

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OCAÑA			
Documento	Código	Fecha	Revisión
FORMATO HOJA DE RESUMEN PARA TRABAJO DE GRADO	F-AC-DBL-007	10-04-2012	Α
Dependencia		Aprobado	Pág.
DIVISIÓN DE BIBLIOTECA	SUBDIRECTOR ACADEMICO		i(242)

AUTORES	JAVIER ALONSO LINDARTE OVALLOS
	JHON ALEXANDER URQUIJO CORREDOR
FACULTAD	INGENIERÍAS
PLAN DE ESTUDIOS	INGENIERÍA CIVIL
DIRECTOR	NAPOLEÓN GUTIERREZ DE PIÑERES
TÍTULO DE LA TESIS	OPTIMIZACIÓN DEL SISTEMA DE ACUEDUCTO DE OTARÉ,
	CORREGIMIENTO DE OCAÑA, NORTE DE SANTANDER
RESUMEN	
(70 palabras aproximadamente)	

ESTA INVESTIGACIÓN TIENE COMO OBJETIVO PRINCIPAL PROPONER LA OPTIMIZACIÓN DEL SISTEMA DE ACUEDUCTO, EN PROCURA DEL MEJORAMIENTO AL SUMINISTRO DE AGUA Y EL APROVECHAMIENTO DE LAS ESTRUCTURAS EXISTENTES, SIENDO ESTAS DE TOTAL BENEFICIÓ PARA LOS HABITANTES DEL CORREGIMIENTO DE OTARÉ, YA QUE ACTUALMENTE CUENTA CON UN SISTEMA QUE CADUCO SU PERIODO DE DISEÑO Y PRESENTA DIFICULTADES EN ALGUNOS DE SUS COMPONENTES. ESTO DEBIDO A QUE EXISTE UNA CLARA DEMANDA DE AGUA Y MAL APROVECHAMIENTO DE ESTE RECURSO.

CARACTERÍSTICAS			
PÁGINAS:	PLANOS:	ILUSTRACIONES:	CD-ROM:

OPTIMIZACIÓN DEL SISTEMA DE ACUEDUCTO DE OTARÉ, CORREGIMIENTO DE OCAÑA, NORTE DE SANTANDER

AUTORES

JAVIER ALONSO LINDARTE OVALLOS Código 170170

JHON ALEXANDER URQUIJO CORREDOR Código 170176

Proyecto de grado presentado como requisito para optar al título de INGENIERO CIVIL

Director NAPOLEON GUTIERREZ DE PIÑEREZ Ingeniero Civil – esp. En Ingeniería ambiental

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERIA CIVIL

Ocaña, Colombia Abril de 2016

Dedicatoria

Primero darle gracias a Dios por permitirme cumplir un logro más en mi vida, por darme la inteligencia, constancia y dedicación, para sacar este proyecto adelante. Es grato saber que en los momentos de dificultad, sentí su ayuda y un aliento extra para no dejarme vencer, ante las dificultades presentadas.

Este logro está dedicado a la memoria de mi abuela, Ana Ilse Ovallos de Lindarte, que estando en vida siempre me ayudo incondicionalmente y anhelaba verme convertido en profesional.

Quiero darle gracias a mis tíos por su gran apoyo, tanto material como anímicamente, pues sin importar las circunstancias me han ayudado y brindado su mano amiga.

También me complace en agradecerles a todas aquellas personas, que de alguna u otra forma, me hayan ayudado dándome ánimos y buenos consejos para no desfallecer y cumplir mis metas.

Javier Alonso Lindarte Ovallos.

Dedicatoria

Este proyecto es la culminación de un importante paso para mi vida, el ser ingeniero civil se ha convertido en un objetivo primordial, los triunfos y las derrotas fortalecieron día a día mis conocimientos y hoy puedo decir que todos estos pasos se están viendo reflejadas con la consecución de tan anhelado título.

Mi madre Blanca Nelly Corredor Dodino mi padre Ángel María Urquijo López mi hermano Camilo Andreth Urquijo corredor mi sobrino Samuel Urquijo Montejo y mi novia Karen Johanna Rueda Peñaranda todos ustedes son el pilar fundamental en mi vida y para ser quien soy, el ser esa persona que a través de su esfuerzo y consejos me han querido ver triunfar, sentir que soy el orgullo de ustedes me hace sentir pleno y con la convicción de cada día debo ser mejor, a todos ustedes infinitas gracias, este título se lo debo primeramente a dios y a cada uno de ustedes por ser esa familia que a través de las dificultades que presenta la vida siempre están ahí para brindarme apoyo y decir adelante tu puedes.

Agradecemos a los jurados y al Ingeniero Napoleón Gutiérrez de Piñeres por su apoyo y su ayuda para que este proyecto fuera posible, ha sido quien con mucha paciencia y dedicación a puesto sus conocimientos a nuestra disposición.

Los autores expresan sus agradecimientos a todas aquellas personas que de alguna u otra forma contribuyeron al éxito de este proyecto a:

Los Ingeniero Edson Arantes Días Bustos, Lubin Augusto Lanzziano Lemus y Cristian Camilo Osorio Molina solo palabras de gratitud hacia ustedes por el tiempo brindado para compartir su gran conocimiento.

Carlos Alberto Patiño, Químico de la Empresa de Servicios Públicos de Ocaña ESPO S.A. y docente de la Universidad Francisco de Paula Santander seccional Ocaña por su disposición en colaborarnos en la elaboración de los diferentes ensayos de laboratorio.

Jhon Alexander Urquijo Corredor

Índice

Introducción	18
Capítulo1. Optimización del sistema de acueducto de Otaré, corregim Santander	
1.1 Planteamiento del problema	20
1.2 Formulación del problema	21
1.3 Descripción del problema	21
1.4 Objetivos	22
1.4.1 Objetivo general.	22
1.4.2 Objetivos específicos.	22
1.5 Justificación	24
Capítulo 2. Marco referencia	27
2.1 Marco histórico	27
2.2 Marco conceptual	29
2.2.1 Elementos de un sistema de acueducto	29
2.2.2 Uso del agua.	32
2.3 Marco legal	35
Capítulo 3. Diseño metodológico	37
3.1 Tipo de investigación	37
3.2 Población y muestra	37
3.2.1 Población.	37
3.2.2 Muestra.	37
3.3 Recolección de información	38
Capítulo 4. Presentación de resultados	39
4.1 Trabajo de campo	39
4.2 Trabajo de oficina	41

4.3 Antecedentes	42
4.3.1 Nivel de complejidad	42
4.3.2 Priorización del proyecto.	43
4.3.3 Alcance y actividades complementarias	45
4.4 Información preliminar	46
4.4.1 Ubicación geográfica.	46
4.5 Reseña histórica	46
4.5.1Vías de acceso y medios de transporte	51
4.5.2 Relieve y topografía	51
4.5.3 Geología y suelos	52
4.5.4 Hidrología y climatología.	52
Capítulo 5. Demografía	53
5.1 Aspectos Demográficos	53
5.2 Servicios públicos	54
5.2.1 Sistema de acueducto	54
5.3 Estudio de población y demanda del servicio de acueducto	55
5.3.1 Registros históricos censales.	55
5.3.2 Tasas de crecimiento	56
5.3.3 Perspectivas de desarrollo	58
5.3.4 Proyecciones de población y consumos	59
5.4 Evaluación sistema de acueducto del corregimiento de Otaré	68
5.4.1 Fuente de abastecimiento.	68
5.4.2 Captación.	77
5.4.3 Aducción captación – desarenador.	81
5.4.4 Desarenador.	85
5.4.5 Aducción desarenador – planta de tratamiento	94
5.4.6 Sistema de tratamiento de agua potable.	106
5.4.7 Planta de tratamiento de agua potable (PTAP)	123
5.4.8 Sistema de tratamiento de agua potable de Otaré	128
5.4.9 Parámetros de diseño de la PTAP Otaré	131

5.4. 10 Cálculos hidráulicos
5.4.11 Tanque de almacenamiento
5.4.12 Red de distribución
5.4.13 Evaluación hidráulica de la red actual
5.4.14Optimización del sistema de acueducto
Capítulo 6. Presupuesto
Capítulo 7. Conclusiones
Capítulo 8. Recomendaciones
Referencias20
Referencias electrónicas
Apéndices

Lista de Tablas

Tabla 1	43
Tabla 2	44
Tabla 3	45
Tabla 4	56
Tabla 5	58
Tabla 6	60
Tabla 7	63
Tabla 8	64
Tabla 9	65
Tabla 10	67
Tabla 11	75
Tabla 12	79
Tabla 13	82
Tabla 14.	86
Tabla 15.	87
Tabla 16	88
Tabla 17	89
Tabla 18	90
Tabla 19.	91
Tabla 20.	91
Tabla 21.	92
Tabla 22.	99
Tabla 23	101
Tabla 24	104
Tabla 25	109
Tabla 26	110
Tabla 27	
Tabla 28	127
Tabla 29	138
Tabla 30	
Tabla 31	
Tabla 32	
Tabla 33	
Tabla 34	
Tabla 35	
Tabla 36	
Tabla 37	
Tabla 38.	
Tabla 39.	

Tabla 40.	163
Tabla 41.	164
Tabla 42.	168
Tabla 43.	169
Tabla 44	170
Tabla 45.	174
Tabla 46	175
Tabla 47.	176
Tabla 48	179
Tabla 49.	180
Tabla 50.	181
Tabla 51	186
Tabla 52	188
Tabla 53	190
Tabla 54	

Lista de Graficas

Grafica 1. Proyecciones de población de la tabla N°6	61
Grafica 2 Proyecciones de población de la tabla N°6	62
Grafica 3. Perfil evaluación hidráulica línea de aducción actual desarenador – planta de	
tratamiento.	102
Grafica 4. Escala de los niveles de acidez y alcalinidad	112
Grafica 6. Presiones red 2 actual	172
Grafica 7. Presiones red 3 actual	177
Grafica 8. Presiones red 4 actual	182

Lista de Figuras

Figura 1 . Panorámica de la vía de acceso entre Otaré-Ocaña	49
Figura 2. Panorámica de Otaré, corregimiento de Ocaña, Norte de Santander. La zon	a subrayada
en rojo corresponde al área de servicios de Acueducto	50
Figura 3. Vista general en planta del acueducto actual	70
Figura 4. Vista en planta y perfil del tanque donde se realizó el aforo	72
Figura 5. Sección trasversal de la quebrada el silencio en el sitio del aforo	74
Figura 6. Vista general red 1 actual.	167
Figura 7. Vista general de la red 2.	173

Lista de Fotografías

Fotografia I. Quebrada el Silencio.	69
Fotografía 2 Llenado de tanque para aforo	73
Fotografía 3. Vista general del tanque para aforo	74
Fotografía 4. Adecuación de la zona para aforo.	76
Fotografía 5. Toma de tiempos para el aforo	77
Fotografía 6 Bocatoma	78
Fotografía 7. Tanque de recolección	79
Fotografía 8. Rejilla.	81
Fotografía 9. Aducción cámara de recolección- desarenador	85
Fotografía 10. Desarenador	86
Fotografía 11.Válvula de purga	95
Fotografía 12. Tubería descubierta en un canal natural	
Fotografía 13. Ventosa ubicada en el punto 14	105
Fotografía 14. Ventosa ubicada en el punto 29	
Fotografía 15. Herramientas utilizadas para las pruebas	
Fotografía 16.Toma de muestras	109
Fotografía 17. Vista general de la PTAP existente	123
Fotografía 18. Vista general del tanque de almacenamiento	153
Fotografía 19. Vista general de Otaré desde la PTAP.	159

Lista de Apéndices

Apéndice 1. Plano de captación	202
Apéndice 2. Plano desarenador	204
Apéndice 3. Aducción desarenador – planta de tratamiento	205
Apéndice 4. Planta de tratamiento.	206
Apéndice 5. Tanque regulador ó almacenamiento	207
Apéndice 6. Planta general red de distribución.	208
Apéndice 7. Planta general red de distribución optimizada	209
Apéndice 8. A.P.U. Localización y replanteo.	210
Apéndice 9. A.P.U. Localización y replanteo	211
Apéndice 10. A.P.U. RDE 26 Θ 3"	
Apéndice 11. A.P.U. RDE 32.5 Θ 3"	
Apéndice 12. A.P.U. RDE 26 O 2 1/2".	
Apéndice 13. A.P.U. acometida domiciliaria 21/2 x 1/2	215
Apéndice 14. Demolición y concreto	216
Apéndice 15. Concreto para 300 psi	217
Apéndice 16. Instalación de codos 90°	218
Apéndice 17. Válvula de corte 21/2	219
Apéndice 18. Instalación de tee 2 1/2.	220
Apéndice 19. Válvula de purga	221
Apéndice 20. A.P.U. Relleno de excavación.	222
Apéndice 21. A.P.U. Curado tanque recolección bocatoma	223
Apéndice 22. A.P.U. Retiro de sobrantes	224
Apéndice 23. Resultados análisis de pruebas de agua en bocatoma	225
Apéndice 24. Resultados análisis de pruebas de agua entrada planta	226
Apéndice 25. Resultados análisis de pruebas de agua en el tanque de almacenamiento	227
Apéndice 26. Carta dirigida al director de departamento de ingenieria civil para topografia	228
Apéndice 27. Cartera topográfica planta de tratamiento y tanque de almacenamiento	229
Apéndice 28. Curvas de nivel planta de tratamiento-tanque de almacenamiento	
Apéndice 29. Cartera topográfica bocatoma.	
Apéndice 30. Curvas de nivel bocatoma	238
Apéndice 31. Cartera topográfica redes de distribución.	239
Apéndice 32. Cartera de campo línea de aducción.	241

Resumen

Esta investigación tiene como objetivo principal proponer la optimización del sistema de acueducto, en procura del mejoramiento al suministro de agua y el aprovechamiento de las estructuras existentes, siendo estas de total benefició para los habitantes del corregimiento de Otaré, ya que actualmente cuenta con un sistema que caduco su periodo de diseño y presenta dificultades en algunos de sus componentes. Esto debido a que existe una clara demanda de agua y mal aprovechamiento de este recurso pues se utiliza para llevar a cabo actividades productivas a pequeña escala, actividades como riego y ganadería.

El trabajo consiste en una propuesta de optimización que permitirá establecer la situación actual y futura del sistema de acueducto, partiendo de los análisis de las características generales del corregimiento y de cada uno de los componentes que cuenta el sistema, desde la captación, aducción, desarenador, aducción (desarenador - planta de tratamiento), planta de tratamiento, tanque de almacenamiento y la red de distribución para comprender su dinámica y así determinar las deficiencias del sistema existente y llevar a preservar los recursos hídricos, a través de acciones que permitan proteger estos sistemas y la fuente de abastecimiento.

Es así como este documento se convierte en una propuesta de gran importancia ya que sirve de partida para la implementación de una solución a un problema actual, partiendo desde lo estructural e integral para el desarrollo de mejoras en la prestación del servicio de agua potable en el corregimiento de Otaré del municipio de Ocaña Norte de Santander.

Para ello se sugiere la identificación de mejoras en todas las estructuras del sistema de acueducto, mirando las necesidades actuales y futuras para prever su constante deterioro y falta de eficiencia a causa de la mala operación y mantenimiento de las estructuras del sistema.

Introducción

En la Universidad Francisco De Paula Santander Ocaña, el ingeniero civil está enmarcado por la entrega al servicio a la comunidad; en busca de soluciones técnicas con el fin de planear, diseñar y ejecutar proyectos que cuenten con las exigencias de calidad óptimas para satisfacer las necesidades de la sociedad; contribuyendo así al mejoramiento de la calidad de vida sin afectar el desarrollo de los recursos naturales parte fundamental del ambiente.

Es así como se da origen a la investigación titulada Optimización del Sistema de Acueducto de Otaré, corregimiento de Ocaña, Norte De Santander, cuya finalidad es atender las necesidades de una población durante un periodo determinado. Cuando dicho sistema no satisface los objetivos se sujeta a impedimentos y restricciones que afectan de algún modo al funcionamiento hidráulico, ya sea por el deterioro de sus estructuras o el crecimiento de la población, se hace necesario evaluar y diseñar nuevas alternativas que puedan corregir problemas y dar soluciones al sistema.

Por esta razón se enfocó el trabajo de grado como un proyecto que busca suplir la necesidad de la población actual y futura siendo punto fundamental la calidad, continuidad, cantidad y ajustada a la normativa vigente en Colombia. Suministrar un volumen suficiente de agua, con presiones apropiadas, desde la fuente de suministro hasta los usuarios, para sus determinados usos. En consecuencia de ello, se evaluó la excelente ubicación y naturaleza de las fuentes de abastecimiento así como la topografía del área en estudio, para establecer criterios que sirvieron para la valoración de las alternativas de optimización y ofrecer soluciones funcionales a bajos costos económicos.

Es por esto que cada capítulo de este proyecto se centra en la optimización del acueducto para el corregimiento de Otaré, reflejando el desarrollo del problema como tal, con el fin de aportar mejoramiento en la condiciones de vida de los habitantes de la zona, buscando opciones tanto técnicas como económicas que se ajusten a las condiciones que presenta el corregimiento.

<u>Capítulo1. Optimización del sistema de acueducto de Otaré,</u> <u>corregimiento de Ocaña, Norte De Santander</u>

1.1 Planteamiento del problema

"Colombia está enfrentando la más aguda escasez de agua de toda su historia", así lo aseguró el ministro de Vivienda, Ciudad y Territorio, Luis Felipe Henao, el fenómeno del Niño (fenómeno que se da por el aumento de la temperatura en el Océano Pacifico, el cual en los últimos años ha sido de 3 grados centígrados) ha obligado a imponer racionamientos en 130 municipios, entre estos cuatro capitales: Cali, Ibagué, Santa Marta y Riohacha. Otros 312 municipios están en riesgo de caer en lo mismo. Henao advierte: "el fenómeno del Niño seguirá empeorando, debido a que este pasó de leve a moderado, lo que significa que hay una disminución de lluvias considerable, que hace bajar el nivel en el caudal de los ríos". El fenómeno seguirá empeorando y si los municipios no activan sus planes de emergencia o no están preparados correrán riesgos graves de desabastecimiento de agua y, lamentablemente, tendrán que adoptar medidas de racionamiento.

Es importante tener en cuenta que el racionamiento de agua no es producto de una mala preparación. Esto se debe a que, por la disminución de los caudales de donde se abastecen, los acueductos pierden la capacidad de suministrar el líquido suficiente (Amat, 2015).

