Castro, Centrales eléctricas de Norte de Santander ESA ESP.

Correo electrónico: cardavcascon@hotmail.com

Cel: 3126138290.

Conclusiones

El levantamiento topográfico realizado con los equipos y el acompañamiento técnico de la Universidad Francisco de Paula Santander Ocaña, permitió la caracterización de la zona de estudio y la creación de un mapa que describe a detalle la geometría de la zona; dicho plano fue posteriormente cargado al software PTV Vissim, y sobre él se trazaron todos los elementos existentes, como: vías, semáforos, señales de tránsito, zonas de parqueo, separadores y andenes.

Caracterizar le tránsito vehicular mediante aforos, permitió establecer que la hora de máxima demanda inicia a las 11:45 am y culmina a las 12:45 pm, con un total de xxxx vehículos circulando por el sistema en ese período de 60 minutos. El modelo calibrado creado y las simulaciones de las alternativas propuestas fueron cargados con esos volúmenes vehiculares máximos para recrear las condiciones más caóticas.

La adaptación de un carril rápido en el que se supriman los controladores semafóricos, por el que los vehículos transiten sin hacer paradas y salgan más rápido del sistema, arrojó en los resultados una disminución de las demoras en un 28%, y de las colas en un 5,5%, pero en cuanto al volumen vehicular se observan cifras no significativas, pues solo existe un vehículo de diferencia comparando la cantidad de vehículos que circulan por el sistema al que se le ha aplicado la alternativa, con el volumen real de la zona de estudio. El cambio de sentidos en las carreras 12 y 13, buscaba acortar el tiempo que tardan los vehículos en salir del sistema, pues los movimientos resultantes al reacomodo de los sentidos de circulación evitaban que los vehículos rodearan el parque pasando por más de dos intersecciones, y descongestionaba las vías donde el servicio público entorpece la movilidad; fue imposible comparar las colas y demoras, pues los valores de los volúmenes difieren de los obtenidos en campo a consecuencia de que las entradas

al sistema fueron reubicadas, no obstante, la cantidad de vehículos que circulan por el sistema disminuyó en un 10%, en el único parámetro evaluable para la alternativa. Del anterior análisis es acertado concluir que ni la intervención a la infraestructura vial, ni el cambio de sentidos de circulación son opciones que optimicen la movilidad en el sector, sin embargo, existe una tercera alternativa que es el ajuste a los ciclos semafóricos de los controladores existentes. El volumen vehicular aumentó pues 250 nuevos vehículos entraron al sistema, las colas disminuyeron en más de un kilómetro si se suman las diferencias de longitud medidas en todas las entradas del sistema y las demoras se redujeron en un 21%.

De las tres alternativas planteadas, la primera es la más costosa, pues supone la intervención de la infraestructura del parque y de la vía para generar un nuevo tramo de carril en las esquinas y campañas de socialización para dar a conocer el funcionamiento de la estrategia, y la relación costo-beneficio no es buena. La segunda alternativa arrojó resultados negativos, pues los números estaban por debajo de la situación actual, y la tercera representa la opción más viable, pues el costo de su implementación es bajo, no supone un cambio drástico en la dinámica de la zona, y tiene a su favor números muy representativos, como la disminución de las colas en un 73%.

Los resultados obtenidos invitan a reflexionar sobre la cultura ciudadana de la población ocañera, o la ausencia de ella, pues solo cinco de los diez carriles de las vías que rodean al parque funcionan normalmente, y la otra mitad está invadida gran parte del tiempo por vehículos de transporte público o personas que parquean sus vehículos particulares frente a los establecimientos a los que se dirigen. Siendo estos últimos los que entorpecen a mayor escala la movilidad de la zona, aunque existan aproximadamente seis parqueaderos disponibles en cien metros a la redonda, que suplen la demanda de lugares para guardar los vehículos. Por ende, la

infraestructura existente tiene la capacidad óptima para recibir los flujos vehiculares que reciben, pero dicha capacidad se ve reducida a la mitad, generando caos, aumento en los tiempos de viaje, colas más largas, y reducción de la velocidad con la que se transita.

Esta investigación se inició con la idea de que intervenciones significativas a la zona serían la solución a los malestares de la movilidad, pero al simular las alternativas se observó que los mejores resultados eran arrojados por el software, para aquellas modelaciones donde las paradas se reducían o suprimían, lo que deja en evidencia una vez más, que la concientización de la comunidad en cuanto al uso correcto de las vías, combinado con el ajuste de los ciclos semafóricos planteado en el presente trabajo, optimizarían la situación de la movilidad en las vías que rodean al parque Plaza 29 de mayo de la ciudad de Ocaña.

Recomendaciones

Para futuras investigaciones que impliquen el análisis del tránsito de la zona de estudio del presente proyecto, se recomienda ampliar la delimitación del área analizada, pues la modelación de alternativas como el cambio del sentido de circulación vehicular, se haría de manera más óptima conociendo los orígenes, destinos y los posibles recorridos de los vehículos que transitan desde el sector del parque se San Agustín y San Francisco, tarea que se dificulta y limita al conocer únicamente el transito una cuadra a la redonda de la plaza Parque 29 de mayo.

Los resultados que arroje la simulación serán más precisos si se hace énfasis en conocer el comportamiento de los conductores, pues el programa incluye por defecto conductas de manejo de vehículos basados en el comportamiento de los conductores europeos, y modelar bajo esos parámetros le resta veracidad a los estudios que se hagan en el software al no contemplar las condiciones reales; por ende, se recomienda analizar la forma de conducción de los usuarios de las vías del lugar donde se aplica el estudio, y resumir el comportamiento ajustándolo al software para recrear la realidad de la forma más precisa.

Referencias bibliográficas

- Aguirre, M. (2015). Sistemas, modelos y simulación. México DF: Universidad autónoma de México.
- Alcaldía mayor de Bogotá DC. (2005). *Manual de paneación y diseño para la administración del tránsito y transporte*. Bogotá DC: Cal & Mayor asociados.
- Alcaldía municipal de Ocaña. (2013). Plan básico de ordenamiento territorial. Diagnótico urbano. Revisión, modificación y ajustes. Ocaña.
- Álvarez Sifuentes, Á., & Gaitán, E. A. (2015). *Diseño geométrico de ejes de camino en planta de la carretera*. Chimbote: Universidad César Vallejo.
- Alzate Botero, A., & Hurtado Quintero, D. E. (2007). Análisis y diseño de un sistema de información inteligente para la planificación de intersecciones y redes coordinadas de semáforos en la ciudad de Manizales. Manizales: Universidad de Manizales.
- Banco de desarrollo de América latina. (2011). *Desarrollo urbano y movilidad en América Latina*. Panamá: CAF.
- Bañón, L., & Beviá García, J. F. (2000). *Manual de carreteras. Volumen I: elementos y proyecto*. Alicante: Ortiz e Hijos, Contratista de Obras, S.A.
- Cal y Mayor, R., & Cárdenas Grisales, J. (1994). *Ingeniería de tránsito: Fundamentos y aplicaciones*. México: Afaomega.
- Cardona, A. (2016). *www.sertrans.es*. Recuperado de http://www.sertrans.es/trasporte-terrestre/el-transporte-terrestre-la-historia-de-la-humanidad/
- Carvalho, M., & Luna, L. (2002). www.albany.edu. Recuperado de www.albany.edu/cpr/.../Discrete_and_Continuous_Simulation.ppt
- Casares, A., & Galarraga, J. (2015). Calibración de modelo de seguimiento de Vissim en carreteras multicarriles de Uruguay. Córdoba: Anpet.
- Castro García , L. J. (2014). *Hacia un sistema de movilidad urbana integral y sustentable en la zona metropolitana del valle de México*. México DC: Universidad Iberoamericana.
- Contreras Avello, N. A. (2014). *Una heurística basada en algoritmos genéticos para la calibración de Vissim: caso de Chile*. Santiago de Chile: Pontificia universidad católica de Chile.

- Coronado García , A. (1991). Estudios de ingeniería de tránsito para la planeación regional del transporte carretero. Monterrey: Universidad autónoma de Nuevo León.
- Dextre, J. C. (2011). *Elementos de la teoría del tráfico vehicular. 1ra edición*. Lima: Fondo editorial, Pontificia universidad católica del Perú.
- Fontalvo Arrieta, K. (2013). *Modelación del tránsito vehicular con el software PTV Vissim tramo bomba El Gallo bomba El Amparo*. Cartagena de indias: Universidad de Cartagena.
- ISSD, Integrated systems & systems design. (s.f.). *http://www.issd.com.tr*. Recuperado de http://www.issd.com.tr/en/22992/PTV-VISSIM-Traffic-Simulation-Software
- Karlin, S., & Taylor, H. (1998). *An introduction to stochastic modeling 3rd edition*. San Diego: Academic press.
- López Angarita, E., & Vergel Romero, A. L. (2013). Modelación del flujo vehicular sobre la avenida Francisco Fernández de Contreras en el municipio de Ocaña Norte de Santander. Ocaña: Universidad Francisco de Paula Santander Ocaña.
- López Dávila, N. C., & Sarabia Durán, A. C. (2012). Alternativas de optimización del componente de recolección y transporte de residuos sólidos ordinarios de la empresa de servicios públicos Adamiuain del municipio de Ocaña Norte de Santander. Ocaña: Universidad Francisco de Paula Santander Ocaña.
- Mathew, T., & Krishna Rao, K. (2007). *Introduction to Transportation Engineering:* microscopic traffic flow modeling. NPTEL.
- Ministerio de transporte de la república de Colombia. (2004). *Manual de señalización vial* . Bogotá DC.
- Obra social: Caja Madrid. (2010). *Movilidad urbana sostenible, un reto energético y ambiental.*Madrid.
- Pájaro Zarpadiel, A., & Quezada Narvaez, R. A. (2012). *Modelación del tránsito vehicular en le sector bomba El Amparo Sao la Plazuela, por medio del software PTV Vissim.*Cartagena de Indias: Universidad de Cartagena.
- Periódico El Tiempo. (2000). www.eltiempo.com. Recuperado de http://www.eltiempo.com/archivo/documento/MAM-1286699
- PTV Group. (2012). Vissim 5.4. Manual del usuario. Karlsruhe: PTV AG.
- PTV Group. (2013). PTV Visssim 6 User manual. Karlsruhe: PTV AG.