Como se mencionó anteriormente esta es una problemática que aqueja a gran parte del país y el corregimiento de Otaré perteneciente al Municipio de Ocaña, Norte De Santander, no es ajeno a ello, prueba de esto son las visitas hechas al corregimiento por parte de los autores de proyecto, donde se ausculto la zona de influencia del sistema de acueducto, a través de varias visitas e información suministrada por la comunidad, se constató que se ven obligados a realizar

racionamientos, razón por la cual este proyecto cobra más importancia con el fin de dar una solución a esta problemática. Dicha comunidad cuenta con fuentes de agua suficientes para su abastecimiento, pero su sistema de acueducto no está funcionando de la manera esperada, derivando inconformidades en sus habitantes. Otaré en años pasados contaba con la abundancia del preciado líquido; pero hoy la situación es contraria ya que a pesar de contar con un sistema de acueducto, este no está cumpliendo a cabalidad con su propósito, el cual es brindar a la población el suministro del preciado líquido de manera constante, eficiente y de calidad, así mismo es de recalcar las manifestaciones de la comunidad sobre la inconformidad existente por el mal uso del agua, pues es utilizado para riegos, hurto por parte de algunos pobladores, fallas en las estructuras del sistema y a esto sumarle la disminución del caudal de la quebrada el Silencio en época de verano por efectos del fenómeno del Niño, de la cual se abastece dicho acueducto, situaciones que confirmaremos a medida que avancemos en este importante proyecto.

1.2 Formulación del problema

¿Podría contribuirse a través de un estudio, a la optimización del sistema de acueducto del corregimiento de Otaré, Norte de Santander?

1.3 Descripción del problema

Para describir el problema objeto de la presente propuesta es importante señalar, que los autores hicieron un estudio previo visitando el lugar que en este caso es el corregimiento de Otaré, auscultando la zona a través de toma de fotografías, conversando con los habitantes y recorriendo todo el sistema de acueducto teniendo como evidencia la necesidad que hay en la zona.

Esto nos permite confirmar que el acueducto es administrado por la junta de acción comunal. Este se construyó hace más de 50 años razón por la cual, según el RAS 2000 ya cumplió su periodo de diseño. Presenta fallas en algunas de sus estructuras, principalmente la bocatoma, siendo este el posible factor predominante, así mismo la utilización del agua para fines no establecidos y la notable disminución del caudal por efectos del cambio climático de la quebrada El Silencio, principal afluente de esta población. Esto se evidencia por cuanto los habitantes del corregimiento, se ven obligados durante el día a largas horas de racionamiento, sin que se garantice el servicio; más que todo en las partes altas, trayendo consigo malestar pues deben desarrollar sus actividades a tempranas horas.

1.4 Objetivos

1.4.1 Objetivo general.

Optimizar el sistema de acueducto de Otaré, corregimiento de Ocaña, Norte de Santander.

1.4.2 Objetivos específicos.

Realizar los estudios topográficos correspondientes a la zona de estudio puesto que no existe la información de planimetría ni altimetría del lugar en donde se va a efectuar el trabajo.

Estudiar y definir las proyecciones de población y demanda de consumos de agua potable, considerando el R.A.S. 2000.

Identificar el estado actual de cada uno de los componentes que constituyen el sistema de acueducto existente para establecer las necesidades y restricciones que permiten el planteamiento de la solución.

Elaborar los diseños hidráulicos de cada uno de los componentes recomendados (captación, línea de aducción captación – desarenador, desarenador, línea de aducción desarenador – tanque de almacenamiento, tanque de almacenamiento, líneas de conducción tanque – red de distribución) como infraestructura esencial para el funcionamiento del sistema de acueducto, siguiendo el reglamento de agua potable y saneamiento básico RAS 2000.

Realizar la modelación hidráulica de la red de distribución utilizando el software libre EPANET versión 2.0 que permitan el mejoramiento de los diferentes elementos que integran el sistema de acueducto.

Efectuar los ensayos fisicoquímicos y microbiológicos del agua en el sitio de captación y en la planta de tratamiento.

Recomendar un sistema de tratamiento adecuado para el sistema de acueducto teniendo en cuenta los parámetros exigidos en el reglamento de Agua Potable y Saneamiento Básico RAS 2000.

Elaborar el presupuesto de cada uno de los elementos del sistema de acueducto (captación, línea de aducción captación – desarenador, desarenador, línea de aducción desarenador – tanque

de almacenamiento, tanque de almacenamiento, líneas de conducción tanque – red de distribución).

1.5 Justificación

Como es sabido, desde el campo de la ingeniería todo acueducto se diseña para brindar a la comunidad el suministro de agua potable, de manera eficiente y permanente para un buen desarrollo de las actividades cotidianas en la población beneficiada, con el fin de ayudar en el crecimiento económico y social.

Si bien lo anterior es cierto, todo sistema de acueducto se diseña con un respectivo periodo de diseño contemplado en el RAS 2000, el cual ya cumplido, debe evaluarse y determinar las respectivas fallas. Esta problemática la presenta el sistema de acueducto de Otaré, pues; según información suministrada por la comunidad, el acueducto tiene aproximadamente 50 años de haberse construido, el cual dentro de su funcionamientos es abastecido por la quebrada el Silencio. Al problema mencionando anteriormente se le suma el uso inadecuado del agua por parte de sus habitantes, pues utilizan el líquido para fines no establecidos, como es el riego de cultivos, afectando directamente a la comunidad, siendo reconocida por la ley; que la protege primeramente, tal como lo menciona el artículo 29 del decreto 1594 de 1984 y el artículo 41 y 43 del decreto 1541 de 1978.

Con las razones antes mencionadas y el desarrollo del presente proyecto, se pretende realizar la optimización del sistema de acueducto del corregimiento de Otaré, para aprovechar de una mejor manera el agua, y evitar los racionamientos en el corregimiento.

A la importancia que esta propuesta representa para la población, se suma el hecho de que la Universidad Francisco De Paula Santander Ocaña comprometida con la región y buscando ser líder en programas sociales, y desde la facultad de ingeniería civil, se contribuye a la solución del problema en cuestión, para ello se plantea la optimización del sistema de acueducto, poniendo en práctica lo visto y estudiado a lo largo de nuestra carrera y así colocando a disposición nuestros conocimientos científicos y tecnológicos, haciendo una evaluación detallada del sistema de acueducto (bocatoma, aducción, planta de tratamiento, tanque de almacenamiento y red de distribución) para determinar los problemas y hacer una apreciación la cual nos dirá los pasos a seguir, siendo algunos de ellos: lo que se debe mantener, lo que se debe cambiar, para así tener un correcto funcionamiento y de esta manera satisfacer la necesidad que requiere la comunidad del corregimiento de Otaré.

Para el complemento de dicho proyecto se tendrá en cuenta como base principal lo establecido en los siguientes parámetros:

Según la constitución política de Colombia de 1991 el agua se considera como un derecho fundamental y, se define, de acuerdo con lo establecido por el Comité de Derechos Económicos, Sociales y Culturales, como "el derecho de todos de disponer de agua suficiente, salubre, acceptable, accesible y asequible para el uso personal o doméstico". El agua se rige como una necesidad básica, al ser un elemento indisoluble para la existencia del ser humano. El agua en el ordenamiento jurídico colombiano tiene una doble connotación pues se erige como un derecho fundamental y como un servicio público. En tal sentido, todas las personas deben poder acceder al servicio de acueducto en condiciones de cantidad y calidad suficiente y al Estado le corresponde organizar, dirigir, reglamentar y garantizar su prestación de conformidad con los principios de eficiencia, universalidad y solidaridad.

La Inexistencia de mecanismos de control para garantizar el uso racional del agua en cumplimiento de la ley 393 de 1997.

Falta de cultura por parte de la población respecto al uso de agua y al pago del servicio.

Falta de capacidad institucional para el manejo integral de la prestación del servicio.

Capítulo 2. Marco referencia

2.1 Marco histórico

Para realizar una revisión histórica sobre sistemas de acueductos, se tomó la información suministrada en la página web la Nación Opinión desde donde se comienza a reconocer que el primer acueducto se denominó "Jerwan", construido en el año 700 a.C., en Nínive, capital de Asiria. En esa misma época, Ezequías, rey de Judá (715 a 586 a.C.), planificó y construyó un sistema de abastecimiento de agua de 30 km de longitud para la ciudad de Jerusalén. Años después el poderoso Imperio Romano desarrolló muchos acueductos a partir del año 312 a.C. con fuentes de aguas subterráneas como Aqua Appia bautizado, luego, como la Vía Apia, en honor a Apio Claudio, el emperador. En el año 145 a.C., el pretor Marcio construyó el primer acueducto que transportaba agua a nivel del suelo, con 90 km de longitud, llamado Aqua Marcia. En el año 70 a.C. ya existían más de 10 sistemas que suministraban 135.000 m3 de agua al día, lo que obligó a designar como superintendente de aguas de Roma, a Sextos Julios Frontinus.

Durante sus invasiones a diferentes zonas de Europa como Francia, España, Turquía y Alemania, los romanos construyeron varios acueductos. En esta última región, el acueducto de Eiffel, el más grande conocido de esa época (80 años d.C.), de 130 km de largo (incluidos los ramales) desde la zona alemana de Eifel, hasta Colonia después de su caída, los acueductos del área de su jurisdicción dejaron de funcionar. Entre el año 500 y 1500 d.C., hubo muy poco desarrollo en este campo, específicamente en el tratamiento y purificación que, en la mayoría de los casos, se hacía con aireación.

Para el caso de Latinoamérica, las culturas indígenas aztecas, en México; mayas, en Guatemala; e Incas en Perú y Bolivia, crearon verdaderas obras de ingeniería para abastecer a sus

poblaciones. Un ejemplo nacional es el acueducto de Guayabo, Turrialba, construido hace más de 1.000 años y declarado Patrimonio de la Ingeniería por la Asociación Americana de Ingenieros (2009). Los acueductos indígenas fueron destruidos durante la conquista española. Por esta razón, en la época de la Colonia, en Latinoamérica, se presentaron grandes epidemias debido a problemas de higiene.

Revisemos algunos elementos sobre manejo de agua potable. Sobre el particular y según la misma página web la Nación Opinión, en 1804, John Gill desarrolló, en Escocia, el primer suministro de agua potable filtrada trasladada a Glasgow. En 1806, en París, se comenzó a operar la mayor planta potabilizadora de la época, con un sedimentador y un filtro de arena y carbón, con 12 y 6 horas de tiempo de retención, respectivamente. En 1827 el inglés James Simplón construyó un filtro "lento" de arena muy efectivo para potabilizar el agua. No obstante, el mayor desarrollo en plantas potabilizadoras se dio después de 1854, con el descubrimiento de John Snow de que el agua contaminada del pozo en Golden Square (Londres), era la causa del brote del cólera.

En el siglo XX, después del descubrimiento de Pasteur y Koch, tanto en Europa, América como en otros continentes, se realizaron importantes obras de ingeniería para potabilizar y trasladar el agua a grandes ciudades. Actualmente, existen megaplantas potabilizadoras como la de Cutzamala, en México, que abastece más de 10 millones de habitantes (Mora, 2014).

Ahora bien, si nos ubicamos en Colombia, se lee que históricamente, una amplia gama de entidades de naturaleza diversa se han encargado de la construcción de proyectos de acueducto y de la operación de los sistemas. En sus comienzos los municipios o los particulares (bajo concesión municipal) adelantaron este tipo de obras y se encargaron de su operación. Por

ejemplo, en Bogotá, Barranquilla y Bucaramanga, las empresas de acueducto pertenecieron y fueron operadas por particulares durante el primer cuarto de siglo. En otras ciudades los municipios se encargaron de estas funciones, recibiendo el apoyo esporádico de la Nación y los Departamentos. Bogotá inaugura su sistema de acueducto en 1886, al que le siguen Cartagena y Medellín (de iniciativa municipal (1905) y posteriormente Cali en 1919 (Jaramillo (1995) (Rodriguez, 2000).

2.2 Marco conceptual

Todo acueducto es construido por el hombre y permiten llevar agua en forma de flujo continuo desde un lugar en la naturaleza en el que es accesible hasta un punto de consumo distante.

El principio básico de un acueducto consiste principalmente en establecer una canalización que vaya desde el punto de captación del agua hasta las plantas de tratamiento para convertir en apto para el consumo el líquido y desde ahí hasta la población que consumirá el agua (Popayan, 2016).

- 2.2.1 Elementos de un sistema de acueducto.
- 2.2.1.1 La microcuenca o fuente de abastecimiento.

El primer componente del sistema de acueducto es la microcuenca, de allí es de donde obtenemos el agua que surte a todas las viviendas. Es decir que la microcuenca es la fuente de abastecimiento de agua en una región. Sin ella es imposible tener agua en las casas.

La microcuenca es el área geográfica mínima por la cual el agua se desplaza a través de

Drenajes con una salida principal llamada nacimiento o desagüe. Cuando este desagüe o río desemboca en otros cuerpos de agua mayores, como un lago, otro río, una ciénaga, o desemboca en el mar, hablamos de una cuenca. La cantidad de agua de una microcuenca depende de la presencia o no de vegetación y la conservación de los suelos. Los suelos pueden contaminarse con agroquímicos, aguas residuales y basuras, entre otros (Lopez, 2003).

2.2.1.2 La captación.

Esta se compone por un conjunto de estructuras necesarias para obtener el agua de una fuente de abastecimiento. Hace parte del segundo componente; en fuentes superficiales a estas se le denomina "bocatoma". Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico R.A.S. 2000. Sección II, Título B (Territorial, 2000).

2.2.1.3 Aducción.

Tercer componente del sistema a través del cual se transporta Agua cruda, ya sea a flujo libre o a presión para ser depositada en el desarenador y posteriormente conducida a la planta de tratamiento. Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico R.A.S.

2000. Sección II, Título B. (noviembre del 2000). *Sistemas de Acueducto*. Bogotá, Colombia: ministerio de Ambiente y Desarrollo Territorial.

2.2.1.4 Desarenador.

Cuarto componente destinado a la remoción de las arenas y sólidos que están en suspensión en el agua, mediante un proceso de sedimentación. Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico R.A.S. 2000. Sección II, Título B (Territorial, 2000).

2.2.1.5Las obras de conducción.

Estas son las tuberías que llevan el agua hasta la red de distribución se llaman conducción, y son el quinto componente del sistema de acueducto (Chow, 1994).

2.2.1.6 Planta de tratamiento.

En el sistema de acueducto, el componente que realiza la función de purificación y potabilización del agua es la planta de tratamiento. Esta es el sexto componente del sistema de acueducto (R & Evett, 2011).

2.2.1.7 Tanques reguladores o de almacenamiento.

Después del proceso de potabilización el agua se debe guardar en los tanques de almacenamiento. Esto permite que tengamos reservas de agua. Debido a que el consumo de la población no es constante sino que varía según la hora del día, el tanque regula las variaciones del consumo.

La función básica del tanque es almacenar agua en las horas que se consume menos, de tal forma que en el momento en que la demanda es mayor el suministro se completa con el agua almacenada.

El tanque permite disponer de almacenamiento en caso de reparaciones o para atender incendios y regula las presiones en la red de distribución. Este es el séptimo componente de un sistema de acueducto. Arboleda, C. (2008). *Manual de Diseño de acueductos*. Bogotá, Colombia: Eco ediciones.

2.2.1.8 Los sistemas de distribución y las conexiones domiciliarias.

Finalmente, los últimos elementos o componentes son las tuberías o redes de distribución y las conexiones domiciliarias, conocidas también como acometidas. Estas son el conjunto de tuberías o mangueras encargadas de llevar el agua hasta cada vivienda. La red cuenta además con un medidor domiciliario, que permite saber a la empresa y a los usuarios, qué cantidad de agua han consumido. Este medidor es el contador o micromedidor (Silva, 1975).

2.2.2 Uso del agua.

Según el Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico R.A.S. 2000 consagra:

Debe hacerse un estudio de la dotación desagregada por usos y por zonas del municipio, el cual debe considerar los siguientes usos:

2.2.2.1 Uso residencial.

El diseñador debe analizar detenidamente la dotación de uso residencial teniendo en cuenta las siguientes disposiciones:

En general el consumo total de uso residencial aumenta con el tiempo. El diseñador debe justificar la proyección de la dotación para las etapas de construcción de las obras del sistema de acueducto y para el período de diseño de cada uno de sus componentes

Debe atenderse lo estipulado en el artículo 15 de la Ley 373 de 1997, sobre uso eficiente y ahorro del agua, o la que la reemplace, sobre la tecnología de bajo consumo y la reglamentación

que exista al respecto, considerando el uso de micromedidores de caudal, reguladores de caudal, reguladores de presión o cualquier otro tipo de accesorio que implique una reducción en el consumo.

El diseñador debe tener en cuenta la utilización de aparatos de bajo consumo, con el fin de determinar el posible ahorro y el efecto de estos instrumentos en la dotación neta.

El diseñador debe deducir la dotación de uso residencial para el diseño de los sistemas de acueducto con base en mediciones directas hechas en la localidad. Cuando en ésta no existan micromedidores de caudal, el diseñador puede estimar la dotación por comparación de poblaciones cercanas con características similares.

Al hacer el estudio de la dotación por uso residencial deben tenerse en cuenta, entre otros, los siguientes factores: el tamaño de la población, las condiciones socioeconómicas, el clima, la cobertura de medidores, los aspectos sanitarios y demás factores que se estimen convenientes de acuerdo con el literal 2.4.4.

La dotación por uso residencial debe incluir el riego de jardines.

Las variaciones que sean propuestas por el diseñador a las dotaciones antes establecidas deben estar técnicamente justificadas.

2.2.2.2 Uso comercial.

Para establecer el uso comercial, el diseñador debe utilizar un censo comercial y realizar un estimativo de consumos futuros. El diseñador debe cuantificar y analizar detenidamente la

dotación comercial de acuerdo con las características de dichos establecimientos. Deben estudiarse los consumos puntuales o concentrados de demandas. El uso comercial también incluye el uso en oficinas.

2.2.2.3 Uso industrial.

Para estimar el uso industrial, el diseñador debe utilizar censos industriales y estimativos de consumos futuros. El diseñador debe cuantificar y analizar detenidamente la dotación industrial de acuerdo con las características de dichos establecimientos. Deben estudiarse los consumos puntuales o concentrados demandados con el fin de establecer los posibles grandes consumidores.

2.2.2.4 Uso rural.

En caso de que el municipio objeto de la construcción de un nuevo sistema de acueducto o la ampliación del sistema de acueducto existente tenga que abastecer población rural, el diseñador debe utilizar los datos del censo rural y estimar los consumos futuros. El diseñador debe cuantificar y analizar detenidamente la dotación rural de acuerdo con las características establecidas en el censo.

2.2.2.5 Uso para fines públicos.

El consumo para uso público utilizado en los servicios de aseo, riego de jardines y parques públicos, fuentes públicas y demás, se estimará entre el 0 y el 3% del consumo medio diario

doméstico, siempre y cuando no existan datos disponibles. En caso de que estos datos existan, servirán para establecer la proyección del uso público en el municipio.

2.2.2.6 Uso escolar.

En caso de que en el municipio objeto de la construcción de un nuevo sistema de acueducto o de la ampliación del sistema existente se localice una concentración escolar importante que implique la permanencia durante el día de una población adicional, el diseñador debe analizar y cuantificar detenidamente la dotación de uso escolar de acuerdo con las características de los establecimientos de educación.

2.2.2.7 Uso institucional.

Deben identificarse los establecimientos y predios que requieran una dotación especial debido a las características de sus actividades, tales como hospitales, cárceles, hoteles etc.

2.3 Marco legal

El artículo 3 del RAS 2000 establece que por diseño, obras y procedimientos correspondientes al Sector de Agua Potable y Saneamiento Básico RAS, se entienden los diferentes procesos involucrados en la conceptualización, el diseño, la construcción, la supervisión técnica, la puesta en marcha, la operación y el mantenimiento de los sistemas de acueducto que se desarrollen en la República de Colombia, con el fin de garantizar su seguridad, durabilidad, funcionamiento adecuado, calidad, eficiencia, sostenibilidad y redundancia dentro de un nivel de complejidad determinado.

Este proyecto también tiene como referencia lo que establece la Ley 142 de 1994, referente a la prestación de los servicios públicos domiciliarios.

Para el control y vigilancia de la calidad del agua para consumo humano, nace la resolución 2115 del 22 de Junio de 2007; donde establece unos valores aceptables para la presencia de un componente o sustancia que garantice que el agua sea potable, es decir no presente riesgos conocidos a la salud.

Lo dispuesto en la memorias de cálculo, se hace por lo reglamentado en el RAS 2000, y en especial el Titulo A, B y C, resolución mediante la cual el Ministerio de Desarrollo Económico lo adopta y le confiere Carácter Oficial Obligatorio para su aplicación en todo el territorio colombiano

La constitución política de Colombia consagra en sus páginas, específicamente en el artículo 365 que es los servicios públicos estarán sometidos al régimen jurídico que fije la ley, podrán ser prestados por el Estado, directa o indirectamente, por comunidades organizadas, o por particulares. En todo caso, el Estado mantendrá la regulación, el control y la vigilancia de dichos servicios, de igual forma en el artículo 366, estable que el bienestar general y el mejoramiento de la calidad de vida de la población son finalidades sociales del Estado. Será objetivo fundamental de su actividad la solución de las necesidades insatisfechas de salud, de educación, de saneamiento ambiental y de agua potable. Para tales efectos, en los planes y presupuestos de la nación y de las entidades territoriales, el gasto público social tendrá prioridad sobre cualquier otra asignación.

Capítulo 3. Diseño metodológico

3.1 Tipo de investigación

La investigación utilizada para la realización de este proyecto es la descriptiva, ya que se realizó la aplicación técnica de los elementos básicos para la optimización de un acueducto en el Corregimiento de Otaré, perteneciente al municipio de Ocaña.

3.2 Población y muestra

3.2.1 Población.

La población que enmarca este proyecto tienen una forma de vida en su mayoría rural, otras se dedican al comercio y las restantes combinan estas dos labores. Es de suma importancia conocer la población actual de la cabecera la cual es la beneficiaria del acueducto, para hacer una proyección y calcular el caudal futuro fundamental en el diseño del acueducto. La población en el 2015 en Otaré es de 479 personas que viven en 140 predios, información suministrada por la Unidad Básica de Atención Otaré (UBA).

3.2.2 Muestra.

Para calcular el caudal de diseño fundamental en la optimización del sistema de acueducto, se tomará toda la comunidad que habita la cabecera del corregimiento de Otaré, ya que toda será beneficiada.

3.3 Recolección de información

La información recolectada se hizo de la siguiente manera: mediante las visitas técnicas al sector donde se encuentra el sistema de acueducto, datos suministrados por la comunidad que son de gran importancia, haciendo un análisis técnico al sistema de acueducto existente para identificar los problemas que presenta, también la realización de un aforo para calcular el caudal en época de verano de la quebrada el Silencio, tomas de muestras de aguas en la bocatoma y en la planta de tratamiento, para un posterior análisis fisicoquímico y microbiológico, verificando si el sistema funciona de una manera adecuada, levantamientos topográficos del terreno donde se encuentran los elementos del acueducto, registro fotográfico, análisis de la información en la oficina para el desarrollo y complemento de este proyecto, para brindar así la solución más adecuada.

Capítulo 4. Presentación de resultados

El proyecto a desarrollar parte de la necesidad de ayudar a la población perteneciente al corregimiento de Otaré, comenzando con una investigación de campo la cual nos permite conocer, describir y recopilar información técnica de la infraestructura del sistema de acueducto existente, posteriormente se toma una serie de muestras de agua para realizar las pruebas fisicoquímicas y microbiológicas en la captación y en la planta de tratamiento (PTAP), con el fin de evaluar su funcionamiento y efectividad.

Terminado lo anterior se procede a realizar un trabajo de oficina buscando las posibles alternativas de optimización, en donde se elaboren los diseños correspondientes, y así obtener un sistema de abastecimiento de agua potable que cumpla con los reglamentos establecidos en Colombia.

4.1 Trabajo de campo

El trabajo inicia con el desplazamiento al corregimiento de Otaré, con el fin de conocer y realizar un exploración al sistema de acueducto, realizando un registro fotográfico de la zona y de las estructuras pertenecientes al sistema.

Se comenzó con una visita a la quebrada el Silencio, lugar donde realizamos un aforo, específicamente aguas arriba de la bocatoma, para conocer el caudal de la quebrada y posteriormente identificando cada una de las partes de la bocatoma (rejilla, tanque de recolección), verificando el estado actual de cada uno de estos elementos. Observando así mismo

en detalle la aducción (comprendida entre la bocatoma - desarenador) y el desarenador, donde se constató que se encuentran en buen estado fisco.

El paso a seguir es el recorrido de la aducción (tubería que lleva el agua desde la bocatoma hasta la planta de tratamiento) para conocer el tipo y estado de los elementos que la conforman, como son: tipo de tubería, válvulas de ventosas, válvulas de purga, registrando datos técnicos para conocer más en detalle esta estructura. Se toman muestras de agua, las cuales se realizan en la bocatoma, llegada a la planta de tratamiento y tanque de almacenamiento, dichas muestras son llevadas al laboratorio, para conocer sus características fisicoquímicas y microbiológicas.

La planta de tratamiento se visitó, para conocer el tipo, funcionamiento y estado de los elementos que la conforman, como son: tipos de tuberías, desarenador de flujo horizontal, filtro grueso y el filtro lento, además del tanque de almacenamiento, para constatar su capacidad, operación y estado fisco.

Debido a la complejidad que conlleva la observación de la red de distribución fue necesario consultar con la Junta de Acción Comunal y el fontanero, sobre el trazado actual, tipo de tubería, y diámetro que la conforma. Así mismo; en conversación con habitantes sobre la capacidad y el servicio que presta actualmente el acueducto.

Es de recalcar que para finalizar el trabajo de campo, fue necesario realizar la topografía con estación total, de las estructuras que conforman el acueducto como son: bocatoma, planta de tratamiento y tanque de almacenamiento. De otra forma fue necesaria la utilización de GPS para

el levantamiento de la aducción, comprendida entre el desarenador y la planta de tratamiento y la conducción del tanque de almacenamiento hasta válvulas de control de la redes de distribución

4.2 Trabajo de oficina

Para la elaboración del trabajo de oficina se tuvo en cuenta los siguientes aspectos: análisis de los ensayos fisicoquímicos y microbiológicos, de las muestras de agua, las cuales se tomaron en campo y posteriormente llevadas a laboratorio. El otro aspecto a resaltar fue la elaboración de los estudios hechos en campo para obtener los cálculos, diseños y alternativas de optimización que se generen para aprovechar las estructuras existentes.

Los resultados arrojados por los ensayos fisicoquímicos y microbiológicos se analizaron por parte de los autores del proyecto, basados en la normatividad del RAS 2000, con el fin de analizar la efectividad de los procesos físicos y químicos existentes en la planta de tratamiento, dando así las recomendaciones pertinentes que lleven al caso.

Para la optimización se darán recomendaciones y se tendrá en cuenta la infraestructura existente, la operación del sistema y los pocos recursos disponibles para inversión en este tipo de proyectos.

Para la adquisición de conocimientos y puesta en práctica de los mismos, fue muy importante la información adquirida en los libros y tesis de grado que nos brinda la UFPSO, además de las asesorías suministradas por el director del proyecto y demás ingenieros conocedores del tema.

Al final de este proyecto se analizará la infraestructura del sistema de acueducto, para determinar los componentes que todavía funcionan de una manera adecuada y de no ser así presentar las alternativas correspondientes.

4.3 Antecedentes

Según las investigaciones hechas por los autores del proyecto, las cuales fueran realizadas en la Alcaldía Municipal de Ocaña e información suministrada por la junta de acción comunal del corregimiento de Otaré no existen antecedentes de optimizaciones en el sistema de acueducto.

4.3.1 Nivel de complejidad.

La documentación establecida en el RAS 2000, es de carácter oficial y obligatorio, desarrollada por el ministerio de desarrollo, donde uno de los pasos allí establecidos es asignar el nivel de complejidad del proyecto, capítulo A.3 del RAS, el cual está en función de la población proyectada en la zona urbana y de la capacidad económica de los usuarios.

4.3.1.1Por población.

La población a proyectar para el casco urbano de Otaré, corregimiento del municipio de Ocaña Norte De Santander, es de 479 habitantes año 2015, información suministrada por la Unidad Básica de Atención (UBA), dicha población corresponde según el RAS 2000, a una Clasificación: nivel bajo (población < 2500 hab).

4.3.1.2 Por capacidad económica.

La estratificación de las viviendas en el corregimiento de Otaré corresponde al 100% al estrato 1, registran ingresos mensuales iguales o inferiores a un salario mínimo mensual vigente, excepto una minoría que recibe hasta dos salarios mínimos, los cuales corresponden a profesores y comerciantes. La mayoría de la población se dedica a labores agrícolas y ganaderas.

Con lo anterior la situación económica se establece como baja. Clasificación: Nivel Bajo. Nivel de complejidad definitivo: NIVEL BAJO. Se toma el más alto de las dos evaluaciones. (R.A.S. A.3.2).

4.3.2 Priorización del proyecto.

Se concluyó que es prioridad la optimización del sistema de acueducto del corregimiento de Otaré con el fin de brindar agua de manera permanente y tratada durante todas las épocas del año, buscando el porqué de su escasez y posibles soluciones.

Las variables recomendadas para evaluar el proceso de priorización se muestran a continuación en la tabla $N^{\circ}1$

Tabla 1.Variables recomendadas para evaluar el proceso de priorización.

	valores según el nivel de complejidad del sistema (porcentaje)				
	SIMBOLO Bajo Medio Medio A			Alto	
Cobertura mínima de agua potable	Cob.ap	95%	90%	90%	85%
Rezago máximo entre cobertura de alcantarillado	AP-AL	10%	10%	15%	15%

sanitario respecto a la de agua potable

Cobertura mínima de recolección de desechos solidos Cob RDS 95% 85% 85% 80%

Nota Fuente: Reglamento de agua potable y saneamiento básico RAS.

Para la justificación del proyecto es necesario seguir el siguiente diagrama de flujo con el proceso metodológico, el cual se muestra en la tabla $N^{\circ}2$ a continuación:

Tabla 2.Diagrama de flujo con el proceso metodológico.

PASO	PREGUNTA	RESPUESTA	PROYECTO REQUERIDO
1	¿Tiene cobertura de agua potable inferior al límite?	SI- no se está suministrando agua potable y la cobertura real de servicio ≤ 90%	Ampliación de la capacidad del sistema y mejora en la potabilización del agua
2	¿Tiene rezago de alcantarillado sanitario respecto a agua potable?	SI- la cobertura de alcantarillado es del 70% y la del agua 85%	Ampliación cobertura red de alcantarillado sanitario
3	¿Tiene cobertura de recolección de residuos sólidos inferior al límite?	NO	
4	¿Tiene disposición controlada de residuos	la recolecta el vehículo compactador	

sólidos?

del Carmen y se deposita en el relleno sanitario de Ocaña

5 tiene o necesita tratamiento de aguas residuales

No tiene

Nota Fuente: autores del proyecto.

4.3.3 Alcance y actividades complementarias.

Los alcances y actividades complementarias destinadas a mejorar la eficiencia del servicio dejando así conformidad en la comunidad, para el área de agua potable y saneamiento básico se muestra en la tabla N° 5.

Tabla 3.Alcances y actividades complementarias destinadas a mejorar la eficiencia del servicio.

ACTIVIDAD	NIVEL DE COMPLEJIDAD	% DE DESARROLLO
Aumento cobertura de agua potable	Bajo	95%
Cobertura micro medición	Bajo	100%
Cobertura macro medición	Bajo	100%
Pérdidas máximas en aducción	Bajo	5%
Pérdidas máximas totales	Bajo	30%

Nota Fuente: Reglamento de agua potable y saneamiento básico R.A.S.

4.4 Información preliminar

4.4.1 Ubicación geográfica.

El corregimiento Otaré, está ubicado al noroccidente del casco urbano del Municipio de Ocaña, a 18 kilómetros por la única vía de acceso, con coordenadas Latitud: 8°23'53.797"N Longitud: 73°25'27.775"O, y con una elevación de 1567 metros sobre el nivel del mar, su temperatura promedio 18°C.

El corregimiento de Otaré está situado al suroeste de Convención. Cuando se trataba de caminos de herradura su ubicación era entre Convención y la estación de Lindsay (del Cable Aéreo). Hoy podemos decir que está ubicado en la carretera que de Río de Oro conduce al municipio de El Carmen. García, O. (2016). Historia de Otaré. Ocaña. Recuperado de http://academiaocana.blogspot.com.co

4.5 Reseña histórica.

Fue fundado en 1590, en territorio ocupado por los indios "Otarés" o "Borotarés" (parcialidad de los motilones), de donde deriva su nombre. Se halla a 1567 metros de altitud sobre el nivel del mar y su temperatura media es de 18 grados. En época de los caminos de herradura distaba de Convención 18 kilómetros y medio.

Gracias al periódico EL ANUNCIADOR, conocemos algunos datos sobre los fundadores del antiguo BROTARÉ y el origen de su nombre. Entre esos datos tenemos:

"Una de sus características de Otaré, es que el caserío tiene sus techos entejados y su calle principal tiene un desnivel considerable.

El pueblo empezó a fundarse en EL GUAMO, falda del cerro montañoso denominado CAPITANES, por ser el sitio perfecto debido a la altura y ser, además, punto estratégico para evitar o repeler el asalto de los indios motilones. Entre sus fundadores se tiene a Gregorio y José María Pérez y Victoriano Sánchez.

El nombre primitivo es BOROTARÉ, así consta en la inscripción de una campana grande que hay en la iglesia. En 1807 era cura el presbítero José Antonio Quintero Copete, el mismo que en diciembre de 1832, con la ayuda de los moradores, trajo el agua al poblado. En 1844 se construyó la nueva iglesia de pared apisonada y techo de teja. Otros sacerdotes que han regentado su iglesia son: José Antonio Pérez, Felipe Benicio López, Sebastián Álvarez Ll., Otoniel Navarro, Laureano J. Acosta, José Ramón Larrinaga, Samuel Polo, Tomás T. Pérez, Justiniano Sánchez Lobo, Carlos Molina Barbosa, Antonio Rizo, Fernando M. Sarmiento Martínez, Elberto Sarmiento Martínez, Hildebrando Rivas y Daniel Sánchez Chica.

El presbítero don Felipe Benicio López construyó en 1863 la primera casa de teja. Dicho sacerdote duró veintiocho años administrando el curato de Brotaré.

En 1760 tenía Otaré 170 moradores, y en 1802, tenía 946, excluyendo a San Antonio. San Antonio fue fundado en 1760, y en 1800, contaba con 837 habitantes".

El historiador Jorge Meléndez Sánchez también aporta luces sobre el corregimiento, y dice:

"El pueblo de Nuestra Señora de Chiquinquirá de Brotaré nos resulta oscuro en sus orígenes. Inicialmente existían las encomiendas de Otaré y de Boromas y no hay documentos sobre el fin de estas comunidades; pero, si tomamos el nombre de Brotaré como una contracción fonética de los dos pueblos, sería lógico suponer la unión de las encomiendas, aunque ya en 1653 existía la encomienda del mismo nombre en tercera vida adjudicada a Gaspar Barbosa Pedroso,

hijo de Lope Ravelo de Marís. Si tomamos la existencia de tres pueblos indígenas diferentes (Otaré, Borotaré y Boromas) tendríamos que concluir en que dos desaparecen irremediablemente (Otaré y Boromas). Sobre esta situación no existe información apropiada".

Ahora en la parte de la economía y haciendo un viaje por la historia del corregimiento, su principal artículo de exportación era el ajo, papas, arvejas y otros productos agrícolas. Los productos que actualmente son el sustento de la economía de Otaré son el cebollín, tomate, frijol, cebolla, maíz y el lulo. Su comercio es con Ocaña, Aguachica, El Carmen, González y Río de Oro. Antiguamente tenía comercio con Convención, de quien dependía política y administrativamente.

No podemos dejar sin mencionar la orografía del corregimiento, la cual se distribuye en su territorio de la siguiente manera: al norte por la quebrada de El Páramo; al noroeste, por la de San Francisco, en la parte central, por la de Otaré, más conocida con el nombre de Brotaré, al suroeste, por la de El Tigre y al noroccidente la quebrada el silencio, afluente que suministra el agua al acueducto de dicho municipio.

Las principales fracciones o veredas que conforman al corregimiento de Otaré son las siguientes: San Antonio, oficialmente llamada San Antonio del Sur para distinguirla de otra de igual denominación en la parte septentrional. El Palmar, Montenegro, Corralitos, Vijagual, Quebrada-arriba o Quebrada de El Carmen, Gallinazo, Los Llanos, La Yegüera, El Páramo El Hobo y Pan de Azúcar.

En cuanto a sus vías de acceso, Otaré cuenta con dos vías, una secundaria que lo comunica con Rio De Oro y el municipio de El Carmen; y una vía terciaria que lo comunica con el municipio de Gonzales (Garcia Velasquez, 2016).

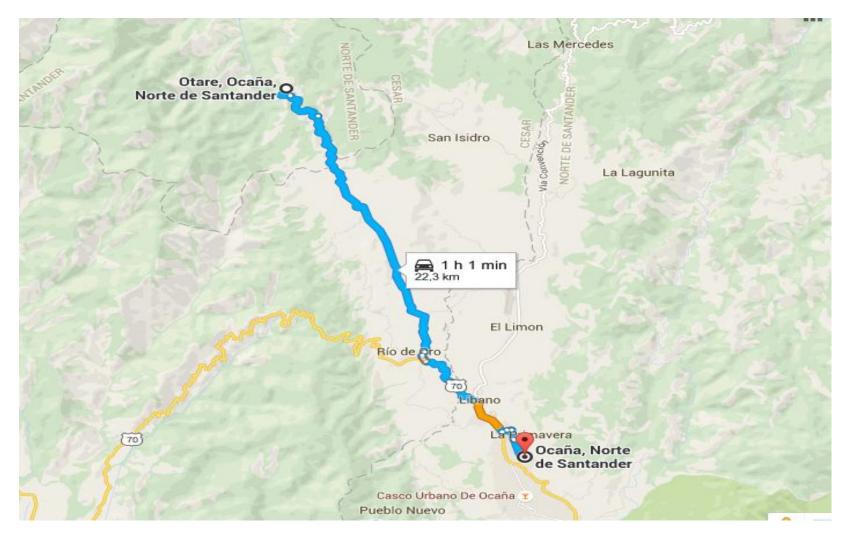


Figura 1 . Panorámica de la vía de acceso entre Otaré-Ocaña.