- PTV Group. (s.f.). http://vision-traffic.ptvgroup.com. Recuperado de http://vision-traffic.ptvgroup.com/es/productos/ptv-vissim/
- Robles, D., Ñañez, P., & Quijano, N. (2009). Control y simulación de tráfico urbano en Colombia: Estado del arte. *Revista de ingeniería*, 65.
- Secretaría distrital de planeación, Subsecretaría de planeación económica. (2007). *La movilidad de los bogotanos desde una visión socio-económica*. Bogotá DC: Secretaría distrital de planeación.
- Starfield, T. (2005). Discussion: Deterministic or Stochastic. The University of Vermont.
- Suárez Castaño, L. A. (2007). *Análisis y evaluación opracional de intersecciones urbanas mediante microsimulación*. Medellín: Universidad Nacional de Colombia.
- United Nations. Departament of economic and social affairs. (2014). https://esa.un.org. Recuperado de https://esa.un.org/unpd/wup/
- Valladares Mejía, A. d. (2016). Comparación de un enfoque macroscópico y otro microscópico al estimar las demoras por la congestión urbana. Medellín: Universidad nacional de Colombia.

Apéndices

Apéndice a: Resumen por entradas de la Recolección de datos de campos en el aforo vehicular de los días jueves, sábado y martes consecutivamente.

	oro: Banco								
ovimiento: E	entrada Band	co de Bogotá	0 0						
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	17	15	20	0	1	0	0	69	
6:15	12	14	18	2	5	1	0	94	
6:30	18	14	17	0	3	0	0	85	
6:45	18	23	16	1	10	0	0	111	
7:00	13	28	17	0	3	2	0	116	
7:15	3	20	20	0	2	3	0	80	
7:30	8	31	18	0	8	0	0	126	
7:45	11	39	13	0	3	0	0	143	
8:00	12	25	13		2	0	0	129	
8:15	22	29	18		4	2	0	121	
8:30	12	30	15	0	2	0	0	123	
8:45	16	30	12		0	0	0	95	
9:00	13	30	21	1	2	3	0	92	
9:15	12	28	18		4	2	0	90	
9:30	7	32	15		1	3	0	75	
9:45	19	39	17	 	2	0	0	69	
9.43	17	39	17			0	0	09	
11:00	8	41	22	0	0	0	0	71	
11:15	19	29	15	 	8	1	0	112	
11:30	24	27	18		9	0	0	104	
11:45	21	24	11	0	2	4	0	104	
12:00	27	42	20	-	8	1	0	109	
12:15	39	32	25	0	6	2	0	155	
12:30	29	15	16	1	4	2	0	127	
12:30	19	17	20		7	0	0	85	
		23			3	_		121	
1:00	24		18	 		1	0		
1:15	8	12	13	 	4	0	1	74	
1:30	8	12	12		4	3	0	64	
1:45	23	27	14	 	4	2	0	128	
2:00	18	26	17	0	5	3	0	168	
2:15	24	33	16	 	14	1	0	111	
2:30	28	39	18	-	6	2	0	95	
2:45	10	30	18	0	11	4	0	68	
4.00	2.5	20	1.4		-		-		
4:00	25	30	14		5	0	0	59	
4:15	22	28	17	0	4	1	0	75	
4:30	23	34	20		0	4	0	50	
4:45	22	20	19		4	5	0	113	
5:00	27	29	23		6	1	0	94	
5:15	25	27	25		6	1	0	86	
5:30	26	26	14		3	0	0	75	
5:45	22	28	17		7	0	0	96	
6:00	35	31	14		6	4	0	154	
6:15	47	32	20		5	1	0	169	
6:30	27	28	19		6	0	0	102	
6:45	19	13	12		3	0	0	102	
7:00	29	15	12		8	1	0	115	
7:15	38	11	13		8	1	0	71	
7:30	31	15	7		4	0	0	64	
7:45	27	10	8	0	0	0	0	65	

Estación de a	foro: Drogue	ría Alemana							
Movimiento:			ıa						
		TAXI	0.0		g <mark>-</mark>			6	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	21	15	2		0	0	0	54	1
6:15	25	12	3	1	1	0	0	68	0
6:30	32	18	7	-	5	1	0	76	0
6:45	23	18	7	1	5	1	0	98	2
7:00	26	32	6		5	0	0	128	3
7:15	29	21	16	t	8	0	0	123	1
7:30	16	41	8		5	1	0	155	0
7:45	32	38	12	-	5	0	0	139	1
8:00	38	35 52	14		10 8	0	0	185	2
8:15 8:30	46 30	35	15 8		13	0	0	168 145	0
8:45	32	42	14		10	1	0	128	0
9:00	47	47	11	1	5	0	0	119	2
9:15	51	41	15	-	8	0	0	104	0
9:30	30	44	15		9	0	0	127	2
9:45	37	49	9		11	0	0	148	1
7.13	37	12			- 11			110	1
11:00	27	41	10	0	7	1	0	100	2
11:15	30	55	14	1	9	1	0	173	1
11:30	43	53	15		14	1	0	130	1
11:45	54	41	10		5	1	0	127	1
12:00	54	42	16		13	0	0	209	3
12:15	51	33	8	6	8	1	0	169	0
12:30	53	41	17	0	7	1	0	159	0
12:45	21	38	8	1	3	1	0	129	1
1:00	35	19	16	1	9	0	0	115	1
1:15	9	26	7	0	6	0	0	93	0
1:30	20	23	12	0	1	0	0	142	0
1:45	26	34	13		11	1	0	163	2
2:00	49	43	9	 	8	0	0	209	0
2:15	46	36	14		6	2	0	168	0
2:30	59	34	10	1	9	1	0	165	0
2:45	39	38	14	1	5	0	0	179	2
4:00	45	43	13	0	1	2	0	144	1
4:15	46	48	12		5	1	0	146	0
4:30	36	39	15		4	2	0	138	0
4:45	48	38	14	1	3	1	0	144	0
5:00	53	36	9	1	10	0	0	164	9
5:15	59	49	15	0	16	0	0	131	3
5:30	63	51	16	2	19	1	0	177	4
5:45	69	48	10	2	13	1	0	176	2
6:00	53	26	14		9	1	0	150	1
6:15	59	62	13		16	1	0	227	3
6:30	61	41	16		17	0	0	219	1
6:45	80	46	18		11	0	0	197	1
7:00	76	56	12		11	0	0	170	2
7:15	51	25	14		10	1	0	129	3
7:30	57	40	12		5	0	0	118	2
7:45	54	43	10	0	6	0	0	117	4

	oro: Movista								
ovimiento: E	entrada Mov	istar							90 -
		TAXI	0 0				2	6	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
6:00	14	14	3	0	0	0	0	80	
6:15	14	20	7	3	2	0	0	71	
6:30	19	22	12	2	5	0	1	127	
6:45	22	20	7	2	2	0	0	140	
7:00	22	16	16	0	5	0	0	178	
7:15	18	26	12	0	2	1	1	148	
7:30	22	28	12	4	3	2	0	161	
7:45	36	28	14	0	4	1	0	196	
8:00	41	25	12	2	2	0	0	201	
8:15	38	33	13	3	0	0	0	146	
8:30	26	15	5	1	1	1	0	96	
8:45	27	32	12	0	4	2	0	130	
9:00	36	33	9	1	4	2	0	140	
9:15	17	16	3	1	2	2	0	122	
9:30	19	36	9	2	3	0	0	113	
9:45	38	49	14	2	3	1	0	175	
11:00	17	16		0	2	0	0	125	
		17	5 7	0	3 2	0	0		
11:15 11:30	20 15	7	9	0	6	2	0	118 148	
11:30	15	9	5	0	2	2	0	148	
12:00	16	9		0	4	2	0	157	
12:15	15	14	4	0	5	2	0	157	
12:30	24	7	12	2	3	1	0	133	
12:45	16	12	6	1	2	1	0	114	
1:00	24	7	5	2	1	1	0	80	
1:15	13	7	4	0	0	1	0	68	
1:30	18	7	10	1	1	1	0	109	
1:45	37	10	5	2	1	1	0	212	
2:00	27	14	5	0	2	4	0	169	
2:15	36	13	10	0	3	1	0	155	
2:30	37	14	9	0	1	0	0	140	
2:45	33	14	7	0	1	1	0	140	
2				Ü		-	-	1.0	
4:00	26	15	6	0	2	0	0	116	
4:15	30	16	9	0	4	2	0	150	
4:30	25	10	6		0	0	0	159	
4:45	33	13	9	0	2	0	0	133	
5:00	30	13	5	0	3	0	0	99	
5:15	30	16	13	0	5	3	0	136	
5:30	21	10	3		3	1	0	134	
5:45	33	7	6	0	1	1	0	132	
6:00	16	10	7	0	1	0	0	148	
6:15	25	9	5	0	1	0	0	112	
6:30	36	15	6		2	0	0	129	
6:45	39	17	5	0	0	2	0	114	
7:00	23	5	4	0	1	0	0	71	
7:15	17	5	2	0	0	0	0	65	
7:30	26	10	2	0	0	0	0	74	
7:45	29	13	1	0	0	0	0	90	

stación de af	oro: Catedra	al							
Iovimiento: E	Entrada La C	atedral							
	- 8	TAXI	0		g <mark>-</mark>		2	6	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	4	1	1	0	0	0	0	54	3
6:15	9	4	2		3	0	0	63	1
6:30	12	10	3		3	1	0	63	4
6:45	6	5	4	_	6	0	0	103	1
7:00	13	8	0	+	3	1	0	102	2
7:15 7:30	14 16	10 7	_	0	6	1	0	61 130	3
7:45	16	8	2		9	1	0	80	1
8:00	29	15	5		7	2	0	101	1
8:15	22	12	3		4	1	0	95	6
8:30	23	19	2		6	0	0	95	1
8:45	34	17	3		7	0	0	92	6
9:00	16	7	3	0	7	0	0	83	2
9:15	23	5	6	0	3	2	0	67	3
9:30	17	12	4	0	13	0	0	71	2
9:45	13	17	2	0	6	0	0	78	0
11:00	16	15	2		8	1	0	58	1
11:15	32	24	1	0	9	1	0	77	1
11:30	28	23	2		10	2	0	90	3
11:45	34	15	3		11	1	0	111	2
12:00	31	11	0	_	9	2	0	84	3
12:15	31	16	1	1	11	1	0	124	2
12:30 12:45	21 19	14 11	3 2		12	0	0	111 79	5
1:00	23	12	1	0	8	2	0	79	0
1:15	23	11	1	1	14	1	0	95	0
1:30	9	12	0		3	1	0	85	1
1:45	24	19	1	1	12	2	0	119	1
2:00	35	7	1	1	7	1	0	112	2
2:15	32	15	2	0	8	0	0	128	1
2:30	43	10	1	0	6	0	0	114	1
2:45	34	10	1	0	12	3	0	87	2
4:00	18	8	2	0	10	0	0	66	2
4:15	41	15	1	0	4	2	0	82	3
4:30	40	14	2		10	0	0	117	3
4:45	38	10	2		6	0	0	115	3
5:00	46	21	1		8	1	0	118	5
5:15	40	15	0		7	0	0	98	1
5:30	51	32	4		12	0	0	127	2
5:45	38	7	1		4	1	0	77	2
6:00	36	14	8		3	1	0	74	1
6:15	70	23	3		5	0	0	67	0
6:30	60	19	1		<u>3</u>	1	0	96	2
6:45 7:00	42 35	20 13	1 2	0	<u> </u>	0	0	113 63	1
7:00	44	10	2		4	1	0	74	1
7:13	44	10	1		4	0	0	63	0
7:30	39	11	1		2	0	0	59	(

Sábado

Sábado									
Estación de a	foro: Banco	de Bogotá							
Movimiento:	Entrada Banc	co de Bogotá							
		TAXI	000		g <mark>-</mark>			S	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	10	7	6	0	1	0	0	54	0
6:15	15	11	13		2	0	0	75	5
6:30	11	19	13		3	0	0	100	1
6:45	9	15	13		1	0	0	94	0
7:00	13	15	17	2	1	0	0	87	1
7:15	13	18	12	1	4	1	0	102	1
7:30	19	28	18		1	1	0	99	2
7:45	6	16	14		3	0	0	107	3
8:00 8:15	<u>8</u>	24	18 16		3 2	0	0	115 107	3
8:30	10	14	10	1	2	1	0	119	0
8:45	28	28	18		5	0	0	139	4
9:00	17	23	15		4	2	0	109	0
9:15	9	28	13		5	0	0	87	0
9:30	22	30	15		4	2	0	81	0
9:45	22	26	15		2	0	0	54	0
7.43	LL	20	13	Ü		Ü	0	34	
11:00	33	30	27	0	2	0	0	137	3
11:15	27	32	13		4	1	0	90	1
11:30	24	32	16		1	0	0	119	0
11:45	38	24	16		2	1	0	141	0
12:00	29	34	15		5	0	0	152	0
12:15	32	22	16	0	2	0	0	155	2
12:30	41	18	17	0	1	0	0	158	0
12:45	25	12	18	0	1	0	0	90	0
1:00	30	19	21	1	1	0	0	130	0
1:15	32	18	12	0	3	1	0	113	0
1:30	31	13	17	0	4	0	1	125	0
1:45	16	23	11	0	1	0	0	126	1
2:00	26	29	20		4	1	0	86	0
2:15	20	23	22	0	3	0	0	67	0
2:30	33	21	15		3	0	1	120	0
2:45	23	30	17	0	5	0	0	132	0
4.00	2.6	2.5	10		0	0		0.0	
4:00	36	36	18		8	0	0	99	0
4:15 4:30	36	23 18	23 22		1	0	0	100	0
4:30 4:45	46 35	18	15		0	1	0	108 103	0
5:00	38	16	16		1	0	0	116	0
5:15	39	16	11	0	1	0	0	66	3
5:30	40	21	14		2	0	0	92	1
5:45	40	22	17		1	0	0	108	1
6:00	33	19	15		1	0	0	97	0
6:15	53	27	16		2	0	0	109	2
6:30	44	19	12		3	1	0	104	0
6:45	43	7	19		2	1	0	123	1
7:00	38	11	18		0	0	0	117	0
7:15	42	10	13		4	0	0	116	0
7:30	52	14	8		1	0	0	92	0
7:45	36	13	5	0	0	1	0	59	0

stación de afo									
lovimiento: E	ntrada Drog	guería Aleman	a						%
		TAXI	0-0		g <mark>-</mark>			6 0	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
6:00	13	14	6	1	0	0	0	47	
6:15	21	20	7	1	2	0	0	58	
6:30	17	19	7	3	7	0	0	64	,
6:45	12	17	15	0	1	0	0	97	
7:00	28	29	9	0	8	1	0	101	
7:15	15	25	12	1	3	0	0	112	
7:30	29	29	11	0	5	0	0	132	
7:45	41	28	10	0	9	0	0	190	
8:00	54	40	12	3	8	0	0	169	
8:15	44	33	12	2	10	0	0	141	
8:30	59	31	15	1	19	0	0	185	(
8:45	51	36	11	1	12	0	0	158	
9:00	56	46	16	0	8	0	0	191	(
9:15	49	45	11	0	12	0	0	131	2
9:30	55	41	14	1	16	0	0	134	
9:45	69	36	14	2	12	0	0	162	<u>.</u>
11.00	9.5	20	10	1	0	1	0	172	,
11:00 11:15	85 88	38	18	1	9	1 2	0	173 185	
		49 35	8 10	0					
11:30	76	38		0	8 18	3	0	210	
11:45	100		22	0		2	0	198	
12:00 12:15	73 82	41 38	11 12	0	6 18	0	0	210 200	
12:15	71	26	11	0		0	0	210	
12:30	66	33	16	0	6	2	0	182	
1:00	45	29	9	2	9	1	0	148	
1:15	43	16	11	0	7	1	0	121	
1:30	39	34	11	0	7	0	0	121	
1:45	48	42	14	0	1	0	0	163	
2:00	70	46	10	1	7	1	0	130	,
2:15	64	45	18	1	11	3	0	121	
2:30	76	41	11	2	7	0	0	167	(
2:45	77	45	13	1	2	1	0	142	,
2.73	, ,	7.5	13	1		1	U	172	
4:00	69	22	14	0	6	0	0	134	
4:15	80	24	16	2	7	0	0	146	,
4:30	55	14	6	0	6	0	0	138	
4:45	93	37	8	2	10	1	0	164	
5:00	89	31	9	0	6	1	0	153	
5:15	83	33	9	1	14	0	0	134	
5:30	97	33	12	2	6	0	0	156	
5:45	98	35	12	2	6	0	0	133	
6:00	96	31	10	0	9	2	0	156	
6:15	77	29	8	2	10	2	0	132	
6:30	73	32	8	1	5	0	0	169	
6:45	71	24	7	0	9	0	0	163	
7:00	71	29	12	0	6	0	0	152	
7:15	73	16	6	0	2	2	0	97	
7:30	74	31	5	0	6	0	0	133	
7:45	87	29	7	0	9	0	0	113	

Estación de at	foro: Movista	ar							
Movimiento: I	Entrada Mov	istar							
		TAXI	0-0		g <mark>-</mark>			6	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	2	3	1	0	0	0	0	41	1
6:15	5	5	6		2	0	0	72	3
6:30	10	7	9	0	1	1	0	83	1
6:45	9	7	3	2	4	0	0	107	6
7:00	14	12	8	l	6	1	0	107	4
7:15	5	3	3	0	3	0	0	94	5
7:30	13	14 12	12	0	4	0	0	112	(
7:45 8:00	19 19	11	<u>7</u> 7	1	2 2	0	0	151 176	4
8:15	27	15	10	0	7	0	0	176	4
8:30	32	22	10	<u> </u>	8	0	0	164	7
8:45	20	8	6	1	8	0	0	113	3
9:00	36	25	5		11	1	0	206	
9:15	24	15	5		5	1	0	122	1
9:30	45	25	3		3	1	0	145	0
9:45	27	17	4	l	12	0	0	79	2
11:00	30	13	4	1	0	0	0	114	C
11:15	51	24	9	1	4	1	0	223	(
11:30	13	3	5	0	2	0	0	63	1
11:45	43	13	7	0	5	1	0	190	C
12:00	68	6	3		2	1	0	221	1
12:15	42	10	5	1	5	0	0	166	
12:30	48	15	7	0	3	0	0	142	C
12:45	41	16	4		1	1	0	162	0
1:00 1:15	35 44	6 9	<u>7</u> 4	1 0	1 8	0	0	116 131	0
1:30	40	4	6	1	3	0	0	103	1
1:45	38	14	3	0	5	1	1	131	0
2:00	34	11	4	1	0	0	0	96	
2:15	37	17	4	l	2	0	0	60	0
2:30	48	13	6		4		0	83	C
2:45	36	10	3		1	0			
4:00	53	6	3		4	0		114	
4:15	45	13	3		4	0	0	104	
4:30	54	10	4		22	0	0	103	
4:45	67	9	7		3	0	0	104	
5:00	67	17	6		3	1	0	147	C
5:15	44	13	5		0	0	0	141	C
5:30	43	3	3		2	1	0	76	
5:45	15	6	7		1	0	0	94	
6:00	64	16	6		1	0	0	115	
6:15	23	6	4		2	0	0	122	
6:30 6:45	65 44	11 6	3		1	0	0	123 103	(
7:00	44	4	4	1	0	0		74	
7:00	44	12	3		2	0	0	79	
7:30	19	7	3		3	1	0	55	
7:45	42	5	1	0	1	0	0	79	

Estación de a	foro: Catedra	al							
Movimiento: l	Entrada La C	atedral							
		TAXI			_ &	g <mark>-</mark>		6 0	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
6:00	6	2	2	0	0	0	0	19	0
6:15	10	6	1	0	0	1	0	42	3
6:30	11	7	1	0	4	0	0	87	3
6:45	14	11	2	0	4	0	0	80	4
7:00	16	11	2	0	7	1	0	175	2
7:15	19	5	1	0	3	0	0	83	2
7:30	12	10	1	0	3	2	0	67	1
7:45	24	2	1	0	2	3	0	113	5
8:00	34	18	2	0	1	0	0	136	3
8:15	23	13	0	0	2	0	0	79	1
8:30	28	14	2	0	7	1	0	128	2
8:45	36	5	4	0	3	0	0	113	3
9:00	34	14	3	0	4	1	0	98	9
9:15	22	17	3	0	4	0	0	84	2
9:30	35	13	1	0	7	1	0	108	2
9:45	28	17	1	0	5	0	0	78	1
11.00	25	17	1	0	2	0	0	<i>C</i> 4	0
11:00	25	17	1	0	3	0	0	64	0
11:15	27	16	3	0	2	2	0	116	1
11:30	43	14	1	0	3	1	0	69	2
11:45	60	12	3	0	3	2	0	136	0
12:00	51	8	2	0	4	1	0	145	0
12:15	54	7	1	0	3	0	0	87	1
12:30	62	9	<u>3</u>	0	2	2	0	163	2
12:45 1:00	70 42	16 7	0	0	3	0	0	112 80	1
1:15	36	9	0	0	0	0	0	72	1
1:30	25	7	0	0	4	0	0	57	0
1:45	34	6	1	0	3	0	0	80	0
2:00	26	7	1	0	2	2	0	69	0
2:15	52	16	5	0	0	0	0	75	1
2:30	49	12	1	0	9	1	0	65	
2:45	40	13	2	0	5	0	0	69	1
2.43	70	13			3	0	U	37	1
4:00	39	7	2	0	4	0	0	65	0
4:15	45	9	1	0	1	0	0	57	0
4:30	48	8	3	0	5	0	0	88	0
4:45	41	7	2	0	1	0	0	71	1
5:00	46	11	2	0	2	0	0	79	0
5:15	62	12	2	0	0	0	0	72	0
5:30	63	13	0		0	0	0	63	0
5:45	63	7	1	0	1	0	0	78	0
6:00	72	10	0	0	1	0	0	72	1
6:15	85	8	1	0	1	0	0	147	1
6:30	81	10	2	0	0	0	0	123	0
6:45	46	6	0	0	0	0	0	79	0
7:00	47	3	0	0	1	0	0	63	0
7:15	61	4	2	0	0	0	0	43	0
7:30	44	9	1	0	1	0	0	61	6
7:45	51	8	0	0	0	0	0	61	0