Nota Fuente: Google maps, Otaré, Ocaña, Norte De Santander

Figura 2. Panorámica de Otaré, corregimiento de Ocaña, Norte de Santander. La zona subrayada en rojo corresponde al área de servicio del Acueducto

Nota Fuente: Google maps, Otaré, Ocaña, Norte De Santander.

4.5.1 Vías de acceso y medios de transporte.

Al observar los planos del PBOT del municipio de Ocaña y la provincia, se puede constatar que Otaré presenta las siguientes rutas de acceso:

Por la parte Suroriental se encuentra conectado por una vía terciaria de 7 km de longitud, con el municipio de Gonzales- cesar

Al Noroccidente de Otaré por una vía secundaria sin pavimentar, con una distancia de 17 km tiene acceso con el municipio de el Carmen,

Al Nororiente se conecta por una vía terciaria de 14 km de longitud con el municipio de convención, la distancia

Ocaña se encuentra ubicada en la parte Suroriental de Otaré, se conectan por una vía primaria hasta rio de oro la cual se encuentra totalmente pavimentada. Desde este municipio a Otaré le sigue una vía secundaria, la cual se encuentra una parte pavimentada. La distancia que separa estas dos poblaciones es de 18 km.

4.5.2 Relieve y topografía.

Otaré en gran parte de su territorio está conformado por un sistema montañoso. Este relieve forma parte del sistema andino de la cordillera oriental que se prolonga al este, hasta la cordillera de Mérida (Venezuela) y al norte termina en la Serranía del Perijá (Cesar).

El corregimiento de Otaré está formado por rocas metamórficas a manera de caña, las cuales se forman en Ocaña y llegan hasta Convención. Le son característicos sus fondos cortados

por la erosión en cuchillas enormes de cantos blancuzcos rodeados de relieve, que escalonan sus cumbreras rojizas como si fuera el resultado de una erosión general en tiempos geológicos, en que el macizo se hallaba menos realzado. La falta de árboles y el predominio del pajonal lo ponen al descubierto (Desastres, 2016).

4.5.3 Geología y suelos.

El corregimiento de Otaré presenta las siguientes características geológicas:

El suelo de la cabecera del corregimiento está conformado en su totalidad por rocas metamórficas, formadas en los periodos geológicos: devónico y pérmico (Corponor, 2015).

4.5.4 Hidrología y climatología.

Según la información suministrada por la comunidad, el corregimiento de Otaré cuenta con las siguientes quebradas: el Silencio de la cual se abastece el acueducto y la quebrada Monte Negro. El clima del corregimiento tiene en promedio 18°C.

Capítulo 5. Demografía.

5.1 Aspectos Demográficos

Para que un sistema de acueducto funcione adecuadamente durante su periodo de diseño, resulta muy importante conocer o determinar el número de habitantes que se piensa atender, de allí que el sector de agua potable y saneamiento básico RAS, exija proyectar la población existente, para así llegar a tener un estimado de la población futura que se va a estudiar, al final del periodo de diseño y así; desde que se optimice el acueducto hasta el final de su periodo de diseño mantener el líquido de una manera constante y apto para el consumo humano.

Mencionado lo anterior y teniendo en cuenta los métodos recomendados por el RAS (método aritmético, método geométrico, método exponencial), se escoge el que represente el factor más favorable.

Para la proyección de la población de Otaré, se basó en los censos hechos por la unidad básica atención (UBA) y la junta de acción comunal, con el fin de obtener el método apropiado para la proyección poblacional de Otaré. Dicha población se proyectó a 25 años, que es el periodo de diseño del acueducto en mención.

5.2 Servicios públicos.

5.2.1 Sistema de acueducto.

La cabecera de Otaré cuenta con un acueducto por gravedad, su cobertura es del 100%. La estructura para la captación del líquido está ubicada en la vereda el Silencio, cuya quebrada se debe al mismo nombre. Actualmente se han comprado fincas aguas arriba de la bocatoma y se hacen esfuerzos por adquirir otras con el fin de evitar la deforestación y mantener el cauce en buen nivel todas las épocas del año, con esto también se trata de evitar los cultivos y la ganadería, debido a que todo esto trae consigo el uso de químicos y el arrastre de materia fecal en época de invierno, por las aguas escorrentías hasta el afluente.

La estructura de captación sobre la quebrada el Silencio, están compuestas por una bocatoma de fondo, conformada por una rejilla metálica, cuyos barrotes tienen un diámetro ½" lisos, que retiene los sólidos de gran tamaño y conduce el líquido por medio de dos tubos con un diámetro de 2" hasta el tanque de recolección, de allí es conducido hasta el desarenador por un tubo de 3" pulgadas, el cual tiene una longitud de 12 metros. Cabe destacar que debido a las infiltraciones en el tanque de recolección, se construyó una captación artesanal, metros arriba , la cual está constituida por una rejilla elaborada en madera, donde el líquido recolectado es conducido hasta el desarenador, por medio de dos mangueras de diámetro de 2".

La aducción cuenta con tubería de PVC de diámetro 3" hasta la planta de tratamiento, la cual se encuentra en un punto estratégico del corregimiento. La longitud de la aducción (distancia de la bocatoma hasta la planta de tratamiento) es de 2656,296 metros, así mismo dicha aducción cuenta con una válvula de purga y tres ventosas.

La longitud de la conducción comprendida desde la cabecera hasta la planta de tratamiento es de 326.538 metros.

En Otaré no existe micromedición y el servicio prestado es deficiente debido a sus cortes en época de verano intenso, la población no tiene cultura del ahorro, puesto que derivan el agua del acueducto para riegos.

5.2.1.1 Alcantarillado.

El corregimiento de Otaré cuenta con sistema de alcantarillado con una cobertura del 100%, las aguas que recoge este sistema son depositadas en un canal natural. Esta información fue suministrada por la junta de acción comunal.

5.3 Estudio de población y demanda del servicio de acueducto

Los estudios para la optimización del sistema de acueducto, se hicieron en base a la documentación técnico normativa del sector de agua potable y saneamiento básico RAS.

5.3.1 Registros históricos censales.

El Departamento Administrativo Nacional de Estadística (DANE) no presenta registros históricos de población para el Corregimiento de Otaré, por ende se vio necesario consultar los censos realizados por la Unidad Básica de Atención Otaré (UBA).

Tabla 4.Población registrada por los censos.

AÑO	POBLACIÓN
2007	456
2013	468
2015	479

Nota Fuente: Unidad Básica de Atención Otaré (UBA).

Con motivo del presente estudio se consultó la información oficial de la Junta de Acción Comunal para conocer el número de usuarios a la fecha, al igual que el número de estudiantes adscritos al colegio. Realizando una inspección general al casco urbano se comprueba que cada vivienda representa un usuario residencial.

Otaré no cuenta con población flotante al carecer de sitios turísticos, hotelería y empresas que generen la constante llegada y salida de personas que me generen un gasto adicional en el consumo de agua.

Número de viviendas habitadas = 100% = 140.

Número de estudiantes en educación elemental =236

Número de estudiantes en educación media = 192

5.3.2 Tasas de crecimiento

El RAS dicta como obligatorio para el Nivel Bajo de complejidad, utilizar como método de cálculo para determinar el crecimiento de población y así realizar las proyecciones de población: el aritmético, el geométrico, el exponencial y el gráfico, considerando en cada caso la disponibilidad de datos o registros y las características de crecimiento de la localidad.

A continuación se muestran las variables de cada método con su significado:

Pf: población proyectada.

Puc: población de último censo

Pci: población del censo inicial

Tuc: año del último censo

Tci: año del censo inicial

Tf: año de la proyección

Tuc: año del último censo

r: tasa de crecimiento actual

K: pendiente de la recta

Pcp: población censo posterior

Pca: población censo anterior

Tcp: año censo posterior

Tca: año censo anterior

5.3.2.1 Método aritmético.

$$Pf = Puc + [(Puc - Pci) / (Tuc - Tci)] x (Tf - Tuc)$$

5.3.2.2 Método geométrico.

$$Pf = Puc x (1 + r)^{(Tf-Tuc)}$$

$$K = \left(\left(Puc / Pci \right)^{\left(\frac{1}{\left(Tuc - Tci \right)} \right)} \right) - 1$$

5.3.2.3Método exponencial.

$$Pf = Pci x e^{(Kx (Tf-Tci)9)}$$

$$K = (Ln(Pcp) - Ln(Pca)/(Tcp - Tca)$$

Las tasas de crecimiento de los registros censales utilizando los métodos anteriormente descritos se presentan en la tabla N° 5

Tabla 5.Determinación Tasas de Crecimiento Intercensales.

		TASA DE CRECIMIENTO (K)		
AÑO	POBLACIÓN	Aritmético (Hab/Año)	Geométrico %	Exponencial
2007	456			
2007-2013		2.00	0.43	0.43
2013	468			
2013-2015		5.50	1.17	1.16
2015	479			
2007-2015		2.88	0.62	0.62
PROM	MEDIO	3.46	0.74	0.74

Nota Fuente: Autores de la investigación.

5.3.3 Perspectivas de desarrollo.

Según las investigaciones hechas por los autores del proyecto, las cuales fueron realizadas en la Alcaldía Municipal de Ocaña, PBOT y la junta de acción comunal de Otarè, así como auscultaciones en la zona de interés se llegó a las siguientes conclusiones:

El corregimiento de Otaré es una tierra privilegiada por la calidad de sus tierras, en donde se destaca mayormente la producción agrícola y a una menor escala la ganadería vacuna, dichas labores brindan los ingresos laborales de los habitantes del corregimiento, ya que una gran minoría se dedica a actividades diferentes, pero de una u otra forma dependen o se ven involucradas en las actividades ya mencionadas.

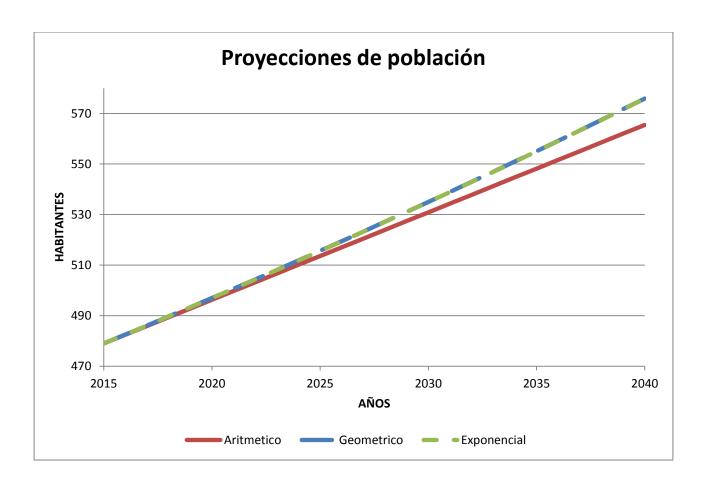
En lo referente a la actividad agropecuaria existen propietarios de fincas y parcelas. Los cultivos de mayor producción y más frecuentes son: el cebollín, el tomate, el frijol, el maíz, el lulo y la cebolla, productos que son transportados a Rio De Oro, Ocaña, Convención y El Carmen, labranzas que necesitan un constante riego de agua para su desarrollo y producción.

La producción ganadera se da en menor escala y abastece solo el mercado local.

Mencionado lo anterior, las perspectivas de desarrollo de la localidad se dan por el desarrollo del sector rural, ya que esto conlleva a una ampliación de la frontera agrícola, trayendo consigo desarrollo lo que provoca la llegada de nuevas personas en busca de un mejor futuro.

5.3.4 Proyecciones de población y consumos.

5.3.4.1 Tasa de crecimiento.


La estimación de la población futura juega un papel importante a la hora de optimizar un sistema de acueducto, para así tener la infraestructura que mejore el suministro y atención de manera eficiente, constante y de calidad, basados en el reglamento técnico de agua potable y saneamiento básico.

El DANE utiliza para la evaluación del crecimiento una tasa del 2%, basado en sus investigaciones, pero el RAS dentro de su normatividad nos recomienda la utilización de métodos estadísticos basados en datos históricos de la zona en estudio, por lo que el 2% que recomienda el DANE resulta un dato muy general, sabiendo que Otaré cuenta con dichos datos históricos.

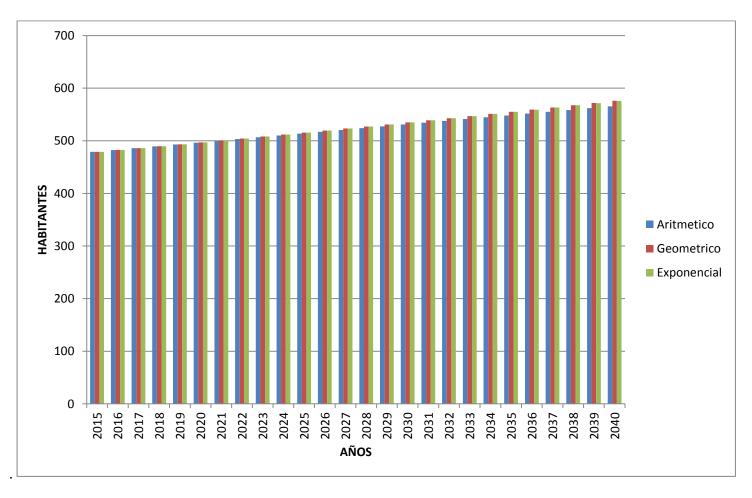

Analizando las áreas de futura expansión y características propias de la localidad, el método que más se ajusta es el aritmético, el cual arroja una población futura para el año 2040 de 565 habitantes, si tenemos en cuenta la población actual que es de 479 habitantes, el aumento estimativo es de 86 personas en los próximos 25 años, que equivale a un 17,95% más, respecto de la actual. En la tabla N°5 se muestra la determinación de Tasas de Crecimiento Intercensales, utilizadas en la tabla N°6 donde se muestran las proyecciones de población del corregimiento, la cual se da a continuación:

Tabla 6.Proyecciones de población.

	METODO ARITMÉTICO METODO GEON		GEOMÉTRICO	METODO	EXPONENCIAL		
N°	AÑO	Tasa	Población Básica	Tasa	Población Básica	Tasa	Población Básica
0	2015	3.46	479	0.0074	479	0.0074	479
1	2016	3.46	482	0.0074	483	0.0074	483
2	2017	3.46	486	0.0074	486	0.0074	486
3	2018	3.46	489	0.0074	490	0.0074	490
4	2019	3.46	493	0.0074	493	0.0074	493
5	2020	3.46	496	0.0074	497	0.0074	497
6	2021	3.46	500	0.0074	501	0.0074	501
7	2022	3.46	503	0.0074	504	0.0074	504
8	2023	3.46	507	0.0074	508	0.0074	508
9	2024	3.46	510	0.0074	512	0.0074	512
10	2025	3.46	514	0.0074	516	0.0074	516
11	2026	3.46	517	0.0074	519	0.0074	519
12	2027	3.46	521	0.0074	523	0.0074	523
13	2028	3.46	524	0.0074	527	0.0074	527
14	2029	3.46	527	0.0074	531	0.0074	531
15	2030	3.46	531	0.0074	535	0.0074	535
16	2031	3.46	534	0.0074	539	0.0074	539
17	2032	3.46	538	0.0074	543	0.0074	543
18	2033	3.46	541	0.0074	547	0.0074	547
19	2034	3.46	545	0.0074	551	0.0074	551
20	2035	3.46	548	0.0074	555	0.0074	555
21	2036	3.46	552	0.0074	559	0.0074	559
22	2037	3.46	555	0.0074	563	0.0074	563
23	2038	3.46	559	0.0074	567	0.0074	567
24	2039	3.46	562	0.0074	572	0.0074	572
25	2040	3.46	565	0.0074	576	0.0074	576

Grafica 1. Proyecciones de población de la tabla $N^{\circ}6$.

Grafica 2 Proyecciones de población de la tabla N°6.

5.3.4.2 Dotación recomendada.

Según lo establecido por el RAS, en cuanto a condiciones climatológicas de la región, las costumbres de la población, el uso del agua, las demandas de uso específico, se considera analizar la tabla Nº 7, para dar las conclusiones correspondientes y obtener así la dotación neta recomendada.

Tabla 7.Determinación de dotación.

Nombre localidad	Otaré
Población futura	565 habitantes
Nivel de complejidad	Bajo
Ubicación localidad Temperatura promedio	Noroccidente del casco urbano del Municipio Ocaña 18°C
Altitud (m.s.n.m)	1569.640

Nota Fuente: Autores de la investigación.

Se considera como clima templado y frio, aquella zona que se encuentre por encima de 1000 m.s.n.m. así mismo las poblaciones de Nivel de complejidad bajo son aquellas que están por debajo de los 2500 habitantes, por ende la dotación neta para Otaré debe ser de 90 L/hab•día. (Resolución 2320 de 2009).

5.3.4.3 Gastos estimados.

Los gastos de diseño considerados por el RAS son:

Qmd = caudal medio diario

QMD = caudal Máximo Diario

QMH = Caudal Máximo Horario

Para ello se utilizan fórmulas y coeficientes de mayoración de la siguiente manera:

qmd = Dotación x Habitantes / 86400 (L/s)

QMD = K1 x qmd

 $QMH = K2 \times QMD$

Dónde:

K1 = 1.3 coeficiente de consumo máximo diario (Nivel bajo). Tabla B.2.5 RAS

K2 = 1.6 coeficiente de consumo máximo horario (Nivel bajo). Tabla B.2.6 RAS

Para la estimación del K2 en el nivel bajo de complejidad, el RAS recomienda usar el valor de 1.6, debido a que no existen datos de consumos tomados durante un año de la población en estudio.

5.3.4.4 Cálculo de proyecciones.

En la siguiente tabla se muestra una serie de gastos que se tuvieron en cuenta para sacar el consumo residencial

Tabla 8.Consumo residencial

CONSUMO RESIDENCIAL			
Descripción	Cantidad	Unidad	
bebida y cocina, lavado de platos	30	L/habxdía	
Aseo personal	45	L/habxdía	

Lavado de ropa	20	L/habxdía
Inodoros	15	L/habxdía
Lavado de pisos	12	L/habxdía

Por lo tanto el consumo residencial será de 122 L/hab x día

Ahora para hallar tenemos en cuenta la siguiente información.

Tabla 9.Consumo escolar.

CONSUMO ESCOLAR				
Descripción	Unidad			
Descripcion	Estudiantes	RAS	Official	
Estudiantes nivel elemental	236	20	L/alumx día	
Estudiantes nivel superior	192	25	L/alumx día	

Nota Fuente: autores de la investigación.

Consumo elemental =
$$\frac{20 \text{ lts}}{\text{alum*jornada}} * \frac{1 \text{ jornada}}{6 \text{ horas}} * \frac{24 \text{ horas}}{1 \text{ dia}} * \frac{236 \text{ alum}}{479 \text{ hab.}} = 39 \text{ L/habxdía}$$

Consumo superior =
$$\frac{20 \text{ lts}}{a \text{ lum*jornada}} * \frac{1 \text{ jornada}}{6 \text{ horas}} * \frac{24 \text{ horas}}{1 \text{ dia}} * \frac{236 \text{ alum}}{479 \text{ hab.}} = 40 \text{ L/habxdía}$$

La suma de los 2 consumos anteriores da el consumo escolar que es de 79 L/habxdía

Teniendo los consumos residencial y escolar procedemos a hallar el consumo neto que resulta de las suma de los dos es decir 201 L/habxdía

Para el cálculo de las perdidas tenemos la siguiente ecuación

$$\% \ perdidas = \frac{produccion \ planta - D.N}{produccion \ planta}$$

Dónde:

$$D.N = \frac{201 \, lts}{hab*dia} * \frac{1 \, dia}{86400 \, seg} * 479 \, hab = 1.11 \, L/s$$

Producción planta = 1.93 L/s

% pérdidas =
$$\frac{1.93\frac{L}{s} - 1.11\frac{L}{s}}{1.93\frac{L}{s}} = 42\%$$

Sacado el % de pérdidas procedemos calcular la dotación bruta (D.B), dato necesario para hallar el caudal medio diario.

$$D.B = \frac{D.N}{1 - \% perdidas}$$

D. B =
$$\frac{201 \frac{lts}{hab} * dia}{1 - 0.42} = 347 \frac{L}{hab} * dia$$

Calculo de caudal medio diario

qmd =
$$\frac{\text{D. B} * \text{habitantes}}{86400 \text{ s}} = \frac{347 * 479}{86400 \text{ s}} = 1.93 \text{ L/s}$$

Teniendo las formulas necesarias las cuales ya se mencionaron y los criterios establecidos se realizan los cálculos de proyecciones de población definitivos y demanda de consumos de

diseño año a año en un horizonte de diseño al año 2040, cuyos resultados se presentan en la tabla N°10.

Tabla 10.Proyecciones de población y demanda de consumos.

Nivel compl K1 K2	ejidad	Bajo 1.3 1.6		
año	Hab.	qmd L/s	QMD L/s	QMH L/s
0	479	1.9238	2.5009	4.0014
1	482	1.8979	2.4673	3.9476
2	486	1.8715	2.4329	3.8926
3	489	1.8444	2.3978	3.8364
4	493	1.8169	2.3619	3.7791
5	496	1.7887	2.3253	3.7205
6	500	1.7600	2.2880	3.6608
7	503	1.7307	2.2499	3.5999
8	507	1.7009	2.2111	3.5378
9	510	1.6704	2.1716	3.4745
10	514	1.6394	2.1313	3.4100
11	517	1.6079	2.0902	3.3443
12	521	1.5757	2.0484	3.2775
13	524	1.5430	2.0059	3.2095
14	527	1.5097	1.9626	3.1402
15	531	1.4759	1.9186	3.0698
16	534	1.4415	1.8739	2.9982
17	538	1.4065	1.8284	2.9255
18	541	1.3709	1.7822	2.8515
19	545	1.3348	1.7352	2.7764
20	548	1.2981	1.6875	2.7000
21	552	1.2608	1.6391	2.6225
22	555	1.2230	1.5899	2.5438
23	559	1.1846	1.5399	2.4639
24	562	1.1456	1.4893	2.3828
25	565	1.1060	1.4379	2.3006

5.4 Evaluación sistema de acueducto del corregimiento de Otaré

Para evaluar la infraestructura de acueducto existente, se tuvo en cuenta factores como su capacidad hidráulica, estabilidad y estado de las estructuras y tuberías. Este es abastecido por la quebrada el Silencio y su funcionamiento es por gravedad, ya que las condiciones topográficas de la zona lo permiten, cuenta con captación de fondo, línea de aducción (bocatoma – desarenador), desarenador, línea de aducción (desarenador – planta de tratamiento), planta de tratamiento, tanque de almacenamiento y red de distribución. Ver figura No 3 esquema general sistema de acueducto año existente (página 34).

5.4.1 Fuente de abastecimiento.

Su única fuente de abastecimiento es la quebrada el Silencio, ubicada en la vereda del mismo nombre al Noroccidental de la cabecera de Otaré. Aguas arriba de la captación se encuentran fincas que se dedican a la agricultura y la ganadería, la junta de acción comunal del corregimiento de Otaré en pro de mejorar lo mencionado, ha adquirido algunos predios, con el fin de mantener la cuenca, pues es notoria la tala de bosques, para la siembra de pastos y cultivos, lo que trae consigo el uso de químicos, además del arrastre de materia fecal producida por los animales domésticos que viven en las fincas, en época de lluvias.

En términos generales la cuenca aguas arriba del punto de captación se encuentra en buenas condiciones, pero no es excusa para no protegerla de una mejor manera, ya que requiere reforestación, pero no es fácil ya que la falta de recursos económicos, impiden el cumplimiento de estos objetivos.

Fotografía 1. Quebrada el Silencio.

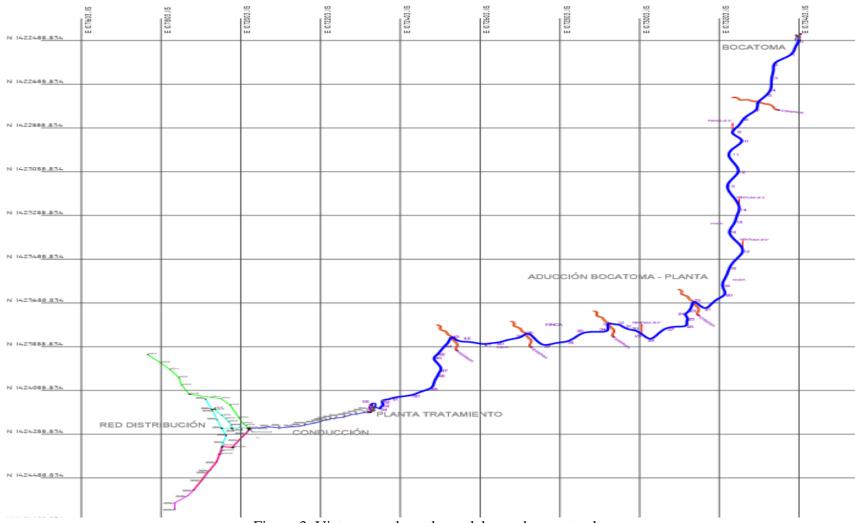


Figura 3. Vista general en planta del acueducto actual

5.4.1.1 Aforos realizados.

Para la medición del caudal de la quebrada el silencio, se realizaron dos tipos de métodos de aforo, el volumétrico y el de área velocidad. Lo anterior se aplicó debido a que la quebrada antes de llegar a la captación se divide en dos brazos, uno de los cuales es captado artesanalmente, a este se le aplicó el método volumétrico ya que cuenta con un tanque de ladrillo revestido en pañete el cual conduce el agua por medio de 2 mangueras de diámetro de 2" hasta el desarenador, lo que facilita la medición por este método. Al otro brazo que es captado por la rejilla de fondo se aplicó el método de área velocidad, debido a que era complicado utilizar un método diferente, pues las condiciones del terreno y la cantidad de caudal lo ameritan. Los aforos se efectuaron en época de verano para mirar las condiciones más críticas del diseño.

A continuación los aforos realizados a la quebrada El Silencio:

5.4.1.2 Aforo por el método volumétrico.

Como es mencionado anteriormente existe un tanque artesanal, con el cual se pudo determinar el tiempo de llenado promedio y así darle mayor precisión al método. A continuación en la figura N°4 se muestran las dimensiones del tanque y posteriormente los datos obtenidos y la aplicación de la fórmula para hallar este caudal.

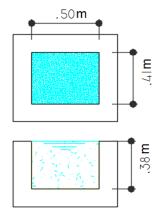
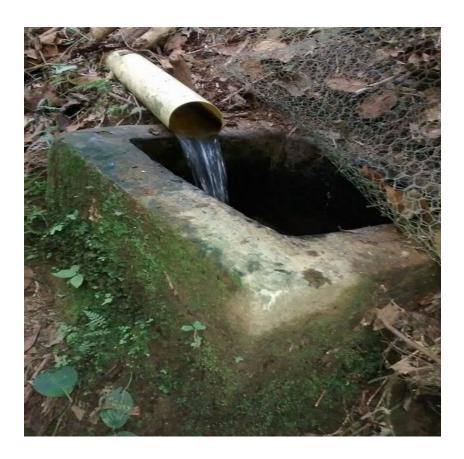


Figura 4. Vista en planta y perfil del tanque donde se realizó el aforo.

Ancho tanque = 0.41 m

Largo del tanque = 0.5 m

Altura tanque = 0.38 m


Tiempo promedio de llenado = 53.71 s

Se aplica la siguiente fórmula:

Volumen = V = 0.41m*0.5m*0.38m

$$Q = \frac{V}{t} = \frac{0.0779}{53.71} = 0.001450 \ m^3/s$$

$$Q = 1.45 \text{ L/s}.$$

Fotografía 2. . Llenado de tanque para aforo

Fotografía 3. Vista general del tanque para aforo.

5.4.4.3 Aforo por el método área velocidad.

En la figura $N^{\circ}5$. Se puede apreciar la sección transversal del tramo donde se elaboró este método de aforo.

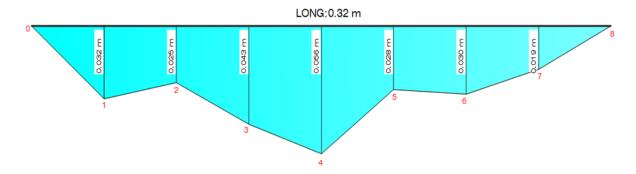


Figura 5. Sección trasversal de la quebrada el silencio en el sitio del aforo.

A continuación se muestran los datos obtenidos en el aforo realizado, siendo la tabla N°11, el número de veces en que recorrió la pelota de microporón, el trayecto adecuado para dicho fin. La distancia de este trayecto fue de 3 metros.

Tabla 11.Tiempos de recorrido de la bola de microporón.

N°	DISTANCIA	TIEMPO
- 11	(m)	(s)
1	3	6.10
2	3	6.49
3	3	6.72
4	3	6.70
5	3	6.54
6	3	6.34
7	3	6.56
8	3	6.83
9	3	6.75
10	3	6.92
PROMEDIO		6.60

Nota Fuente: Autores de la investigación.

Área de la sección = $0.00359 \ m^2$

Velocidad = Distancia / T. promedio =
$$0.4549 \frac{m}{seg}$$

Caudal = Área sección * Velocidad =
$$0.00163 \frac{m^3}{s} = 1.63 \frac{L}{s}$$

Fotografía 4. Adecuación de la zona para aforo.

Fotografía 5. Toma de tiempos para el aforo.

5.4.2 Captación.

La captación es un sistema de fondo, consta de muro en concreto ciclópeo, dique tipo vertedero normal a la corriente. En el centro de la corona del dique se encuentra la rejilla de hierro, de 0.48 m x 0.29 m, conformada por 22 barrotes lisas de Ø1/2", separadas 5mm, en dirección a la corriente, la estabilidad de la captación no presenta riesgo, así como las condiciones de las estructuras en concreto.

La estructura cuenta con un canal de aducción (rejilla-tanque de recolección) conformada por dos tubos de PVC diámetro de 2", que conducen el agua hasta el tanque de derivación.

El tanque de recolección dentro de su sistema cuenta con tubos de lavado, salida y de excesos de diámetro 3". Esta estructura presenta infiltración en el fondo por agrietamiento.

Fotografía 6. . Bocatoma.

Fotografía 7. Cámara de recolección

5.4.2.1 Capacidad de la rejilla.

En la tabla N°12. Se muestran las dimensiones de la rejilla.

Tabla 12.Dimensión actual de la rejilla.

DIMENSION ACTUAL REJILLA			
Ancho	0.29	m	
Largo	0.48	m	
K	0.9	RAS2000	
a	0.005	m	
b (1/2")	0.0127	m	
${f V}$	0.15	m/s	

Q = Caudal que pasa a través de la rejilla

K = Factor de reducción

a = Separación entre varillas

b = diámetro de los barrotes.

Dónde:

$$Ar = Area real de la rejilla = \frac{a}{(a+b)} * ancho * largo$$

La capacidad de la rejilla se obtiene de la siguiente forma:

$$Q = K x Ar x V$$

$$Q = 5,3085 \text{ L/s}$$

Condición:

$$Q \qquad \geq \qquad QMD + 5\% \ Qmd + 5\% \ Qmd$$

$$5.3085 \geq 2.6933$$
 cumple.

La capacidad hidraulica de la rejilla es de 5,3085 L/s.

Fotografía 8. Rejilla.

Nota Fuente: Autores de la investigación.

5.4.3 Aducción captación – desarenador.

La aducción consta de un tubo de diámetro 3" en PVC, con una longitud de 12 metros, la cual se encuentra enterrada en un 98%. Para hallar la capacidad hidráulica aplicamos la fórmula de manning.

En la tabla $N^{\circ}13$. Se muestran las cotas obtenidas por la topografía y las dimensiones de la aducción.

Tabla 13.

Datos de la línea de aducción.

cota clave salida captación	1,654.374	m
cota clave llegada desarenador	1,654.094	m
cota lamina agua cámara	1,654.346	m
Longitud	12	m
coeficiente rugosidad manning	0.009	-
Tubo	3"	Plgs
diámetro interno tubo	0.08042	m

Nota Fuente: Autores de la investigación

Donde:

$$Pendiente \ hidráulica = \frac{\text{cota salida} - \text{cota llegada}}{\text{longitud}} = S$$

$$S = 0.023333$$

La capacidad de transporte de la aducción cámara de recolección-desarenador es de:

Caudal=
$$\frac{\left(\frac{\pi*D^2}{4}\right)*\left(\frac{D}{4}\right)^{\frac{2}{3}}*s^{\frac{1}{2}}}{n} = Q \text{ (fórmula de manning)}$$

$$Q = 7.21 \text{ L/s}$$

Condición:

$$Qo \quad \geq \quad QMD$$

7.21
$$\geq$$
 2.509 cumple.

Ahora en base a las relaciones hidráulicas para conductos circulares propuestos en el libro de elementos de diseño para acueductos y alcantarillados de Alfredo Cualla obtenemos lo siguiente:

$$\frac{QMD}{Qo} = \frac{2.509}{7.21} = 0.35$$

$$\frac{V}{Vo} = 0.760$$

$$\frac{\mathrm{d}}{\mathrm{D}} = 0.460$$

$$\frac{R}{Ro} = 0.950$$

Ahora:

$$Qo = Vo * Ao$$

$$Vo = \frac{Qo}{Ao} = \frac{0.00721^{m^3/s}}{\frac{\pi}{4}*(0.0842m)^2} = 1.3 \text{ m/s}$$

$$V = (0.76) * (1.30) = 0.99 \approx 1 m/s$$

Según el RAS debo determinar la velocidad mínima en la aducción para garantizar el arrastre de partículas sedimentántes. Esta velocidad real mínima de resuspensión la establece el

libro de la López Cualla como 0.6 m/s, por lo tanto la velocidad obtenida en la aducción me cumple.

El RAS recomienda que el flujo en las tuberías en PVC no sea conducido a una velocidad mayor de 6 m/s, para evitar el desgaste de la tubería con la fricción producida por las partículas sólidas que lleva el agua.

Ahora para hallar la altura de la lámina de agua en el tubo:

$$\frac{d}{D} = 0.460$$

$$d = (0.46) * (0.0842) = 0.0387m$$

Teniendo este valor procedemos a sumarlo con las perdidas presentes en tubo, las cuales son un pérdida en la entrada con un $k=1.1\,$ y un $k=2.2\,$ de salida

$$\frac{1.1v^2}{2g} + \frac{2.2v^2}{2g} + d = 0.21m$$

La altura de la lámina de agua hasta el fondo de la cámara de recolección es de 24 centímetros. (Ver apéndice $N^{\circ}1$). Dicha valor es superior al valor obtenido anteriormente.

Fotografía 9. Aducción cámara de recolección- desarenador.

Nota Fuente: Autores de la investigación.

5.4.4 Desarenador.

El desarenador está construido en concreto reforzado, sobre la margen izquierda aguas abajo de la quebrada, estructuralmente se encuentra en buen estado, no presenta fisuración. El desarenador consta de cámara de aquietamiento, pantalla deflectora, zona de sedimentación, pantalla de sólidos flotantes, vertedero de rebose, compuerta lateral para lavado. Ver Plano Desarenador existente Anexo N°3. En la foto se puede apreciar el desarenador actual cerca de la captación.

Fotografía 10. Desarenador.

5.4.4.1 Capacidad hidráulica.

A continuación en la tabla $N^{\circ}14$ se muestran los datos obtenidos de la topografía realizada.

Tabla 14.Datos actuales del desarenador.

DATOS		
Cota corona de muros	1654.540	m
Cota clave de entrada	1654.094	m
cota clave salida	1654.288	m
largo útil	2.65	m
ancho útil	1.48	m
profundidad útil	1.47	m

5.4.4.2 Velocidad de sedimentación.

Según fórmula de Stokes:

Vs =
$$(g/18) ((Ps - P) / \mu) \times d^2$$

Vs = Velocidad de sedimentación de las partículas

g = Aceleración de la gravedad

Ps = Peso específico de la partícula a remover, arena

P = Peso específico del agua

μ = Viscosidad del agua a la temperatura en que se encuentra

d = Diámetro de la partícula a remover

Tabla 15. *Velocidad de sedimentación del desarenador.*

VELOCIDAD DE SEDIMENTACION				
según Stokes	Vs	= (g/18)	$((Ps-P) / \mu) \times d^2$	
DONDE:				
G		981	cm/s^2	
Ps		2.65	cm/s² g/cm³ g/cm³	
P		1	g/cm^3	
D		0.005	cm	
9 (18°)		0.01059	cm^2/s	
Vs		0.2123	cm/s	

Número de Reynolds

 $Re = Vs \times d / \mu$

 $Re = 0.2123 \times 0.005 / 0.01059 = 0.1 < 1.0$ flujo laminar

5.4.4.3 Periodo de retención.

T = Tiempo que demora la partícula en tocar fondo (s)

H = Profundidad útil del desarenador

Vs = Velocidad de sedimentación

Tabla 16.Periodo de retención del desarenador.

PERIODO DE RETENCIÓN (Θ)				
Tiempo	T = H	/ Vs		
DONDE:				
H	147	cm		
Vs	0.2123	cm/s		
Т	692.4570	S		

Nota Fuente: Autores de la investigación

Según el libro de Flinn – Weston y Bogert titulado abastecimiento de Aguas, la relación entre el período de retención (a) y el tiempo que demora la partícula en tocar fondo (t), en condiciones de depósitos con deflectores deficientes y esperando una remoción del 75% de las partículas es:

$$\Theta / T = 3.00$$

$$\Theta = 3.00 \text{ x T}$$

$$\Theta = 2077.371 \text{ s}$$

5.4.4.4 Caudal de diseño.

$$Q = C / \Theta$$

Q = Caudal de diseño (m^3/s)

C = Capacidad del desarenador = Largo. Útil *ancho. Útil * Prof. útil.