Martes

Estación de a	foro: Banco l	Bogota							
Movimiento: I	Entrada Banc	co de Bogotá							
		TAXI	So o		g <mark>-</mark>			6	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	15	14	15	0	3	0	0	73	1
6:15	14	13	17		4	1	0	87]
6:30	15	12	15	1	4	0	0	78	(
6:45	18	19	14		5	1	0	94	(
7:00	12	18	14		4	0	0	110	(
7:15	8	15	15		2	0	0	79	(
7:30	7	24	18	1	1	0	0	104	
7:45	10	21	19		4	0	0	109	(
8:00	12	19	16		5	1	0	97	1
8:15	19	21	14		2	0	0	96	(
8:30	11	20	17	0	2	1	0	97	(
8:45	12	19	21	0	5	0	0	87	(
9:00 9:15	14 12	17 15	22 15	0	5	0	0	79 96	(
9:13		17						96 87	
	15 14	18	14 15	1	3	0	0	85	1
9:45	14	18	13	0	3	U	U	83	
11:00	9	15	8	0	4	0	0	112	C
11:15	7	9	7		4	0	0	98	(
11:30	19	27	18	1	7	1	0	115	
11:45	24	20	17	0	5	1	0	156	1
12:00	32	31	21	1	6	0	0	162	1
12:15	21	23	17	0	3	3	0	155	0
12:30	20	13	13		3	1	0	148	0
12:45	13	11	17	0	7	0	0	121	3
1:00	13	13	19		3	0	0	97	0
1:15	11	17	13	0	8	0	0	87	2
1:30	17	15	11	0	6	1	0	96	0
1:45	15	26	14	0	4	1	0	131	1
2:00	28	30	16		4	0	0	197	C
2:15	21	31	15	0	3	0	0	144	C
2:30	12	35	17	0	4	0	0	97	C
2:45	14	34	15	1	3	0	0	104	C
4:00	24	34	14	0	4	1	0	67	C
4:15	23	29	15		5	0	0	89	1
4:30	25	31	12		2	0	0	47	C
4:45	19	19	13		3	0	0	95	0
5:00	24	24	14		5	2	0	84	0
5:15	28	27	17		6	0	0	84	0
5:30	22	23	12		2	0	0	98	1
5:45	21	21	13		3	0	0	82	C
6:00	34	32	14		1	1	0	96	2
6:15	37	29	24		2	0	0	151	C
6:30	27	34	21	0	1	0	0	124	(
6:45	24	17	23		4	0	0	104	(
7:00	27	15	19		4	0	0	97	(
7:15	31	17	21	0	2	0	0	45	
7:30	35	13	23		4	0	0	48	1
7:45	29	12	24	0	2	1	0	61	0

Estación de af	oro. Drogue	ria Alemana							
Movimiento: E			19						
Movimento. 1	Zini ada Diog	TAXI-	a Comp		g <mark>-</mark>			<u> </u>	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
6:00	18	14	4		0	0	0	56	0
6:15	23	16	3		1	0	0	78	0
6:30	19	17	5	0	5	0	0	58	1
6:45	24	14	4	1	5	0	0	91	0
7:00	18	22	4	0	2	0	0	121	0
7:15	24	24	12	1	1	0	0	110	1
7:30	19	27	6		2	1	0	147	0
7:45	29	19	12	0	4	0	0	112	2
8:00	35	28	13	0	3	0	0	102	0
8:15	32	29	8		6	1	0	105	0
8:30	28	34	12	1	5	0	0	142	0
8:45	27	41	10		4	0	0	102	0
9:00	38	36	12	1	1	1	0	98	0
9:15	49	39	9		2	0	0	107	0
9:30	29	37	8		7	0	0	112	1
9:45	34	35	12	0	2	1	0	100	0
11:00	26	19	15	2	13	2	0	98	1
11:15	32	31	17		12	1	10	88	0
11:30	38	52	18		16	3	10	204	0
11:45	41	42	15		13	2	0	202	2
12:00	40	39	10		10	0	0	163	2
12:15	34	40	12	4	11	2	1	213	0
12:30	40	27	16		7	0	0	156	2
12:45	32	23	11	1	7	0	0	143	1
1:00	18	29	9	0	7	0	1	134	0
1:15	15	29	10	1	8	0	0	120	1
1:30	25	28	12	0	10	0	1	168	0
1:45	41	32	15	2	11	0	0	213	1
2:00	37	50	13	3	16	4	0	269	0
2:15	38	37	14	0	16	4	0	243	0
2:30	48	32	8	0	14	3	0	182	2
2:45	36	28	9	0	13	0	1	173	0
4:00	39	41	10		4	2	1	120	1
4:15	38	39	9		2	0		124	0
4:30	35	27	8		5	1	2	112	0
4:45	42	25	8		8	0	0	141	0
5:00	51 51	31 42	9 7		12	0		151 112	0
5:15	62	42			1		0	72	1
5:30 5:45	62	47	8		7	0	0	97	0
6:00	55	24	8		12	1	1	123	0
6:15	54	58	9		8	0	0	101	0
6:30	48	41	<u>9</u> 7		13	2	0	98	1
6:45	62	38	7		4	1	0	104	0
7:00	51	51	12		12	0	1	102	1
7:15	49	24	14		9	2	0	69	0
7:30	47	36	8		8	1	1	87	0
7:45	51	39	18		4	0		79	

	oro: Movistar								
ovimiento: E	entrada Movis	star							
•	- 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	TAXI			g <mark>en</mark> i	7	2	6	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	19	16	4	3	1	0	0	89	
6:15	18	22	5	7	1	1	0	78	
6:30	20	29	15	8	6	0	0	135	
6:45	22	26	7	7	2	2	0	156	
7:00	28	19	19	17	6	0	0	187	
7:15	23	27	13	14	3	1	0	150	
7:30	20	30	12	15	3	0	0	176	
7:45	38	32	14	16	5	1	0	198	
8:00	49	29	12	13	1	2	0	198	
8:15	42	40	17	13	1	0	0	154	
8:30	28	22	8	7	0	1	0	102	
8:45	32	32	18	12		0	0	135	
9:00	45	36	13	5	4	0	0	158	
9:15	21	19	9	4	3	2	0	120	
9:30	23	37	16	8	2	0	0	133	
9:45	43	54	14	16	3	1	0	182	
11.00	15	4.4					0	104	
11:00	17	14	6	8	3	1	0	126	
11:15	25	18	8	6	1	0	0	99	
11:30	23	11	5	4	5	2	0	173	
11:45	23	5	5	8	4	2	0	157	
12:00	25	8	7	9	3	1	0	208	
12:15	18	12	6	3	5	1	0	202	
12:30	15	3	9	12	3	1	0	152	
12:45	15	2	5	8	4	4	0	157	
1:00	18	4	7	9	1	1	0	157	
1:15	14	5	6	1	4	2	0	98	
1:30	23	10	5	1	6	2	0	148	
1:45 2:00	29 38	9	6 11	3	3 6	4	0	213 223	
		13				1			
2:15 2:30	26 32	16	5 10	1 4	<u>3</u>	1 4	0	225 160	
2:45	49	19	8	7		0	0	173	
2:43	49	19		/	1	U	U	1/3	
4:00	28	16	7	7	2	0	0	134	
4:00	38	16	7	6	4	0	0	176	
4:30	26	12	9	6	1	2	0	168	
4:45	28	13	10	8	3	0	0	140	
5:00	29	14	6	6	6	5	0	113	
5:15	34	19	17	8	3	2	0	145	
5:30	23	15	4	4	2	0	0	139	
5:45	37	9	7	4	1	0	0	123	
6:00	18	13	7	8	2	1	0	159	
6:15	26	9	8	5	1	1	0	138	
6:30	38	17	7	7	1	3	0	129	
6:45	45	23	5	4	1	0	0	117	
7:00	26	6	8	3	1	0	0	91	
7:15	19	5	4	2	0	0	0	79	
7:30	26	9	3	1	0	1	0	65	
7:30	25	16	2	2	1	0	0	114	

	oro: Catedra								
ovimiento: E	Entrada la Ca	atedral		(0.00)					9.0
•	- A	TAXI	0 0				6		
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	6	4	1	0	0	0	0	45]
6:15	8	5	1	1	3	0		57	1
6:30	12	9	2	0	3	1	0	63	4
6:45	7	5	4	0	8	0	_	98]
7:00	13	8	0	2	6	1	0	97	
7:15	14	10	1	0	3	1	0	60	3
7:30 7:45	20	7 8	2	0	6 8	1	0	118 78	(
8:00	15 27	15	2 4	0	7	2	0	83	1
8:15	32	12	3	0	4	1	0		(
8:30	21	19	2	0	5	0	_	91	1
8:45	31	17	3	0	6	0		79	(
9:00	16	7	3	0	7	0	0	65	2
9:15	21	5	6	0	5	2	0	64	2
9:30	13	12	4	0	11	0	0	64	1
9:45	18	17	2	0	6	0	0	79	(
71.0	10	1,	<u>_</u>					.,,	
11:00	12	15	2	0	6	1	0	54	-
11:15	30	24	1	0	8	1	0	64	
11:30	28	23	2	0	10	2	0	74	3
11:45	31	15	3	0	11	1	0	102	2
12:00	30	11	0	0	5	2	0	77	3
12:15	34	16	1	1	8	1	0	116	2
12:30	20	14	3	0	4	0	0	102	1
12:45	18	11	2	0	10	1	0	73	4
1:00	23	11	1	0	8	2	0	69	(
1:15	20	11	1	1	14	1	0	91	(
1:30	9	12	0	0	3	1	0	65	1
1:45	21	18	1	1	12	2	0	113	1
2:00	32	7	1	1	7	1	0	91	2
2:15	28	15	2	0	7	0	0	107	1
2:30	36		1	0	6			99]
2:45	30	10	1	0	9	3	0	74	2
4:00	18	8	2	0	9	0		59	- 2
4:15	33	15	1	0	5	1	0	75	3
4:30	40	14	3	0	10	0		120	3
4:45	38	10	2	0	6			99	4
5:00	43	22	1	0	7	1	0	100	4
5:15	35	14	0	0	7	0		90	2
5:30	46	32	4	0	11	0		99	
5:45	34 34	7 13	<u>1</u>	0	3	1	0	63 65	
6:00					5				
6:15	69 63	22 19	2	0	3	0	0	59 87	(
6:30	38	19	1	0	3	0		87 87	
6:45 7:00	38	19	1 2	0	6	0		64	
7:00	45	10	2	0	4	1	0	62	
7:15	45	10	1	0	3			55	
7:30	36		1	0	2			52	

Apéndice B: Recolección de datos de campos por movimientos en el aforo vehicular del sábado, día de mayor flujo.

Aforador: Y	arineth Carva	ajal				fecha: 27 de mayo del 2017					
Estación de a		-			Dia: sabado						
Movimiento	: 9(1)A										
	= 8	TAXI	0.0					6 0			
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 3 4	Motos	Bicicletas		
6:00	1	0	1	0	0	0	0	4	0		
6:15	2	0	0	0	1	0		7	0		
6:30	2	0	0	0	0	0		14	0		
6:45	1	0	0	0	0	0		7	0		
7:00	0	2	0	0	1	1	0	17	0		
7:15 7:30	<u> </u>	2 2	0	0	0	0		9	0		
7:30	3	2	0	0	1	0	0	31	0		
8:00	4	0	1	0	0	0		33	0		
8:15	0	3	1	0	2	0	0	26	0		
8:30	4	3	1	0	1	0		29	0		
8:45	4	4	0	0	0	0	0	22	0		
9:00	6	7	0	0	0	0		29	0		
9:15	5	6	0	0	0	0		28	0		
9:30	5	3	1	0	0	0	0	28	0		
9:45	4	5	0	0	0	0	0	24	2		
11:00	5	1	1	0	0	1	0	36	0		
11:15	7	7	1	0	0	0	0	34	0		
11:30	3	2	0	0	0	0	0	32	0		
11:45	9	7	0	0	0	1	0	31	0		
12:00	4	11	1	0	0	1	0	36	0		
12:15	6	6	0	0	0	0		34	0		
12:30	11	4	0	0	0	0	0	25	0		
12:45	2	4	1	0	0	0		17	0		
1:00	3	8	0	0	0	0	0	20	0		
1:15 1:30	3	3 5	0	0	0	0		18 18	0		
1:45	6	4	0	0	0	0	0	35	0		
2:00	6	6	0	0	0	0		26	0		
2:15	12	5	0	0	0	3	0	22	0		
2:30	0	0	0	0	0	0		38	0		
2:45	5	2	0	0	0	1	0	20	0		
		_	0	0	0	0					
4:00	8	1	1	0	0	0	0	27	0		
4:15	9	3	0	0	0	0	0	29	1		
4:30	3	1	0		0			30	0		
4:45	8	9	0	0	1	0		26	0		
5:00	2	6	0	0	0	0		18	0		
5:15	7	8	0	0	0	0		30	0		
5:30	7	8	0	0	0	0		28	0		
5:45	12	6	0	0	0	0		26	0		
6:00	6	2	0	0	0	0		16	0		
6:15	2	8 7	0	0	2	0		12	0		
6:30	8		0		0			30			
6:45 7:00	5	4	0	0	0	0		11 25	0		
7:00	5	3	0	0	0	2	0	4	0		
7:13	3	1	0	0	0	0		8	0		
7:45	2	3	0	0	0	0		8	0		
1.73		3	U	U	U	U	U	0	. 0		

7:45

10 7 7					1	0 1 07 1	1.120		
Aforador: Y		•				fecha: 27 de	mayo del 20	17	
Estación de		ueria alemana				Dia: sabado			
Movimiento	: 4(B)			C. 277 No 1/77					
		TAXI	000		g <mark>-</mark>			6	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
6:00	8		2	0	0	0	0	58	0
6:15	12	2	4	0	2	0	0	79	2
6:30	7	9	8	0	3	0	0	87	0
6:45	4	10	8	0	0	0	0	69	2
7:00	8	-	6	0	2	0	0	69	0
7:15	5	13	7	1	5	0	0	89	0
7:30	6		12	1	2	1	0	91	1
7:45 8:00	9	10 13	8 11	0	2	0	0	85 85	2 2
8:00	5	13	10	1	1	0	0	69	0
8:30	6		4	1	2	0	0	87	0
8:45	9	14	11	1	1	0	0	78	4
9:00	13	16	13	0	4	2	0	78	0
9:15	10	16	6	0	3	0	0	71	0
9:30	9	15	8	0	2	2	0	64	0
9:45	10	14	10	0	2	0	0	34	0
			-			-	-		
11:00	6	19	16	0	2	0	0	61	3
11:15	10	12	10	0	3	1	0	82	1
11:30	10	19	9	0	0	0	0	73	0
11:45	12	10	10	0	1	1	0	76	0
12:00	11	9	7	0	5	0	0	60	0
12:15	15	6	10	0	3	0	0	70	1
12:30	6	8	11	0	0	1	0	85	1
12:45	13	7	8	0	1	1	0	55	1
1:00	11	4	7	1	2	0	0	73	0
1:15	9	5	6	0	2	1	0	65	0
1:30	10	9	9	0	2	0	0	72	0
1:45	6		5	0	1	0	0	72	1
2:00	9	14	9	1	2	1	0	78	0
2:15	12	11	16	0	3	0	0	56	0
2:30	22	12	10	0	2	0	0	67	0
2:45	12	17	9	0	4	0	0	81	0
4:00	15	12	13	0	A	0	0	53	0
4:00	13	13	15	0	1	0	0	72	0
4:13	15	7	13	0	1	0	0	56	0
4:45	15	6	6	0	0	0	0	56	0
5:00	12	12	10	0	1	0	0	69	0
5:15	17	11	6	0	0	0	0	64	0
5:30	7	9	11	0	1	0	0	52	1
5:45	12	2	8	0	1	0	0	65	0
6:00	11	6	11	0	0	0	0	44	0
6:15	10	5	9	0	1	0	0	44	0
6:30	10	4	5	0	0	1	0	42	0
6:45	15	2	9	0	0	1	0	37	0
7:00	7	2	11	0	0	0	0	43	0
7:15	8		7	0	3	0	0	44	0
7:30	9		5	0	1	0	0	35	0
7:45	3	1	1	0	0	1	0	21	0

					1		1.120		
Aforador: K						fecha: 27 de	mayo del 20	17	
Estación de		ina Parque				Dia: sabado			
Movimiento	: 8								
		TAXI	000					S	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	6	1	1	0	1	0	0	14	0
6:15	10	2	2	0	0	0	0	23	5
6:30	5	3	4	0	0	0	0	30	0
6:45	6	9	1	1	0	0	0	48	0
7:00	7	4	6	2	0	0	0	32	0
7:15	9	4	3	0	1	0	0	38	1
7:30	15	5	5	0	0	0	0	39	0
7:45 8:00	9	2	3	0	0	0	0	48 56	0
8:00	6 8	3	2	0	1 0	0	0	65	0
8:30	9	2	1	0	2	0	0	64	0
8:45	28	12	5	0	1	0	0	77	0
9:00	15	3	2	0	1	0	0	45	0
9:15	10	2	3	0	1	0	0	27	0
9:30	21	6	3	0	1	0	0	50	0
9:45	24	9	1	0	0	0	0	48	0
		-			-	-			0
11:00	38	9	7	0	0	0	0	86	0
11:15	26	14	3	0	0	0	0	42	0
11:30	24	15	1	0	0	0	0	83	0
11:45	38	11	0	0	0	0	0	95	0
12:00	31	7	3	0	2	0	0	102	0
12:15	35	6	2	0	1	0	0	99	0
12:30	54	7	3	0	1	0	0	87	0
12:45	24	6	2	0	1	0	0	55	0
1:00	31	11	6	0	1	0	0	83	0
1:15	38	8	3	0	1	0	0	67	0
1:30	31	6	5	0	2	0	0	71	0
1:45	18	5	2	0	1	0	0	57	0
2:00	30	3	5	0	1	0	0	51	0
2:15	24	6	1	0	1	0	0	44	0
2:30	31	5	1	0	2	0	0	49	0
2:45	26	6	3	0	3	0	0	58	0
4:00	27	10	3	0	3	0	0	53	0
4:00	32	7	2	0	1	0	0	52	0
4:13	46	10	7	0	1	0	0	76	0
4:45	30	3	2	0	0	0	0	65	0
5:00	34	5	1	0	0	0	0	70	0
5:15	30	6	1	0	1	0	0	40	0
5:30	38	10	1	0	0	0	0	55	0
5:45	33	10	5	0	0	0	0	55	0
6:00	28	5	2	0	1	0	0	63	0
6:15	48	13	3	0	2	0	0	86	0
6:30	42	3	0	0	1	0	0	86	0
6:45	33	7	1	0	2	0	0	80	0
7:00	33	6	0	0	1	0	0	86	0
7:15	35	4	2	0	1	0	0	75	0
7:30	34	6	0	0	0	0	0	62	0
7:45	40	10	0	0	0	0	0	47	0

Aforador: S	tiven Hernan	dez				fecha: 27 de	mayo del 20	17	
Estación de						Dia: sabado	inayo dei 20	17	
Movimiento									
		TAXI			g <mark>-</mark>	-71 <mark></mark>	£	6	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
6:00	9	3	2	1	1	0	0	15	0
6:15	10	1	2	0	0	0	0	12	0
6:30	1	1	2	0	0	0	0	10	0
6:45 7:00	2 17	6 14	10 5	0	0	0	0	41 48	0
7:00	8	6	0	0	0	0	0	28	1
7:30	12	0	0	0	2	0	0	41	1
7:45	8	4	2	0	0	0	0	39	1
8:00	16	10	3	1	0	0	0	21	0
8:15	19	10	3	0	0	0	0	42	0
8:30	19	7	0	1	2	0	0	43	0
8:45	31	9	6	0	0	0	0	57	0
9:00	11	12	3	0	1	1	0	42	0
9:15	3	0	2	0	2	0	0	16	0
9:30	25	0	1	0	1	0	0	5	0
9:45	25	0	2	1	1	0	0	29	3
11:00	56	18	10	0	1	0	0	97	0
11:15	34	9	0	0	0	0	0	27	0
11:30	20	11	1	0	2	1	0	75	0
11:45	56	4	0	0	0	0	0	89	0
12:00	0	2	2	0	1	0	0	71	1
12:15	17	1	2	0	0	0	0	51	1
12:30	44	10	4	0	0	0	0	88	0
12:45	17	9	1	0	0	0	0	81	0
1:00	3	4	7	1	1	0	0	70	0
1:15	22	0	0	0	0	0	0	34	3
1:30 1:45	18 10	1 0	0	0	0	0	0	36 71	0
2:00	22	9	5	0	0	0	0	10	0
2:15	1	1	1	0	1	0	0	26	1
2:30	27	6	0	0	0	0	0	58	0
2:45	41	19	3	0	0	0	0	80	1
4:00	11	7	0	0	0	0	0	45	0
4:15	23	8	4	0	0	0	0	38	1
4:30	31	5	2	0	0	0	0	43	1
4:45	13	2	3	1	1	0	0	50	1
5:00 5:15	24	1 3	0	0	0	0	0	66 8	1
5:15	35	4	2	1	0	0	0	32	2
5:45	9	8	7	0	1	0	0	41	1
6:00	24	0	1	0	1	0	0	54	0
6:15	11	5	2	0	0	1	0	41	0
6:30	32	15	2	0	2	0	0	78	2
6:45	16	4	1	0	1	0	0	104	2
7:00	3	6	5	0	0	0	0	64	1
7:15	14	1	0	0	1	0	0	12	0
7:30	7	5	2	0	0	0	0	13	1
7:45	41	15	0	0	1	0	0	50	0