Tabla 17.

Capacidad hidráulica del desarenador.

	CAUDAL DE DISEÑO			
	$Q = \frac{C}{\theta}$			
DO	NDE":			
C	5.76534	m^3		
θ	2077.37	S		
Q	0.0028	m/s L/s		
•	2.7753	L/s		

Nota Fuente Autores de la investigación.

Condición:

$$\begin{array}{cccc} Q & \geq & QMD \\ 2.7753 & \geq & 2.5009 & cumple. \end{array}$$

5.4.4.4.1 Carga hidráulica superficial.

$$q \quad = Q \, / \, As$$

q = Carga hidráulica superficial comprendida entre $15 - 80 \text{ (m}^3/\text{m}^2/\text{día)}$

Q = Capacidad hidráulica del desarenador (m^3/s)

As = Área superficial del tanque (m^2)

Donde:

As = L. útil * A. útil =
$$2.65 \times 1.48 = 3.922 \text{ m}^2$$

Tabla 18.

Carga hidráulica del desarenador.

CARGA HIE	CARGA HIDRAULICA SUPERFICIAL			
	Q = q*As			
DONDE":				
q mínimo	15	$m^3/m^2/día$		
q máximo 80 $m^3/m^2/dia$				
As	3.922	m^2		
Qminimo	0.00068	m^3/s		
Qmaximo	0.00363	m³/s		

Nota Fuente: Autores de la investigación.

Condición:

5.4.4.5 Velocidad horizontal del desarenador.

Vh = (Vo x L) / H

Vh = Velocidad horizontal en cm/s

Vo = q = Carga hidráulica superficial

L = Largo útil del desarenador

H = Profundidad efectiva del desarenador

Tabla 19.Velocidad horizontal del desarenador.

VELOCIDAD HORIZONTAL				
$Vh = (q \times L) / H$				
DONE	DONDE":			
Q	0.0007	m/s		
L	2.65	m		
Н	1.47	m		
Vh	0.0013	m/s		
	0.1276	cm/s		

5.4.4.6 Velocidad horizontal máxima.

 $Vhm\acute{a}x = 20 x Vs$

Vhmáx = Velocidad horizontal máxima en cm/s

Vs = Velocidad de sedimentación de las partículas en cm/s

•

Tabla 20.Velocidad horizontal máxima.

VELOCIDAD HORIZONTAL MÁXIMA			
Vhmáx= 20 x Vs			
DONDE: Vs	0.2123	cm/s	
Vhmax.	4.2458	cm/s	

Condición:

 $\begin{array}{lll} \text{Vh} & \leq & \text{Vhmax} \\ 0.1276 & \leq & 4.2458 & \text{cumple.} \end{array}$

5.4.4.7 Velocidad de resuspensión máximo.

Vr = Velocidad de resuspensión máxima en cm/s

k = Parámetro de sedimentación de arenas

f = Parámetro de sedimentación por acción de la gravedad

g = Aceleración de la gravedad

Ps = Peso específico de la partícula a remover

p = Peso específico del agua

d = Diámetro de la partícula a remover

Tabla 21.Velocidad de resuspensión máximo.

VELOCIDAD			
R		SIÓN MAX.	
$Vr = \sqrt{\frac{8 * K}{f}} * g(Ps - p) * d$			
Dónd	le:		
K	0.04	-	
F	0.03	-	
G	981	cm/seg²	
Ps	2.65	g/cm^3	
P	1	cm/seg² g/cm³ g/cm³	
D 0.005 cm			
Vr	9.2913	cm/s	

5.4.4.8 Perfil hidráulico

Pérdidas a la entrada de la cámara de recolección por cambio de sección.

$$hm = \frac{k(\Delta v^2)}{2q}$$

Las pantallas cuentan con 24 orificios con un diámetro de 0.0254 m

$$hm = \frac{0.2 * (v1^2 - v2^2)}{2g}$$

QMD=
$$0.02509 \ m^3/s$$

Qo=
$$7.21 \ m^3/s$$

d = 0.0387 m

$$A2 = \left(\frac{\pi}{4} * D^2\right) * 24 = \left(\frac{\pi}{4} * (0.0254)^2\right) * 24 = 0.012 \, m2 \text{ (Área de orificios)}$$

v1=1m/s

$$v2 = \frac{Q2}{A2} = \frac{0.002501}{0.012} = 0.20 \frac{m}{s}$$

$$hm = \frac{0.2(1^2 - 0.2^2)}{2 * 9.81} = 0.01m$$

Pérdidas a la entrada zona de sedimentación:

$$V1=0.2 \text{ m/s}$$

V2=Vh=0.1276 cm/s = 0.001276 m/s

$$hm = \frac{0.1(0.2^2 - 0.001276^2)}{2 * 9.81} = 0.0002m$$

Pérdidas por la pantalla inicial y final:

$$Q = Cd*Ao*\sqrt{2gH}$$

Ao=0.86*1.48=1.2728 m²

$$H = \left(\frac{1}{2 * 9.81}\right) * \left(\frac{0.002509}{0.6 * 1.2728}\right)^2 = 0.00000055m$$

5.4.5 Aducción desarenador – planta de tratamiento.

En el recorrido de los autores de la investigación por la línea de aducción se pudo constatar que está compuesta por un tubo en PVC de diámetro 3", una válvula de purga y 3 ventosas. Ver Plano Línea de aducción actual Anexo No. 3

Esta línea se encuentra en buen estado, pero es necesario hacer mantenimientos más frecuentes, que garanticen un correcto funcionamiento de las ventosas y válvulas de purga.

Una pequeña parte de la tubería específicamente en un canal natural se encuentra a cielo abierto, expuesto al deterioro y daños producidos por las condiciones climatologías, como es el arrastre de material sólido en épocas de lluvias, que chocan contra esta, pudiéndole ocasionar fisuras y por ende; se corre el riesgo de afectar el suministro de agua cruda a la planta de tratamiento.

Fotografía 11. Válvula de purga.

Fotografía 12. Tubería descubierta en un canal natural.

5.4.5.1 Evaluación hidráulica como conducto a presión.

Según el reglamento técnico de agua potable y saneamiento básico, estable en el numeral B.6.4.4.3 que para el cálculo hidráulico de la aducción se debe tener en cuenta el siguiente aspecto:

Para el cálculo hidráulico y la determinación de las pérdidas por fricción en tuberías a presión debe utilizarse la ecuación de Darcy-Weibash junto con la ecuación de Colebrook y White

Variables:

Carga hidráulica (H) = 64.32 m.

Gravedad (g) = 9.81 m/s^2

Longitud total (L) = 1460.178 m

Diámetro (D) = 0.08342 m

Viscosidad (μ) = 0.000001059

Rugosidad absoluta (Ks) = 0.0000015

Área (A) =
$$\frac{\pi}{4}(0.08342)^2$$

Velocidad (v)

Fricción (f)

Caudal (Q)

Reynolds (Re)

Según la ecuación de Darcy y Weisbach.

$$v^2 = \frac{H*2g*D}{f} = \frac{64.32*2*9.81*0.08342}{f*1460.178} = \frac{0.07209571004}{f}$$

Despejando "f" y elevando al cuadrado obtenemos lo siguiente:

$$\sqrt{f} = \frac{0.2685064432}{v}$$
 (ec.1)

Ahora de la siguiente ecuación obtenemos:

$$v = \frac{Q}{A} = \frac{Q}{\frac{\pi}{4}(0.08342)^2} = 182.9657278Q \text{ (ec.2)}$$

Remplazando: ec.2 en ec.1

$$\sqrt{f} = \frac{0.2685064432}{182.9657278*Q} = \frac{0.001467523}{Q} \text{ (ec.3)}$$

Para calcular Re tenemos:

$$Re = \frac{v*D}{\mu} = \frac{(182.9657278*Q)*0.08342}{0.000001059} = 14412654.4*Q \text{ (ec.4)}$$

De la ecuación de Colebrook – White tenemos:

$$\frac{1}{\sqrt{f}} = -2 * log * (\frac{Ks}{3.7 * D} + \frac{2.51}{Re * \sqrt{f}})$$

En la anterior ecuación reemplazamos ec.3y ec.4:

$$\frac{1}{\frac{0.001467523}{Q}} = -2 * log * \left(\frac{0.0000015}{3.7 * 0.08342} + \frac{2.51}{(14412654.4 * Q) * \frac{0.001467523}{Q}} \right)$$

De la ecuación anterior queda lo siguiente:

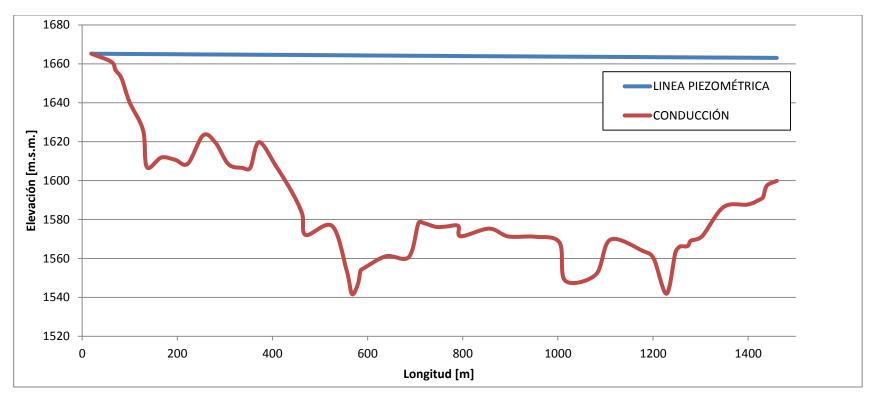
$$\frac{1}{\underbrace{0.001467523}_{O}} = -2 * log * \left(\frac{0.0000015}{3.7 * 0.08342} + \frac{2.51}{21150.90182}\right)$$

Despejando el caudal se obtuvo:

$$Q = 0.01147 \frac{m^3}{s} = 11.47 \frac{L}{s}$$

Donde Q equivale a la capacidad hidráulica de la aducción.

En la tabla Nº 20 se presentan los accesorios ubicados en las líneas de aducción para el cálculo de pérdidas de carga localizada.


Tabla 22. *Ubicación de accesorios en la línea de aducción desarenador - planta de tratamiento.*

ACCESORIOS				
PUNTO	** *	VÁLVULA		
	Verticales	Horizontales		
desar.				
1		2.450		
2	22 1/2°	2x45°		
3	22 1/2°	2x45°+11 1/4°		
4				
5	450 44 4/40			
6	45° + 11 1/4°			
7	22 1/2°+ 11 1/4°			
8			D	
9		 450 - 2 11 1 /40	Purga	
10	22 1/2°+ 11 1/4°	$45^{\circ} + 2x11 \ 1/4^{\circ}$		
11	22 1/2°			
12	22 1/2°			
13			X 7	
14	450 . 11 1/40		Ventosa	
15	45° + 11 1/4°			
16	11 1/4°		X 7	
17	11 1/40		Ventosa	
18	11 1/4°			
19	45°	450		
20	11 1/4°	45°		
21	22 1/2°+ 11 1/4°	$2x45^{\circ} + 11 \frac{1}{4^{\circ}}$		
22		$2x45^{\circ}+22\ 1/2^{\circ}+11\ 1/4^{\circ}$		
23 24	 11 1/40			
	11 1/4° 22 1/2°+ 11 1/4°			
25 26		450 . 22 1/20 . 11 1/40		
26	45°	$45^{\circ} + 22 \ 1/2^{\circ} + 11 \ 1/4^{\circ}$		
27	22 1/2°	 2 450		
28	22 1/2°	2x45°	V 7	
29	 11 1/40		Ventosa	
30	11 1/4°			
31	 11 1/40			
32	11 1/4°	O 450 11 1/40		
33 34	 22 1/2°+ 11 1/4°	2x45°+ 11 1/4° 45°+ 22 1/2° + 11 1/4°		

35			
36			
37	22 1/2°	$45^{\circ} + 22\ 1/2^{\circ}$	
38		$2x45^{\circ}+11\ 1/4^{\circ}$	
39			
40			
41			
42	45°		
43		$2x45^{\circ} + 2x11/4^{\circ}$	
44	22 1/2°+ 11 1/4°		
45			
46	22 1/2°	45°	
47			
48	22 1/2°		
49	22 1/2°+ 11 1/4°		
50			
51			
52	45°	45°+ 22 1/2°	
53	45°		
54			Válvula
Planta			

Tabla 23.Evaluación de la línea actual desarenador-plata de tratamiento.

Φinter Material Ecua		Faural de	veloc.		FRICCION PERDIDAS		Ten	eno	Cla	ave	Piezometrica		Presió	n final	pend %	PRESIÓN	RDE
mm	Material	Ecuacion	m/s	•	Hf	LOCALES	INI	FIN	INI	FIN	INI	FIN	ESTAT.	DINA.	pend %	DISEÑO	RDE
							1665,834										
80,42	PVC	Darcy	0,28	0,0277	0,02714		1665,834	1661,603	1665, 234	1661,003	1665,234	1665,20686	4,231	4,204	0,219	4,231	41
80,42	PVC	Darcy	0,28	0,0277	0,05971	0,0110	1661,603	1657,371	1661,003	1656,771	1665,20686	1665,13612	8,463	8,365	0,100	11,0019	41
80,42	PVC	Darcy	0,28	0,0277	0,01188	0,0110	1657,371	1653,140	1656,771	1652,540	1665,13612	1665,11322	12,694	12,573	0,501	16,5022	41
80,42	PVC	Darcy	0,28	0,0277	0,01780		1653,140	1640,829	1652,540	1640,229	1665,11322	1665,09541	25,005	24,866	0,973	32,5065	41
80,42	PVC	Darcy	0,28	0,0277	0,02382		1640,829	1626,494	1640, 229	1625,894	1665,09541	1665,07159	39,34	39,178	0,847	51,142	41
80,42	PVC	Darcy	0,28	0,0277	0,03991	0,0074	1626,494	1607,507	1625,894	1606,907	1665,07159	1665,02433	58,327	58,117	0,670	75,8251	32.5
80,42	PVC	Darcy	0,28	0,0277	0,01123	0,0074	1607,507	1612,457	1606,907	1611,857	1665,02433	1665,00575	53,377	53,149	-0,621	69,3901	41
80,42	PVC	Darcy	0,28	0,0277	0,04278		1612,457	1611,296	1611,857	1610,696	1665,00575	1664,96297	54,538	54,267	0,038	70,8994	32.5
80,42	PVC	Darcy	0,28	0,0277	0,04084	0.0404	1611,296	1609,336	1610,696	1608,736	1664,96297	1664,92213	56,498	56,186	0,068	73,4474	32.5
80,42	PVC	Darcy	0,28	0,0277	0,03767	0,0184	1609,336	1623,883	1608,736	1623,283	1664,92213	1664,86608	41,951	41,583 45,406	-0,544 0,120	54,5363	41
80,42	PVC	Darcy	0,28	0,0277	0,04533	0,0037	1623,883	1620,011	1623,283	1619,411	1664,86608	1664,81707	45,823 56,818	56,361	0,120	59,5699	32.5
80,42 80,42	PVC	Darcy	0,28	0,0277	0,03679	0,0037	1620,011 1609,016	1609,016 1607,140	1619,411 1608,416	1608,416 1606,540	1664,81707 1664,77661	1664,77661 1664,73878	58,694	58,199	-0,070	73,8634 76,3022	32.5
80,42	PVC	Darcy	0,28	0,0277	0,03783		1607,140	1607,110	1606,540	1606,510	1664,778878	1664,69777	58,724	58,188	-0,001	76,3412	32.5
80,42	PVC	Darcy	0,28	0,0277	0,02358	0,0074	1607,110	1620,366	1606,510	1619,766	1664,69777	1664,66684	45,468	44,901	0,791	59,1084	41
80,42	PVC	Darcy	0,28	0,0277	0,02622	0,0074	1620,366	1608,074	1619,766	1607,474	1664,66684	1664,63695	57,76	57,163	0,660	75,088	32.5
80,42	PVC	Darcy	0,28	0,0277	0,05005	0,0037	1608,074	1594,473	1607,474	1593,873	1664,63695	1664,58689	71,361	70,714	0,383	92,7693	26
80,42	PVC	Darcy	0,28	0,0277	0.04789	0,0037	1594,473	1583,430	1593,873	1582,830	1664,58689	1664,53532	82,404	81,705	-0,325	107,1252	
80,42	PVC	Darcy	0,28	0,0277	0,02969	0,0037	1583,430	1572,633	1582,83	1572,033	1664,53532	1664,50195	93,201	92,469	-0,512	121,1613	
80,42	PVC	Darcy	0,28	0,0277	0,01051	0,0074	1572,633	1577,296	1572,033	1576,696	1664,50195	1664,48409	88,538	87,788	0,625	115,0994	
80,42	PVC	Darcy	0,28	0,0277	0,07806	0,0184	1577,296	1554,477	1576,696	1553,877	1664,48409	1664,38766	111,357	110,511	-0,412	144,7641	13.5
80,42	PVC	Darcy	0,28	0,0277	0,04287	0,0147	1554,477	1542,323	1553,877	1541,723	1664,38766	1664,33008	123,511	122,607	0,399	160,5643	13.5
80,42	PVC	Darcy	0,28	0,0277	0,01575	ŕ	1542,323	1547,621	1541,723	1547,021	1664,33008	1664,31433	118,213	117,293	0,474	153,6769	13.5
80,42	PVC	Darcy	0,28	0,0277	0,01792	0,0037	1547,621	1554,329	1547,021	1553,729	1664,31433	1664, 29273	111,505	110,564	-0,527	144,9565	13.5
80,42	PVC	Darcy	0,28	0,0277	0,00735	0,0074	1554,329	1555,549	1553,729	1554,949	1664,29273	1664,27803	110,285	109,329	-0,234	143,3705	13.5
80,42	PVC	Darcy	0,28	0,0277	0,00959	0,0147	1555,549	1561,740	1554,949	1561,140	1664,27803	1664,25374	104,094	103,114	0,909	135,3222	21
80,42	PVC	Darcy	0,28	0,0277	0,06600	0,0037	1561,740	1561,313	1561, 140	1560,713	1664,25374	1664, 18406	104,521	103,471	-0,009	135,8773	21
80,42	PVC	Darcy	0,28	0,0277	0,06737	0,0110	1561,313	1578,800	1560,713	1578,200	1664,18406	1664, 10567	87,034	85,906	-0,365	113,1442	21
80,42	PVC	Darcy	0,28	0,0277	0,02874		1578,800	1578,643	1578, 200	1578,043	1664,10567	1664,07692	87,191	86,034	-0,008	113,3483	21
80,42	PVC	Darcy	0,28	0,0277	0,01738	0,0037	1578,643	1576,800	1578,043	1576,200	1664,07692	1664,05587	89,034	87,856	0,149	115,7442	21
80,42	PVC	Darcy	0,28	0,0277	0,03487		1576,800	1576,954	1576, 200	1576,354	1664,05587	1664,021	88,88	87,667	-0,006	115,544	21
80,42	PVC	Darcy	0,28	0,0277	0,02739	0,0037	1576,954	1577,350	1576,354	1576,750	1664,021	1663,98993	88,484	87,240	-0,020	115,0292	21
80,42	PVC	Darcy	0,28	0,0277	0,03763	0,0110	1577,350	1571,982	1576,750	1571,382	1663,98993	1663,94127	93,852	92,559	0,201	122,0076	
80,42	PVC	Darcy	0,28	0,0277	0,00797	0,0184	1571,982	1575,927	1571,382	1575,327	1663,94127	1663,91492	89,907	88,588	0,697	116,8791	21
80,42	PVC	Darcy	0,28	0,0277	0,08372		1575,927	1571,921	1575,327	1571,321	1663,91492	1663,83121	93,913	92,510	-0,067	122,0869	21
80,42	PVC	Darcy	0,28	0,0277	0,05619		1571,921	1571,729	1571,321	1571,129	1663,83121	1663,77501	94,105	92,646	0,005	122,3365	21
80,42	PVC	Darcy	0,28	0,0277	0,08020	0,0110	1571,729	1568,780	1571, 129	1568,18	1663,77501	1663,68379	97,054	95,504	-0,052	126,1702	21
80,42	PVC	Darcy	0,28	0,0277	0,07171	0,0110	1568,780	1549,176	1568, 180	1548,576	1663,68379	1663,60105	116,658	115,025	-0,385	151,6554	13.5
80,42	PVC	Darcy	0,28	0,0277	0,01690		1549,176	1552,230	1548,576	1551,630	1663,60105	1663,58415	113,604	111,954	0,254	147,6852	13.5
80,42	PVC	Darcy	0,28	0,0277	0,09016		1552,230	1570,251	1551,630	1569,651	1663,58415	1663,494	95,583	93,843	0,281	124,2579	
80,42 80,42	PVC	Darcy	0,28	0,0277	0,04347 0,09610	0,0037	1570,251	1564,457 1560,551	1569,651	1563,857 1559,951	1663,494	1663,45052 1663,35075	101,377 105,283	99,594 103,400	0,188 -0,057	131,7901	21 21
		Darcy	0,28	0,0277			1564,457		1563,857		1663,45052					136,8679	
80,42 80,42	PVC PVC	Darcy	0,28 0,28	0,0277	0,03207	0,0147	1560,551 1542,461	1542,461	1559,951 1541,861	1541,861	1663,35075 1663,30397	1663,30397 1663,25848	123,373 102,221	121,443 100,245	-0,794 0,781	160,3849 132,8873	13.5 21
80,42	PVC	Darcy	0,28	0,0277	0,03814	0,0074	1563,613	1563,613 1566,659	1563,013	1563,013 1566,059	1663,30397	1663,23237	99,175	97,173	0,781	128,9275	
80,42	PVC	Darcy	0,28	0,0277	0,02811	0,0074	1565,613	1566,659	1566,059	1566,059	1663,23237	1663,23237	98,884	96,862	-0,031	128,5492	21
80,42	PVC	Darcy	0,28	0,0277	0,01309	0,0074	1566,950	1569,767	1566,059	1569,167	1663,23237	1663,189	96,067	94,022	0,173	124,8871	21
80,42	PVC	Darcy	0,28	0,0277	0,01041	0,0037	1569,767	1572,037	1569, 167	1571,437	1663,189	1663,17492	93,797	91,738	0,307	121,9361	21
80,42	PVC	Darcy	0,28	0,0277	0,03279	0,0037	1572,037	1587,034	1571,437	1586,434	1663,17492	1663,13478	78,8	76,701	-0,644	102,44	26
80,42	PVC	Darcy	0,28	0,0277	0,06343	0,0074	1587,034	1588,311	1586,434	1587,711	1663,13478	1663,07135	77,523	75,360	0,028	100,7799	26
80,42	PVC	Darcy	0,28	0,0277	0,06343		1588,311	1590,976	1587,711	1590,376	1663,07135	1662,99953	74,858	72,624	0,052	97,3154	26
80,42	PVC	Darcy	0,28	0,0277	0,03667	0,01103	1590,976	1592,156	1590,376	1591,556	1662,99953	1662,95184	73,678	71,396	0,032	95,7814	26
80,42	PVC	Darcy	0,28	0,0277	0,00852	0,00368	1592,156	1598,039	1591,556	1597,439	1662,95184	1662,93964	67,795	65,501	0,972	88,1335	26
80,42	PVC	Darcy	0,28	0,0277	0,01134	2,00000	1598,039	1600,443	1597,439	1599,843	1662,93964	1662,92829	65,391	63,085	0,298	85,0083	32.5
80,42	PVC	Darcy	0,28	0,0277	0,02917		1600,443	1601,517	1599,843	1600,917		1662,89913	64,317	61,982	0,052	83,6121	32.5

Grafica 3. Perfil evaluación hidráulica línea de aducción actual desarenador – planta de tratamiento.

5.4.5.2 Ventosas.

Las ventosas según el RAS 2000, deben ser ubicadas en los puntos más altos de la conducción, sabiendo que para proceder a realizar la ubicación, es necesario chequear otros parámetros que presentaremos más adelante, pues muchas veces no es correcta la ubicación de ellas en estos puntos.

A continuación se muestran los cálculos para verificar si las ventosas existentes están bien ubicadas, es decir cumplen a cabalidad la función de expulsar o dejar entrar el aire a la aducción.

Para lo dicho anteriormente se necesitara de las siguientes fórmulas utilizadas por EMCALI en criterios para la selección de válvulas ventosas:

$$Vc = Y * \sqrt{g * D}$$

$$Y = 3 * P - 2.1 * P^2$$

$$P = \sqrt{sen\theta}$$

g = gravedad

Vc = velocidad critica de remocion de aire en m/seg.

D = diámetro de la tuberia en metros.

 θ = ángulo del tramo descendente aguas abajo con la horizontal.

Aclarado lo anterior, es necesario tener encuenta un criterio muy importante, como es el verificar que la velocidad mínima operacional sea igual o mayor que la velocidad critica, si esto se cumple quiere decir que hay remocion de aire, de no ser asi, es decir si la velocidad minima es

menor que la critica se concluye que se necesita una ventosa en ese punto. Para ver la ubicación exacta de las ventosas es necesarion ver el apéndice $N^{\circ}3$.

Tabla 24.Verificación de los puntos donde se encuentran ubicadas las ventosas.

CAUDAL (m ³ /s)	0.001438					
PUNTO PERFIL	14	17	29			
DIAMETRO INTERNO(mm)	80.42	80.42	80.42			
LONGITUD	16.752	34.022	12.345			
Θ (grados)	13	8	6			
P	0.4743	0.3731	0.3233			
Υ	0.950	0.827	0.750			
Vc (m/seg)	0.844	0.734	0.667			
V (m/seg)	0.283	0.283	0.283			
V > Vc	FALSO	FALSO	FALSO			
Requiere ventosa	ОК	OK	ОК			

Nota Fuente: Autores de la investigación.

A continuación se presentan las fotografías del elemento anteriormente mencionado, para una mayor compresion se recomienda ver apéndice $\,N^{\circ}3\,$ aducción desarenador – planta de tratamiento

Fotografía 13. Ventosa ubicada en el punto 14. Ver Apéndice 3

Fotografía 14. Ventosa ubicada en el punto 29. Ver Apéndice 3

5.4.6 Sistema de tratamiento de agua potable.

Actualmente la planta de tratamiento del sistema de acueducto de Otaré, cuenta con una planta de tratamiento de filtración lenta de tecnología FIME, la cual será sometida a análisis físico-químicos y microbiológicos con el fin de verificar su efectividad a la hora de tratar el agua

y saber si al final del proceso esta sale apta para el consumo humano, tal como lo exige el sector de agua potable y saneamiento básico RAS 2000.

5.4.6.1 Calidad del agua de la fuente.

La quebrada el silencio presenta a simple vista las condiciones necesarias para ser considerada como fuente de abastecimiento segura, como lo pudimos observar los autores de la presente investigación auscultando la zona, pero el RAS 2000, el cual establece en el título C, pagina 41, lo siguiente: "La calidad de la fuente debe caracterizarse de la manera más completa posible para poder identificar el tipo de tratamiento que necesita y los parámetros principales de interés en periodo seco y de lluvia. Además, la fuente debe cumplir con lo exigido en el Decreto 1575 del 2007, o en su ausencia el que lo reemplace. Los análisis de laboratorio y los muestreos deben realizarse de acuerdo con la normatividad vigente (Normas NTC-ISO 5667)". En la tabla Nº 25 se presenta la clasificación de los niveles de calidad de las fuentes de abastecimiento en función de unos parámetros mínimos de análisis físico-químicos y microbiológicos, y el grado de tratamiento asociado.

En las siguientes fotografías se muestran las herramientas utilizadas para tomar las muestras y posteriormente ser llevadas al laboratorio de la UFPSO, así; como el lugar (más arriba de la bocatoma). Resaltando que fueron refrigeradas con hielo y transportadas en una cava para conservar la temperatura, por recomendación del químico Carlos Patiño, y así mantener las propiedades del agua, lo cual es de suma importancia a la hora de analizar y determinar las propiedades fisicoquímicas y microbiológicas.

Fotografía 15. Herramientas utilizadas para las pruebas.

. Fotografía 16. Toma de muestras.

Tabla 25 .Niveles fisicoquímicos y microbiológicos permisibles (Decreto 1575 del 2007).

Parámetros	1.Fuente aceptable	2.Fuente regular	3.Fuente deficiente	4.Fuen te muy deficie
DBO 5 días				
Promedio mensual mg/L	≤ 1.5	1.5 - 2.5	2.5 - 4	> 4
Máximo diario mg/L Coliformes totales(NMP/100	1 -3	3 – 4	4 – 6	> 6
Promedio mensual	0 - 50	50 - 500	500 - 5000	> 5000
Oxígeno disuelto (mg/L)	>=4	>=4	>=4	>=4
pH PROMEDIO	6 - 8,5	5 – 9	3,8 - 10,5	
TURBIEDAD(UNT)	< 2	2 - 40	40 - 150	≥ 150
COLOR	< 10	10 - 20	20 - 40	>=40
VERDADERO				
Gusto y olor Cloruros (mg/L-Cl)	Inofensivo < 50	Inofensivo 50 – 150	Inofensivo 150 – 200	Inacepta 300

Fluoruros (mg/L-F)	< 1,2	< 1,2	< 1,2	> 1,7
Procesos de tratamiento utilizados	(1)=desinfecció n + estabilización	.(2)=filtració n lenta o filtración directa + (1)	(3)=pretratamient o + [coagulación +sedimentación +filtración rápida] o [fime] + (1)	(4)=(3)+ tratamien tos específic os

Nota Fuente: Reglamento de agua potable y saneamiento básico RAS 2000.

A continuación se muestran los resultados obtenidos a las pruebas de agua en la bocatoma al igual que el limite permisible establecido por la resolución 2115 del 2007.

Tabla 26.Resultado de los análisis hechos a la bocatoma.

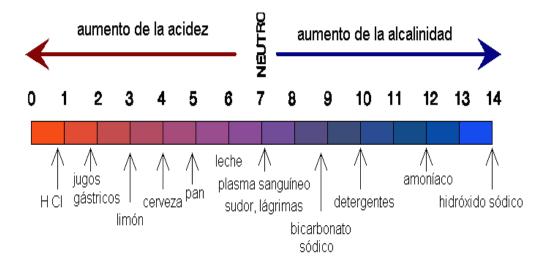
PARAMETRO	UNIDAD	LIM. PERMISIBLE	VALOR	METODO
POTENCIAL DE HIDROGENO	рН	6.5-9.0	7.97	Estándar M etho ds 4500 H+B
TURBIEDAD	UNT	2	10.2	Estándar M etho ds 2310 B
COLOR	UPC	15	61	Estándar M etho ds 2120 A
SULFATOS	mg/L	300	3	Estándar M etho ds 4500 SO4E
HIERRO TOTAL	mg/L	0.3	0.43	Estándar M etho ds 3500 Fe B
DUREZA TOTAL	mg/L	300	68	Estándar M etho ds 2340 C
ALCALINIDAD	mg/L	200	85	Estándar M etho ds 2320 B
NITRATOS	mg/L	10	4.4	Estándar M etho ds 4500 N02B
NITRITOS	mg/L	0,1	0.02	Estándar M etho ds 4500 NO3 B
CONDUCTIVIDAD	μS/cm	1000	164	Estándar M etho ds 4500 P D
AEROBIOS MESOFILOS	UFC/100 ml	100	2000	Estándar M etho ds 2510 B
COLIFORMES TOTALES	UFC/100 ml	0	2000	Filtración por membrana
COLIFORMES	UFC/100	0	2000	Filtración por

FECALES ml membrana

Nota Fuente: Laboratorio de aguas UFPSO.

5.4.6.2 Análisis de resultados fuente de abastecimiento.

• Potencial de hidrógeno:


El pH del agua es la medida de la concentración de iones hidrógeno (H) presentes en ella. El pH es un parámetro importante en todos los procesos de tratamiento del agua, razón por la cual su medida y control a intervalos regulares durante el tratamiento de agua, es muy importante.

Por ejemplo, en la desinfección con cloro, esta es más efectiva a valores bajos de pH.

La estabilidad de un agua depende del pH. Si un agua tiene un pH por debajo del pH de saturación será corrosivo, y si ocurre lo contrario el agua será incrustante (Mendoza, 2006).

Con lo anterior podemos concluir que es muy importante el control del PH, ya que estando en los límites establecidos por la Ley no solo garantiza calidad en el agua a la hora de la cloración, sino que también protege las tuberías frente a la corrosión.

Los análisis hechos a la fuente de abastecimiento muestra que este se encuentra en niveles óptimos con un pH de 7.97, al comparar estos resultados con los valores de la tabla N°26 en la página 56 indica que este parámetro está dentro del nivel de fuente aceptable estipulado por el R.A.S. En la gráfica 4 a continuación se muestran los rangos de acidez y alcalinidad.

Grafica 4. Escala de los niveles de acidez y alcalinidad.

Nota Fuente: Reglamento de Agua Potable y Saneamiento Básico (RAS 2000)

• Turbiedad:

La turbiedad se define como la propiedad óptica que tiene una muestra de agua de desviar o absorber un haz luminoso, impidiendo su paso directamente.

La turbiedad es originada por las partículas en suspensión o coloides (arcillas, limos, materia orgánica e inorgánica finamente dividida, minerales, plancton, bacterias y otros microorganismos) producto de la erosión causada por las corrientes de agua o al crecimiento de microorganismos.

La turbiedad es causada por las partículas que forman los sistemas coloidales es decir, aquellas que por su tamaño se encuentran suspendidas y reducen la trasparencia del agua en menor o mayor grado.

Aunque no se conoce los efectos directos de la turbiedad sobre la salud esta afecta la calidad estética del agua, lo que ocasiona el rechazo de los consumidores. Por otra parte, se ha demostrado que las partículas causantes de la turbiedad reducen la eficiencia del proceso de la desinfección. En el proceso de eliminación de los microorganismos patógenos, por la acción de agentes químicos como el cloro, la turbiedad protege físicamente a los microorganismos del contacto directo en el desinfectante (Mendoza, 2006).

Si nos vamos al caso puntual de Otaré donde se utiliza la tecnología FIME en la PTAP, el numeral C.7.3.1.2 el R.A.S. nos dice lo siguiente: "La FIME debe emplearse como multibarrera para controlar los cambios bruscos de la calidad de agua de las fuentes. Se debe emplear para aguas que presenten una turbiedad inferior a 80 UNT". La fuente cuenta con una turbiedad de 10.2 UNT, por lo tanto la tecnología FIME debe ser efectiva al momento de tratar el agua.

• Color:

El color del agua puede estar ligado a la turbiedad o presentarse independiente de ella. La mayoría de los investigadores estiman que el color orgánico en el agua es de naturaleza coloidal. Sin embargo, algunos autores sugieren que se encuentran en solución verdadera.

El color en el agua se atribuye comúnmente a la presencia de taninos, lignina, ácidos húmicos, ácidos grasos, ácidos fúlvicos, etcétera.

Se considera que el color en el agua puede originarse por las siguientes causas: extracción acuosa de sustancias de origen vegetal, descomposición de la materia, materia orgánica del

suelo, presencia de hierro, manganeso y otros compuestos metálicos y también a descargas industriales.

En la formación del color en el agua intervienen, entre otros factores, el pH, la temperatura, el tiempo de contacto, la materia disponible y la solubilidad de los compuestos coloreados. Se denomina color aparente a aquel que presenta el agua cruda o natural y color verdadero al que queda luego de que el agua ha sido filtrada.

Debido a que el color del agua se origina, en muchos casos, por la presencia de compuestos de naturaleza orgánica, se recomienda que la desinfección se realice luego de que este haya sido removido, para evitar que la aplicación de cloro como desinfectante pueda reaccionar con estos y producir compuestos organoclorados, principalmente cloroformo y otros trihalometanos, compuestos que tienen efecto cancerígeno en los animales.

La importancia de la remoción del color en el agua está relacionada también con los aspectos de aceptabilidad del consumidor y usuario, sea este doméstico o industrial.

La norma nacional (resolución 2115 del 2007) establece como máximo 15 unidades de color (UC). El valor guía de la OMS es igualmente 15 UC para aguas de bebida (Mendoza, 2006).

El RAS estipula un valor límite para el color, el numeral C.7.3.2.1 donde nos dice textualmente "para el uso de la tecnología FIME la fuente debe presentar un color por debajo de 30 (UPC)". La quebrada El Silencio arrojo un valor de 61 UPC, parámetro que sobrepasa lo

estipulado por el RAS para el uso del sistema de filtración en estudio. Estos mismos valores comparados con la tabla Nº 25 (página 55) sitúan la fuente como muy deficiente. Sin embargo es de aclarar que el agua que llega a la planta de tratamiento presenta un valor de 24 UPC, que la coloca en el rango para ser potabilizada por tecnología FIME, este bajo en el nivel de UPC ocurre gracias al papel desempeñado por el desarenador, que cumple de manera eficiente esta función.

• Sulfatos:

Se liberan al agua procedente de residuos industriales y mediante precipitación desde la atmósfera; no obstante, las concentraciones más altas suelen encontrarse en aguas subterráneas y provienen de fuentes naturales. Los datos existentes no permiten determinar la concentración de sulfato en el agua de consumo que probablemente ocasiona efectos adversos para la salud de las personas, sin embargo; los datos de un estudio en lechones con una dieta líquida y estudios con agua de grifo en voluntarios muestran un efecto laxante con concentraciones de 1000 a 1200 mg/l, pero en general no se propone ningún valor de referencia basado en efectos sobre la salud para el sulfato. No obstante, debido a los efectos gastrointestinales de la ingestión de agua de consumo con concentraciones altas de sulfato, se recomienda notificar a las autoridades de salud las fuentes de agua de consumo en las que las concentraciones de sulfato rebasen los 500 mg/L. La presencia de sulfato en el agua de consumo también puede producir un sabor apreciable y contribuir a la corrosión de los sistemas de distribución (Salud, 2006).