46 1 3	forador: Viviana Coronel fecha: 27 de mayo del 2017											
							mayo del 20	17				
Estación de		servir				Dia: sabado						
Movimiento	: I(B)											
		TAXI	000		en e			S				
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas			
6:00	5	11	4	0	0	0	0	32	4			
6:15	11	19	7	1	0	0	0	47	9			
6:30	13	18	9	3	4	0	0	46	4			
6:45	9	18	6	0	1	0	0	74	1			
7:00	9	17	6	1	6	0	0	46	0			
7:15	9	20	11	1	3	0	0	79	0			
7:30	17	28	14	0	1	0	0	72	2			
7:45	22	19	11	0	5	0	0	109	1			
8:00	30	31	10	2	8	0	0	102	0			
8:15	22	19	6	2	6	0	0	86	3			
8:30	28	19	12	0	13	0	0	114	0			
8:45	26	28	9	1	11	0	0	97	0			
9:00	25	24	10	0	7	0	0	84	0			
9:15	30	33	11	0	7	0	0	65	0			
9:30	40	34	15	1	11	0	0	92	0			
9:45	43	37	11	1	7	0	0	105	0			
11:00	35	24	12	1	5	0	0	86	0			
11:15	38	41	8	0	8	1	0	104	1			
11:30	53	26	10	0	5	1	0	88	0			
11:45	42	27	20	0	10	0	0	96	0			
12:00	55	26	8	0	4	0	0	140	0			
12:15	64	27	13	1	15	0	0	130	1			
12:30	37	13	9	0	5	0	0	113	0			
12:45	42	20	11	0	6	1	0	83	0			
1:00	40	17	7	1	1	1	0	97	0			
1:15	35	12	11	0	4	1	0	90	0			
1:30	42	22	12	0	3	0	0	103	2			
1:45	35	35	14	0	0	0	0	84	0			
2:00	51	26	10	1	4	0	0	93	1			
2:15	53	36	16	1	7	0	0	71	0			
2:30	65	32	12	2	7	0	0	65	0			
2:45	40	25	7	1	2	0	0	66	0			
4:00	58	18	15	0	5	0	0	75	1			
4:15	60	16	13	2	2	0	0	80	0			
4:30	46	13	7	0	2	0	0	95	0			
4:45	77	23	6	1	5	1	0	114	0			
5:00 5:15	65 70	24 22	9 7	0	5	1	0	91 87	1			
5:15	65	22	9	0	3	0	0	100	1			
5:45	76	28	7	2	3	0	0	74	2			
6:00	68	27	9	0	2	2	0	98	1			
6:15	77	22	7	2	5	1	0	111	0			
6:30	50	8	6	1	0	0	0	100	0			
6:45	63	16	7	0	2	0	0	86	0			
7:00	69	15	6	0	4	0	0	100	1			
7:15	68	12	8	0	0	0	0	100	0			
7:30	63	17	3	0	3	0	0	114	0			
7:45	66		7	0	4	0	0	74	1			

Aforador: K	ally Machad	0				fecha: 27 de mayo del 2017				
						Dia: sabado				
Estación de		servir				Dia: sabado				
Movimiento	: 5									
		TAXI	000		g <mark>-</mark>	g <mark>-</mark>		S		
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas	
6:00	4	1	0	0	0	0	0	10	0	
6:15	8	2	0	0	1	0	0	15	1	
6:30	6	3	0	0	3	0	0	24	0	
6:45	6	2	0	1	0	0	0	23	0	
7:00	9	0	4	0	1	0	0	22	0	
7:15	7	1	4	0	1	0	0	34	0	
7:30	8 17	5	2	0	3	0	0	46 59	0	
7:45 8:00	10	5	0	0	1	0	0	69	0	
8:15	11	4	4	0	2	0	0	52	0	
8:30	17	4	3	0	5	0	0	63	0	
8:45	18	7	1	0	2	0	0	59	0	
9:00	29	6	5	0	1	1	0	81	0	
9:15	21	8	1	0	4	0	0	49	2	
9:30	29	10		0	5	0	0	59	0	
9:45	21	3	2	0	4	0	0	52	0	
,,,,				-				-		
11:00	27	4	2	0	3	0	0	40	2	
11:15	35	6	2	0	4	1	0	62	1	
11:30	24	11	0	0	1	1	0	98	1	
11:45	31	11	2	0	8	1	0	77	1	
12:00	45	9	3	0	3	0	0	65	0	
12:15	30	10	3	0	4	0	0	84	2	
12:30	33	6	1	0	2	0	0	71	1	
12:45	29	6	5	0	1	1	0	56	0	
1:00	30	11	1	0	8	0	0	44	0	
1:15	20	9	2	0	4	0	0	46	0	
1:30	6	12	2	0	6	0	0	36	0	
1:45	15	8	2	0	2	0	0	30	0	
2:00	21	8	0	0	4	1	0	52	0	
2:15	22	9	2	0	4	0	0	46	0	
2:30	15	8	0	0	2	0	0	55	0	
2:45	17	5	6	0	3	0	0	34	0	
4.00	10		1	0		0	0	40	0	
4:00	19	6	1	0	4	0	0	40 51	0	
4:15 4:30	20	4 5	<u>1</u>	0	5	0	0	46	0	
4:30	25	6	1	0	3	0	0	39	1	
5:00	32	5	1	0	1	0	0	48	0	
5:15	33	6	2	0	10	0	0	49	0	
5:30	28	10	2	1	3	0	0	51	0	
5:45	34	3	3	0	5		0	47	1	
6:00	26	7	2	0	7	0	0	51	0	
6:15	35	7	1	0	5	0	0	54	2	
6:30	25	5	0	0	2	0	0	47	0	
6:45	20	7	0	0	8	0	0	42	0	
7:00	31	10	1	0	3	0	0	49	0	
7:15	21	4	0	0	2	0	0	56	1	
7:30	35	14	0	0	3		0	60	0	
7:45	18		0	0	4		0	28	0	

					1						
Aforador: S						fecha: 27 de mayo del 2017					
Estación de		nstar				Dia: sabado					
Movimiento	:3(A)										
		TAXI	0 0			2 —		S			
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas		
6:00	0	1	1	0	0	0	0	18	1		
6:15	1	0	0	0	1	0	0	29	1		
6:30	5	2	1	0	1	1	0	47	1		
6:45	3	0	0	1	1	0	0	61	5		
7:00	9	1	1	0	0	0	0	63	1		
7:15	0	3	0	0	0	0	0	42	5		
7:30	6	1	4	0	0	0	0	52	0		
7:45	10	2	1	0	0	0	0	92	4		
8:00	14	4 7	3	0	0	1	0	105	0		
8:15 8:30	13 12		4	0	2	0	0	101 72	7		
8:45	8	6 0	0 1	0	1	0	0	50	1		
9:00	11	6	0	0	1	1	0	107	0		
9:15	7	8	0	0	1	1	0	69	1		
9:30	22	14	0	0	0	1	0	72	0		
9:45	10	5	0	0	6	0	0	11	2		
7.13	10			Ŭ	Ŭ	Ŭ	Ŭ	- 11			
11:00	17	7	1	0	0	0	0	50	0		
11:15	31	10	0	0	0	1	0	119	0		
11:30	6	0	2	0	2	0	0	24	1		
11:45	25	5	0	0	0	1	0	93	0		
12:00	49	1	0	0	0	1	0	126	1		
12:15	19	0	1	0	1	0	0	80	0		
12:30	27	5	2	0	0	0	0	87	0		
12:45	37	9	0	0	1	1	0	95	0		
1:00	14	0	0	0	0	0	0	55	0		
1:15	31	6	1	0	3	1	0	75	0		
1:30	22	0	2	0	1	0	0	65	1		
1:45	27	11	1	0	4	1	1	98	0		
2:00	5	2	1	0	0	0	0	47	0		
2:15	15	8	1	0	1	0	0	25	0		
2:30	23	5	1	0	0	0	0	38	0		
2:45	21	6	0	0	0	0	0	69	0		
4.00	2.5	4						40			
4:00	36	1	0	0	2	0	0	49	0		
4:15 4:30	29 28	1 0	0	0	1 0	0	0	45 46	0		
4:30	30	2	1	0	2	0	0	43	0		
5:00	50	6	1	0	2	0	0	84	0		
5:15	23	8	1	0	0	0	0	73	0		
5:30	25	1	0	0	0	1	0	22	0		
5:45	4	1	2	0	0	0	0	38	0		
6:00	46	6	2	0	1	0	0	69	2		
6:15	6	0	0	0	1	0	0	12	2		
6:30	51	7	0	0	0	0	0	82	0		
6:45	20	2	0	0	0	0	0	52	0		
7:00	24	2	1	0	0	0	0	37	0		
7:15	17	4	0	0	1	0	0	18	3		
7:30	6	1	0	0	2	1	0	13	2		
7:45	21	0	0		0	0	0	47	0		

Aforador: K	elly Machad	0				fecha: 27 de	mayo del 20	17	
Estación de						Dia: sabado	mayo del 20	17	
Movimiento		,				2 111 5410445			
		TAXI	0 0			g <mark>-</mark>		6	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	2	2	0	0	0	0	0	23	0
6:15	4	5	6	0	1	0	0	43	2
6:30	5	5	8	0	0	0	0	36	0
6:45	6	7	3	1	3	0	0	46	1
7:00	5	11	7	0	6	1	0	44	3
7:15	5	0	3	0	3	0	0	52	0
7:30 7:45	7 9	13 10	8	0	<u>4</u> 2	0	0	60 59	0
8:00	5	7	6 4	0	2	0	0	71	0
8:15	14	8	6	1	5	0	0	86	1
8:30	20	16	10	0	7	0	0	92	0
8:45	12	8	5	0	7	0	0	63	2
9:00	25	19	5	0	10	0	0	99	1
9:15	17	7	5	0	4	0	0	53	0
9:30	23	11	3	0	3	0	0	73	0
9:45	17	12	4	0	6	0	0	68	0
11:00	13	6	3	1	0	0	0	64	0
11:15	20	14	9	1	4	0	0	104	0
11:30	7	3	3	0	0	0	0	39	0
11:45	18	8	7	0	5	0	0	97	0
12:00	19	5	3	0	2	0	0	95	0
12:15	23	10	4	2	4	0	0	86	0
12:30	21	10	5	0	3	0	0	55	0
12:45	4	7	4	0	0	0	0	67	0
1:00	21	6	7	1	1	0	0	61	0
1:15	13	3	3	0	5	0	0	56	0
1:30	18	4	4	2	2	0	0	38	0
1:45 2:00	11 29	3 9	3	0	0	0	0	33 49	0
2:15	29	9	3	0	1	0	0	35	0
2:30	25	8	5	1	4	0	0	45	0
2:45	15	4	3	0	1	0	0	35	0
2.13	13				1	- U	- U	33	
4:00	17	5	3	1	2	0	0	65	0
4:15	16	12	3	1	3	0	0	59	0
4:30	26	10	3	1	22	0	0	57	0
4:45	37	7	6	0	1	0	0	61	0
5:00	17	11	5	0	1	1	0	63	0
5:15	21	5	4	0	0	0	0	68	0
5:30	18	2	3	0	2	0	0	54	0
5:45	11	5	5	0	1	0	0	56	0
6:00	18	10	4	1	0	0	0	46	0
6:15	17	6	4	0	1	0	0	32	0
6:30	14	4	6	0	1	0	0	41	0
6:45	24	4	3	0	2	0	0	51	0
7:00	20	2	3	0	0	0	0	37	0
7:15 7:30	24 13	8 6	3	0	1	0	0	61	0
7:30 7:45	21	5		0	1	0	0	42 32	0
7:45	21) 3	1	0	1	U	U	32	U

Aforador: N	atalia Castro)				fecha: 27 de	mayo del 20	17	
Estación de						Dia: sabado		<u> </u>	
Movimiento		o rigitario				Dia: Sacaco			
		TAXI			g <mark>-</mark>	g <mark>-</mark>		6 0	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas
6:00	2	0	0		_		0	13	(
6:15	5	1	0	0		0	0	21	
6:30	5	0	0	0	2	0	0	34	
6:45	1	1	0	2	0		0	47	:
7:00	7	0	3	0		0	0	50	
7:15	4	0	2	0	1	0	0	52	
7:30	7	1	3	0	1	0	0	74	(
7:45	14	3	0	0	3	0	0	91	4
8:00	8	5	2	0	1	0	0	136	(
8:15	12	2	0	0	1	0	0	94	
8:30 8:45	16 14	5	3	0	2	0	0	101 70	(
9:00	23	4	3	0		0	0	102	(
9:00	16	5	1	0		0	0	76	
9:30	20	8	0	0	4	0	0	105	(
9:45	13	3	1	0			0	63	2
7.43	13	3	1	0	0	0	0	0.5	
11:00	17	4	2	0	2	0	0	38	-
11:15	22	3	1	0	4	2	0	86	(
11:30	14	6		0	2	0	0	94	2
11:45	29	4	1	0	8	2	0	106	(
12:00	25	3	2	0	3	0	0	80	`
12:15	15	4	3	0	3	0	0	113	
12:30	24	6	1	0	1	0	0	103	
12:45	17	6	3	0	2	2	0	83	(
1:00	15	6	0	0	8	0	0	60	(
1:15	16	5	1	0	5	0	0	64	(
1:30	5	4	3	0	6	0	0	59	
1:45	13	4	1	0	3	0	0	80	(
2:00	12	6	0	0			0	72	(
2:15	11	5	1	0			0	48	(
2:30	15	4	0	0	2	0	0	53	(
2:45	10	2	5	0	3	0	0	60	(
4:00	19	3	1	0		0	0	42	(
4:15	7	5	1	0			0	46	(
4:30	17	4	5	0			0	58	
4:45	16	4	2	0			0	49	1
5:00	35	2	2	0		0	0	90	(
5:15	21	6	3	0		0	0	71	(
5:30	21	2	1	0			0	32	(
5:45	16	0	2	0			0	50	1
6:00	27 21	3	3	0	8		0	65 35	2
6:15 6:30	23	6	0	0			0	70	(
6:30	14	7	0			0	0	58	(
7:00	15	9	2	0			0	34	(
7:00	10	5	0				0	41	2
7:13	16	13	0	0		1	0	52	2
7.50	10	13	U	U	3	1	U	32	

7:45

					-		1.120			
Aforador: K					fecha: 27 de mayo del 2017					
Estación de		ina Parque				Dia: sabado				
Movimiento	: 7									
		TAXI	0		g <mark>e</mark>		6	S		
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas	
6:00	2	1	0	0	1	0	0	17	0	
6:15	4	1	0	0	0	0	0	23	0	
6:30	6	5	1	0	2	1	0	37	0	
6:45	8	1	0	0	1	0	0	37	0	
7:00	11	1	2	0	0	0	0	35	0	
7:15	3	4	2	0	0	0	0	24	2	
7:30	7	4	3	0	0	0	0	24	0	
7:45	13	4	1	0	0	0	0	60	0	
8:00	16	4	2	0	3	1	0	38 59	0	
8:15 8:30	12 13	9	8	0		0	0	34	2	
8:45	12	6 2	0	0	2 1	0	0	39	1	
9:00	17	8	2	0	0	2	0	86	0	
9:15	12	11	0	0	0	1	0	42	2	
9:30	31	16	0	0	1	1	0	26	0	
9:45	18	5	1	0	2	0	0	25	0	
7.13	10		1	Ů			Ŭ	23		
11:00	27	7	1	0	1	0	0	52	0	
11:15	44	13	1	0	0	0	0	95	1	
11:30	16	5	2	0	1	1	0	28	0	
11:45	27	12	1	0	0	0	0	64	1	
12:00	69	7	1	0	0	1	0	111	0	
12:15	34	6	1	0	2	0	0	51	0	
12:30	36	5	2	0	1	0	0	55	0	
12:45	49	9	2	0	0	0	0	68	0	
1:00	29	5	1	0	0	0	0	39	0	
1:15	35	10	2	0	2	1	0	57	0	
1:30	23	8	1	0	1	0	0	42	0	
1:45	29	15	2	0	3	1	1	48	0	
2:00	14	4	1	0	1	0	0	27	0	
2:15	26	12	2	0	2	0	0	23	0	
2:30	23	9	1	0	0	0	0	40	0	
2:45	28	9	1	0	0	0	0	43	0	
4.00	2.5	4	-				0	4.77	^	
4:00	36	4	0	0	2	0	0	47	0	
4:15 4:30	42 32	0	0	0	0	0	0	50 34	0	
4:30	32	4	0	0	1	0	0	33	0	
5:00	47	9	0	0	2	0	0	42	0	
5:15	35	8	0	0	0	0	0	51	0	
5:30	32	9	1	1	0	1	0	41	0	
5:45	22	4	3	0	0	0	0	35	0	
6:00	45	9	1	0	0	0	0	55	0	
6:15	20	4	1	0	0	0	0	31	0	
6:30	53	6	0	0	0	0	0	59	0	
6:45	26	2	0	0	0	0	0	36	0	
7:00	40	3	0	0	0	0	0	52	0	
7:15	28	3	0	0	0	0	0	33	0	
7:30	25	2	0	0	0	0	0	21	0	
7:45	24	3	0	0	1	0	0	29	0	

Aforador: A					fecha: 27 de mayo del 2017					
Estación de		o Agrario				Dia: sabado				
Movimiento	: 2(A)									
		TAXI	000		g <mark>-</mark>			S		
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas	
6:00	4	2	2	0	0	0	0	16	0	
6:15	6	5	1	0	0	1	0	38	2	
6:30	11	7	1	0	4	0	0	86	0	
6:45	14	11	2	0	4	0	0	76	4	
7:00	16	11	2	0	7	1	0	169	1	
7:15	19	5	1	0	3	0	0	78	2	
7:30	10	10	1	0	2	2	0	59	0	
7:45	24	2	1	0	2	3	0	93	5	
8:00	31	18	2	0	1	0	0	125	3	
8:15	18	13	0	0	1	0	0	65	1	
8:30	26	14	2	0	7	1	0	106	1	
8:45	30	5	4	0	3	0	0	101	3	
9:00	30	14	3	0	3	1	0	85	9	
9:15	18	17	3	0	3	0	0	77	1	
9:30 9:45	30 26	12 15	<u>1</u>	0	6	1	0	90 65	2	
9:43	20	13	1	0	4	0	0	03	1	
11:00	20	13	1	0	3	0	0	50	0	
11:00	24	13	3	0	1	2	0	95	1	
11:30	41	14	1	0	3	1	0	68	2	
11:45	50	12	3	0	2	2	0	119	0	
12:00	44	8	2	0	4	1	0	133	0	
12:15	49	7	1	0	2	0	0	77	1	
12:30	57	9	3	0	2	2	0	148	2	
12:45	61	15	1	0	2	1	0	102	1	
1:00	39	7	0	0	2	0	0	69	1	
1:15	34	7	0	0	0	0	0	59	1	
1:30	22	6	0	0	4	0	0	49	0	
1:45	31	6	1	0	3	0	0	73	0	
2:00	24	7	1	0	0	2	0	59	0	
2:15	50	16	5	0	0	0	0	67	1	
2:30	45	11	1	0	6	1	0	49	0	
2:45	37	12	2	0	3	0	0	58	1	
4:00	39	6	2	0	2	0	0	62	0	
4:15	40	8	1	0	1	0	0	46	0	
4:30	39	7	3	0	3	0	0	67	0	
4:45	30	7	2	0	0	0	0	59	1	
5:00	45	11	2	0	2	0	0	65	0	
5:15	57	12	2	0	0	0	0	60	0	
5:30	56	13	0	0	0	0	0	58	0	
5:45	52	7	1	0	1	0	0	67	0	
6:00	65	10	0	0	0	0	0	69	1	
6:15 6:30	81 75	7 10	1 2	0	1 0	0	0	137 109	1	
6:45	46	6	0	0	0	0	0	70	0	
7:00	38	3	0	0	1	0	0	58	0	
7:15	54	4	2	0	0	0	0	30	0	
7:30	39	7	1	0	0	0	0	45	6	
7:45	42	7	0		0	0	0	44	0	
7.43	42	/	U				0	44	U	

Aforador: Natalia Castro fecha: 27 de mayo del 2017									
Estación de a						Dia: sabado		11/	
Movimiento:		o Agrano				Dia. Sauado			
1120 (111201100	· > (<u>-</u>)		Garage					_ ~	2
		TAXI	0.0		g <mark>-</mark>			S	
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas
6:00	2	0	0	0	0	0	0	3	0
6:15	4	1	0	0	0	0	0	4	1
6:30	0	0	0	0	0	0	0	1	3
6:45	0	0	0	0	0	0	0	6	0
7:00 7:15	0	0	0	0	0	0	0	5	0
7:30	2	0	0	0	1	0	0	8	1
7:45	0	0	0	0	0	0	0	20	0
8:00	3	0	0	0	0	0	0	11	0
8:15	5	0	0	0	1	0	0	14	
8:30	2	0	0	0	0	0	0	22	1
8:45	6	0	0	0	0	0	0	12	0
9:00	4	0	0	0	1	0	0	13	0
9:15	4	0	0	0	1	0	0	7	1
9:30	5	1	0	0	1	0	0	18	0
9:45	2	2	0	0	1	0	0	13	0
11:00	5	4	0	0	0	0	0	14	0
11:15	3	2	0	0	1	0	0	21	0
11:30	2	0	0	0	0	0	0	1	0
11:45 12:00	10	0	0	0	1 0	0	0	17 12	0
12:00		0	0	0	1	0	0	10	0
12:30	5	0	0	0	0	0	0	15	0
12:45	9	1	0	0	1	0	0	10	0
1:00	3	0	0	0	1	0	0	11	0
1:15	2	2	0	0	0	0	0	13	0
1:30	3	1	0	0	0	0	0	8	0
1:45	3	0	0	0	0	0	0	7	0
2:00	2	0	0	0	2	0	0	10	0
2:15	2	0	0	0	0	0	0	8	
2:30	4	1	0	0	3	0	0	16	
2:45	3	1	0	0	2	0	0	11	0
100	-								_
4:00	0	1	0	0	2	0	0	3	
4:15 4:30	5 9	1	0	0	0 2	0	0	11 21	0
4:30	11	0	0	0	1	0	0	12	0
5:00	1	0	0	0	0	0	0	14	
5:15	5	0	0	0	0	0	0	12	0
5:30	7	0	0	0	0	0	0	5	
5:45	11	0	0	0	0	0	0	11	0
6:00	7	0	0	0	1	0	0	3	
6:15	4	1	0	0	0	0	0	10	0
6:30	6	0	0	0	0	0	0	14	0
6:45		0	0	0	0	0	0	9	
7:00	9	0	0	0	0	0	0	5	
7:15	7	0	0	0	0	0	0	13	
7:30	5	2	0	0	1	0	0	16	
7:45	9	1	0	0	0	0	0	17	0

					1					
Aforador: N					fecha: 27 de mayo del 2017					
Estación de		io Azul				Dia: sabado				
Movimiento	: 6									
		TAXI	0		g <mark>-</mark>			6		
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 34	Motos	Bicicletas	
6:00	5	1	1	0	0	0	0	27	0	
6:15	8	1	1	0	0	0	0	38	2	
6:30	5		2	0	1	0	0	39	0	
6:45	7	10	1	0	0	0	0	45	2	
7:00	8	3	1	0	1	0	0	41	0	
7:15	4	9	2	0	2	0	0	48	0	
7:30	7	3	2	0	1	0	0	45	0	
7:45	10	4	0	0	0	0	0	49	0	
8:00	9	9	3	0	1	0	0	61	1	
8:15	12	9	2	0	1	0	0	57	0	
8:30	11	12	1	0	2	0	0	56	0	
8:45	14	7	2	0	0	0	0	41	0	
9:00	18	8	5	0	2	0	0	53	0	
9:15	20	9	2	0	0	0	0	55	0	
9:30 9:45	20	8 10	0	0	1	0	0	54 48	0	
9:43	21	10	1	0	2	0	0	48	U	
11:00	19	11	2	0	2	0	0	52	0	
11:00	22	6	4	0	0	0	0	67	0	
11:30	26	19	0	0	0	0	0	79	0	
11:45	20	9	1	0	1	0	0	64	0	
12:00	24	4	0	0	4	0	0	52	0	
12:15	27	6	2	0	3	0	0	57	1	
12:30	25	10	2	0	1	1	0	52	1	
12:45	21	7	0	0	2	1	0	54	1	
1:00	19	10	0	0	2	0	0	57	0	
1:15	23	5	2	0	2	0	0	46	0	
1:30	17	9	1	0	1	0	0	46	0	
1:45	18	6	3	0	1	0	0	44	0	
2:00	22	4	0	0	1	0	0	61	0	
2:15	26	11	1	0	2	0	0	47	0	
2:30	29	10	2	0	2	0	0	32	0	
2:45	21	6	1	0	2	0	0	49	0	
				0		0	0		0	
4:00	16	5	2	0	0	0	0	37	0	
4:15	21	5	1	0	1	0	0	56	0	
4:30	34	6	3	0	1	0	0	60	0	
4:45	22	4	0	0	0	0	0	54	0	
5:00	25	7	1	0	0	0	0	55	0	
5:15	24	10	2	0	0	0	0	60	0	
5:30	22	6	0	0	0	0	0	44	0	
5:45	22	6	1	0	1	0	0	47	0	
6:00 6:15	28	4	0	0	0	0	0	48 50	0	
6:15	26 23	3	0	0	0	0	0	60	0	
6:30	23	7	0	0	0	0	0	36		
7:00	20	5	0	0	1	0	0	65	0	
7:15	26		2	0	0	0	0	42	0	
7:30	16	4	0	0	0	0	0	44	0	
7:45	19		0		0	0	0	37	0	
1.43	19		0			U	U	31		

46 1 3						6 1 27 1	1.120	1.7		
Aforador: M						fecha: 27 de mayo del 2017				
Estación de		cio Azul				Dia: sabado				
Movimiento	: 2(B)									
		TAXI	000					6		
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C-34	Motos	Bicicletas	
6:00	2	11	3	0	1	0	0	22	4	
6:15	2	5	0	0	0	1	0	23	0	
6:30	12	12	0	0	5	1	0	84	0	
6:45	15	2	1	0	5	0	0	68	2	
7:00	19	9	3	0	6	1	0	163	1	
7:15	18	0	1	0	1	0	0	54	4	
7:30	10	11	2	0	1	2	0	38	0	
7:45	27	2 13	2	0	2	3	0	104	5	
8:00	38		1	0	0	1	0	102	2	
8:15 8:30	18 28	13	6	0	7	0	0	67	3	
8:45	28	8	3	0		0	0	84 99	2	
9:00	29	14	0	0	1	3	0	118	9	
9:15	10	19	1	0	3	1	0	64	3	
9:30	41	20	1	0	6	2	0	62	2	
9:45	23	10	1	0	4	0	0	42		
7.13		10		0	•	0	0			
11:00	28	9	0	0	2	0	0	50	0	
11:15	46	21	0	0	1	2	0	123	2	
11:30	31	0	3	0	4	2	0	17	2	
11:45	56	15	3	0	1	2	0	119	1	
12:00	89	11	3	0	0	2	0	192	0	
12:15	56	7	0	0	1	0	0	71	0	
12:30	68	4	3	0	2	1	0	151	1	
12:45	89	17	3	0	0	0	0	116	0	
1:00	49	2	1	0	0	0	0	51	1	
1:15	46	12	0	0	0	1	0	70	1	
1:30	28	5	0	0	4	0	0	45	0	
1:45	42	15	0	0	5	1	1	77	0	
2:00	16	7	2	0	0	2	0	25		
2:15	50	17	6		0	0	0	43	1	
2:30	39	10	0	0	4	1	0	57	C	
2:45	44	15	2	0	1	0	0	52	1	
4.00	50				4	0	0	72	0	
4:00	59	5	0	0	0	0	0	72	0	
4:15 4:30	61 37	2	0	0	3	0	0	40	0	
4:30	47	7	2	0	1	0	0	38	1	
5:00	67	13	1	0	4	0	0	52	0	
5:15	68	10	0	0	0	0	0	51	0	
5:30	66	16	1	1	0	1	0	55	0	
5:45	52	5	3	0	0	0	0	55	0	
6:00	82	15	0	0	0	0	0	76	1	
6:15	75	8	2	0	0	0	0	118	1	
6:30	105	13	2	0	0	0	0	108	0	
6:45	48	1	0	0	0	0	0	70	0	
7:00	58	1	0	0	0	0	0	45	0	
7:15	56	5	0	0	0	0	0	21	0	
7:30	48	5	1	0	0	0	0	22	6	
7:45	47	3	0	0	1	0	0	36	0	

7:45

Aforador: M	Iaria Laura					fecha: 27 de	e mayo del 20)17		
Estación de		cio Azul			Dia: sabado					
Movimiento						Dia: Subuco	<u> </u>			
		TAXI	0 0					6		
Hora	Autos	Taxis	Buseta	Bus	C-2P	C-2G	C- 3 4	Motos	Bicicletas	
6:00	1	5	4	0	0	0			(
6:15	1	8	8	0	0	0			(
6:30	4	7	3	0	1	0			1	
6:45	6	6	5	0	1	0			(
7:00	6	10	6	0	0	0		27	1	
7:15	3	10	4	0	0	1			(
7:30	5	8	3	0	0	0		14		
7:45	4	8	3	0	1	0	†	23		
8:00 8:15	2	14 15	7	0	3 2	0		35 30	2	
8:30	6	13	6	0	0	1		24	(
8:45	5	9	4	0	3	0		25	(
9:00	7	12	5	0	1	0	!	39	(
9:15	9	19	7	0	1	0	1	44	(
9:30	12	17	4	0	2	0	1	21	(
9:45	9	13	5	0	2	0		20	(
,,,,										
11:00	8	13	6	0	2	0	0	42	(
11:15	13	12	4	0	1	0	0	33	(
11:30	16	17	6	0	1	0	0	42	(
11:45	9	12	7	0	2	0	0	34	(
12:00	11	22	5	0	2	0	0	42	(
12:15	9	16	6	0	1	0	0	43	2	
12:30	6	13	5	0	1	0	0	38	(
12:45	9	6	8	0	1	0		_	(
1:00	7	14	8	0	0	0			(
1:15	8	10	5	0	2	0			(
1:30	7	7	4	0	1	0		28	(
1:45	10	13	7	0	0	0			(
2:00	9	16	6	0	2	0			(
2:15 2:30	10	17 14	6	0	1	0		14 36	(
2:45	9	13	6	0	0	0	ł	42	(
2.43	0	13	0	0	0				(
4:00	10	19	4	0	1	0			(
4:15	11	8	7	0	0	0			(
4:30	19	7	5	0	0				(
4:45	12	7	7	0	0	1			(
5:00	17	6	6	0	0	0		32	(
5:15	16	9	6	0	0	0	1	22	3	
5:30	17	8	2	0	1	0	0	29	(
5:45	17	16	5	0	1	0	0	35	1	
6:00	22	12	3	0	0	0	†	38	(
6:15	21	12	4	0	0	0		29	2	
6:30	15	15	7	0	2	0			(
6:45	19	5	9	0	0				1	
7:00	18	8	7	0	0				(
7:15	25	7	6		0				C	
7:30	25	8	3	0	0				C	
7:45	12	9	4	0	0	0	0	28	(