Para el caso de Otaré los sulfatos son prácticamente nulos ya que en la fuente su valor es de 3 mg/L, comparado con lo exigido con en el RAS 2000, que nos dice que no debe superar los

300mg/L, lo que indica que la red de distribución no tendrá daños de corrosión causante a este parámetro.

• Hierro total:

El hierro es un elemento químico metálico de color blanco, y es el cuarto elemento más abundante en la corteza terrestre. El hierro puro es muy reactivo y se corroe rápidamente cuando expuesto al aire, es por esto que el hierro es poco común en arroyos y ríos. El Hierro disuelto que alcanza aguas superficiales reacciona con oxígeno para formar herrumbre y se precipita en el fondo del flujo de agua. El Hierro es un nutriente esencial en la dieta humana. En realidad, una inadecuada cantidad de hierro puede producir anemia, una deficiencia en los componentes que transportan el oxígeno en la sangre. Sin embargo, altas concentraciones de hierro en el agua puede causar problemas con sedimentos en tuberías, sabor metálico, y problema estéticos por manchas rojas en accesorios y ropa. Por ésta razón, la Agencia de Protección Ambiental de EU (USEPA) ha establecido el estándar por hierro a 0.3 mg/L. Otra molestia relacionada al hierro que puede surgir es la bacteria del hierro. Ésta bacteria usa el hierro como fuente de energía, aunque no causa enfermedad, ésta puede causar crecimiento gelatinoso que obstruyen tuberías, son poco atractivas, y huelen mal (Sigler, 2016).

La muestra tomada en la bocatoma presenta un valor de 0.43 mg/L, el cual no está dentro del límite permisible, que debe ser de 0.3 mg/L como máximo.

• Dureza total:

Es la presencia en el agua, de cationes metálicos polivalentes como el calcio y el magnesio, dichos elementos son tomados como los causantes de la dureza en las aguas naturales, debido a su alta solubilidad a valores de pH normales.

Clasificación del agua según la dureza: muy blanda (< 30 mg/L), blanda (31 mg/L -60 mg/L), dureza media (61 mg/L- 120 mg/L) y muy dura (>180 mg/L).

La importancia sanitaria del control de la dureza a nivel doméstico, se debe a que el agua dura impide la formación de espuma cuando se usa jabones de barra a base de grasas o aceites, ocasionando un mayor consumo de jabón y una menor limpieza debido a la formación de coágulos insolubles, pero actualmente con el uso cada vez mayor de jabones detergentes este inconveniente es menor, debido al alto contenido de zeolitas presentes en ellos, las cuales neutralizan la dureza (Mendoza, 2006).

Los valores encontrados en los análisis hechos a la fuente dan un valor 68 mg/L, lo que indica que se encuentra dentro de los valores aceptables para el buen funcionamiento de la PTAP y lo más importante apta para el consumo humano.

Alcalinidad:

Es la capacidad del agua de neutralizar la acidez, o sea neutralizar los iones de hidrógeno.

La alcalinidad del agua se debe a la presencia de iones bicarbonato, iones carbonato o iones hidroxilo, obtenidos al entrar en contacto el agua con suelos donde están presentes estos componentes.

También las aguas naturales pueden adquirir alcalinidad al disolverse el bióxido de carbono en ella.

La alcalinidad es importante en el tratamiento del agua porque reacciona con coagulantes hidrolizables (como sales de hierro y aluminio) durante el proceso de coagulación. Además, este parámetro tiene incidencia sobre el carácter corrosivo o incrustante que pueda tener el agua y cuando alcanza niveles altos, puede tener efectos sobre el sabor.

Durante el tratamiento, las aguas crudas de muy baja alcalinidad pueden requerir la adicción de un alcalinizante primario (como el hidróxido de calcio) (Mendoza, 2006)

En los resultados arrojados por los análisis esta se encuentra en un nivel estable y aceptable con un valor de 85 mg/L. (ver tabla N°25, página 56)

• Nitritos:

El nitrito es un ion de origen natural que forma parte del ciclo del nitrógeno, las condiciones anaerobias pueden favorecer la formación y persistencia del nitrito, también la cloraminación podría ocasionar la formación de nitrito en el sistema de distribución si no se controla debidamente la formación de cloramina. La formación de nitrito es consecuencia de la actividad

microbiana y puede ser intermitente. La nitrificación en los sistemas de distribución puede aumentar la concentración de nitrito, que suele ser de 0.2 mg/L a 1.5 mg/L.

En todos los sistemas de distribución de agua en los que se practique la cloraminación se deberá monitorear estrecha y regularmente la concentración de desinfectantes, la calidad

microbiológica y la concentración de nitrito. Si se detecta nitrificación (por ejemplo, disminución de las concentraciones residuales de desinfectantes y aumento de las concentraciones de nitrito), se deben adoptar medidas para modificar los tratamientos o la composición del agua con objeto de preservar su inocuidad, pero sin que se vea afectada la eficacia de la desinfección (Salud, 2006).

La fuente presenta niveles óptimos de nitritos ubicados en 0.02 mg/l lo que indica que este parámetro no representa problema para la salud humana.

• Nitratos:

El nitrato es un compuesto soluble que contienen nitrógeno y oxígeno. En el ambiente el nitrito (NO_2^-) generalmente se convierte a nitrato (NO_3^-) . El nitrato es esencial en el crecimiento de las plantas y está presente en todos los vegetales y granos, por ésta razón, el uso predominante de nitrato en la industria es como fertilizante.

Si los valores de nitrato-N sobrepasan los 8 mg/L, se estaría aproximando al estándar de salud y deberían de ser monitoreados regularmente especialmente si un infante menor de un año está usando el agua. Los valores de nitrato-N sobre 10 mg/L no son satisfactorios y una acción se debería tomar para determinar la fuente y descontinuar el uso del agua por niños o personas con problemas cardíacos (Sigler, 2016)

Los valores obtenidos en los análisis dan como resultado una presencia de 4.4 mg/L, que da un valor aceptable según RAS 2000.

• Conductividad:

La conductividad es una medida indirecta de la cantidad de sales ó sólidos disueltos que tiene un agua natural. Los iones en solución tienen cargas positivas y negativas; esta propiedad hace que la resistencia del agua al flujo de corriente eléctrica tenga ciertos valores. Si el agua tiene un número grande de iones disueltos su conductividad va a ser mayor. Cuanto mayor sea la conductividad del agua, mayor es la cantidad de sólidos o sales disueltas en ella. Esta mide el contenido total de sales en el agua (Rocha, 2010).

Los resultados obtenidos dan un valor 164 µS/cm, lo que no prevé ningún riesgo.

• Aerobios mesófilos:

En este grupo se incluyen todos los microorganismos, capaces de desarrollarse en presencia de oxígeno a una temperatura comprendida entre 20°C y 45°C con una óptima entre 30°C y 40°C. Un recuento bajo de aerobios mesófilos no implica o no asegura la ausencia de patógenos o sus toxinas, de la misma manera un recuento elevado no significa presencia de flora patógena (Anmat, 2014).

El valor obtenido de los análisis es de 2000 UFC/100 ml, indica una presencia peligrosa de estos microorganismos que podrían pasar la barrera de filtración existente y causar enfermedades que serían potencialmente peligrosas para la salud de los habitantes de la cabecera del corregimiento, por lo tanto se debe pensar en un proceso de desinfección químico.

• Coliformes totales:

El grupo de los coliformes totales incluye especies fecales y ambientales, también incluye microorganismos que pueden sobrevivir y proliferar en el agua, por consiguiente, no son útiles como índice de agentes patógenos fecales, pero pueden utilizarse como indicador de la eficacia de tratamientos y para evaluar la limpieza e integridad de sistemas de distribución y la posible presencia de biopelículas. No obstante, hay mejores indicadores para estos fines. Los coliformes totales son mucho más sensibles a la desinfección que los protozoos y virus entéricos.

Las bacterias pertenecientes al grupo de los colifórmes totales (excluida E. coli) están presentes tanto en aguas residuales como en aguas naturales. Algunas de estas bacterias se excretan en las heces de personas y animales, pero muchos colifórmes son heterótrofos y capaces de multiplicarse en suelos y medios acuáticos. Los colifórmes totales pueden también sobrevivir y proliferar en sistemas de distribución de agua, sobre todo en presencia de biopelículas (Salud, 2006).

Los resultados obtenidos en los análisis son preocupantes 2000 UFC/100 ml, lo que lleva a pensar en utilizar un sistema de desinfección químico, ya que estos microrganismos podrían pasar la barrera de los filtros, poniendo en riesgo la salud de los pobladores.

• Colifórmes fecales:

Como fue citado por Prescott L, Harley J y Klein, D (1996). Los coliformes fecales se denominan termotolerantes por su capacidad de soportar temperaturas más elevadas. Esta denominación está ganando más adeptos actualmente, por ser la forma más apropiada de definir este subgrupo que se diferencia de los coliformes totales por la característica de crecer a

una temperatura superior. La capacidad de reproducción de los coliformes fecales fuera del intestino de los animales homeotérmicos es favorecida por la existencia de condiciones adecuadas de materia orgánica, pH, humedad, etc. Estas bacterias son de interés clínico, ya que pueden ser capaces de generar infecciones oportunistas en el tracto respiratorio superior e inferior, además de bacteriemia, infecciones de piel y tejidos blandos, enfermedad diarreica aguda y otras enfermedades severas en el ser humano (Arcos, Avila, S, & Gomez, 2005).

En los análisis que se obtuvieron de la fuente, se muestran valores altamente riesgosos de contenido de colifórmes 2000 UFC/100 ml, por lo tanto debe hacérsele un seguimiento especial en todo el proceso de filtración.

Después de analizar las pruebas y compararlas con lo estipulado por el RAS, en Tabla Nº 26 se puede apreciar que la fuente de abastecimiento no cumple con algunos valores admisibles como lo son la turbiedad, el color, aerobios mesófilos, coliformes fecales y coliformes totales para determinarla como una fuente segura.

Analizando lo estipulado por el RAS 2000 en la tabla N° 25 (página 56) nos dice que el sistema a utilizar corresponde al número (3) que equivale a FIME + desinfección + estabilización, dicho proceso es empleado para una fuente deficiente, se concluye entonces que el sistema utilizado actualmente por la población de Otaré (Desarenador + Filtración en múltiples étapas + desinfección, ver foto 8. Ver plano planta tratamiento Anexo No 4.) Debería ser capaz de producir agua en condiciones óptimas para el consumo humano.

Fotografía 17. Vista general de la PTAP existente.

Nota Fuente: Autores de la investigación.

5.4.7 Planta de tratamiento de agua potable (PTAP).

5.4.7.1 Análisis de resultados a la entrada de la PTAP.

A continuación en la tabla N°27, se muestra los resultados hechos al agua en la entrada de la PTAP, dichos resultados variaron de forma positiva con respecto a los obtenidos en la quebrada EL silencio (parte arriba del punto de captación) debido al proceso de sedimentación del desarenador de la bocatoma. También se anexa en la tabla el limite permisible establecido por la resolución 2115 del 2007.

Tabla 27.Resultado de los análisis hechos a la entrada de la PTAP.

PARÁMETRO	UNIDAD	LIM. PERMISIBLE	VALOR	МЕТОРО
POTENCIAL DE HIDROGENO	рН	6.5-9.0	7.99	Estándar M etho ds 4500 H+B
TURBIEDAD	UNT	2	2.74	Estándar M etho ds 2310 B
COLOR	UPC	15	24	Estándar M etho ds 2120 A
SULFATOS	mg/L	300	2	Estándar M etho ds 4500 SO4E
HIERRO TOTAL	mg/L	0.3	0.15	Estándar M etho ds 3500 Fe B
DUREZA TOTAL	mg/L	300	67	Estándar M etho ds 2340 C
ALCALINIDAD	mg/L	200	80	Estándar M etho ds 2320 B
NITRATOS	mg/L	10	2.6	Estándar M etho ds 4500 N02B
NITRITOS	mg/L	0.1	0.01	Estándar M etho ds 4500 NO3 B
CONDUCTIVIDAD	μS/cm	1000	156	Estándar M etho ds 4500 P D
AEROBIOS	UFC/100	100	2000	Estándar M etho

MESOFILOS	ml			ds 2510 B
COLIFORMES TOTALES	UFC/100 ml	0	2000	Filtración por membrana
COLIFORMES FECALES	UFC/100 ml	0	2000	Filtración por membrana

Nota Fuente: Laboratorio de aguas UFPSO.

• Potencial de hidrógeno:

El pH muestra una leve variación, con un valor 7.99 que la ubica en los límites aptos para el consumo humano.

• Turbiedad:

La turbiedad con respecto a la de la captación se reduce de 10.2 UNT a 2.74 UNT, valor más que suficiente para tratado con tecnología FIME.

• Color:

Los análisis arrojan un valor de 24 UPC, parámetro que se encuentra en el rango para poder ser tratado y reducido por este tipo de planta de tratamiento.

• Hierro Total:

Este parámetro del agua llega con un valor de 0.15 a la PTAP, lo que no implica ningún riesgo para la salud humana según tabla $N^{\circ}26$

• Dureza Total:

La dureza registra una leve variación, pasa de 68 mg/L a 67mg/L, parámetro que no implica riesgo para la salud humana.

• Alcalinidad:

La alcalinidad presenta a la entrada de la bocatoma un valor de 80mg/L, lo que significa

que no representa un riesgo para el consumo humano.

• Nitritos:

El valor del nitrito no representa riesgo para la salud humana, según tabla N°26

• Nitratos:

En la tabla N°24 podemos observar que la cantidad de nitritos es de 2.6 mg/L, valor inferior al límite establecido por la Norma, por consiguiente en este aspecto el agua que entra a la PTAP es apta para el consumo humano.

• Conductividad:

La conductividad presente en el agua según tabla N°26 no representa riesgo alguno para la salud humana.

• Colifórmes Totales:

Este parámetro sigue permaneciendo constante con un valor de 2000UFC/100 ml, si bien no es apta para el consumo humano en este aspecto, la PTAP de Otaré debe ser capaz de tratarla al contar con la tecnología FIME recomendada para estos casos.

• Colifórmes Fecales:

Los coliformes fecales siguen constantes con un valor de 2000UFC/100 ml y representan un alto riesgo para la salud de los consumidores.

• Aerobios Mesófilos:

De igual manera que los colifórmes las colonias de los aerobios mesófilos se mantuvieron igual y por consiguiente no es apta para el consumo humano.

A continuación en la tabla N°28 se muestran los porcentajes de remoción de los parámetros microbiológicos y fisicoquímicos del desarenador, al igual que el limite permisible establecido por la resolución 2115 del 2007.

Tabla 28.Porcentaje de remoción del desarenador de la bocatoma.

PARÁMETRO	UNIDAD	LIM. PERMISIBLE	VALOR EN BOCATOMA	VALOR ENTRADA PLANTA	% REMOVIDO
POTENCIAL DE HIDROGENO	рН	6.5-9.0	7.97	7.99	-0.25
TURBIEDAD	UNT	2	10.2	2.74	73.14
COLOR	UPC	15	61	24	60.66
SULFATOS	mg/L	300	3	2	33.33
HIERRO TOTAL	mg/L	0.3	0.43	0.15	65.11
DUREZA TOTAL	mg/L	300	68	67	1.47
ALCALINIDAD	mg/L	200	85	80	5.88
NITRATOS	mg/L	10	4.4	2.6	40.91
NITRITOS	mg/L	0.1	0.02	0.01	50
CONDUCTIVIDAD	μS/cm	1000	164	156	4.88

AEROBIOS MESOFILOS	UFC/100 ml	100	2000	2000	0
COLIFORMES TOTALES	UFC/100 ml	0	2000	2000	0
COLIFORMES FECALES	UFC/100 ml	0	2000	2000	0

Nota Fuente: Autores de la investigación.

Como se observa en la columna de % removido, el desarenador cumple una importante función a la hora de tratar el agua, dejándola en niveles más aceptables para ser tratada por la PTAP.

5.4.8 Sistema de tratamiento de agua potable de Otaré.

La siguiente información, consta de datos y cálculos hidráulicos de los componentes de la PTAP información que fue suministrada por la Alcaldía Municipal de Ocaña.

La calidad del agua cruda, quebrada el silencio, señala los siguientes parámetros básicos:

Color aparente: 24 UPC

Turbiedad: 2,74 UNT

pH: 7,99

Coliformes totales: >2000

Coliformes fecales (E. coli): >2000

5.4.8.1 Tipos de tratamiento.

El tipo de tratamiento que se le debe dar a un agua cruda depende de su calidad, es decir de sus características físicas, químicas y microbiológicas.

Las condiciones naturales de una fuente, están por lo general alteradas por la actividad humana, por lo tanto la tratabilidad se puede definir como un proceso industrial en el cual la materia prima que es el agua cruda se transforma en un producto final que es el agua tratada, apta para el consumo humano.

En el presente caso se pueden dar dos tipos de tratamiento, de acuerdo con la calidad promedia del agua de la fuente, según se expone seguidamente:

5.4.8.1.1 Plantas de filtración lenta.

Se utiliza como tratamiento único cuando la calidad del agua cruda presenta una turbiedad no mayor a 15 UNT, color inferior a 20 UPC y el número de colifórmes fecales es menor a 500/100 ml.

Son unidades conformadas por lechos de arena sobre grava gradada y un sistema de drenaje conformada por tuberías perforadas o prefabricados a junta perdida. No se les adicionan reactivos químicos durante el proceso.

Se adiciona finalmente un desinfectante, preferiblemente cloro gaseoso o en su defecto, una sal de cloro, ya sea hipoclorito de calcio o de sodio.

5.4.8.1.2 Plantas de filtración lenta en múltiples etapas (FIME).

Este tipo de plantas se usa cuando la calidad del agua cruda tiene turbiedad inferior a 80 UNT, el color es menor a 30 UPC y los colifórmes fecales se encuentran entre 500 y 20000 UFC/ 100 ml.

Esta filtración es una combinación de unidades de pretratamiento (desarenación) con filtración gruesa de grava antes de la filtración lenta.

Los filtros de grava pueden ser flujo horizontal o vertical y el tamaño de los granos disminuye con la dirección del flujo.

En este tipo de plantas tampoco se adicionan reactivos en el proceso de tratamiento.

Se adiciona al final un desinfectante, tal como se indicó para el caso anterior.

5.4.8.2 Planta de tratamiento de agua existente en Otaré.

Los resultados de la calidad del agua de la quebrada El Silencio, son concluyentes en indicar que los niveles de turbiedad, color y coliformes totales y fecales se encuentran en un rango que no la hace apta para el consumo humano sin tratamiento.

Por lo tanto se considera como la solución indicada, previendo que el sistema de potabilización que se proyecte debe tener la capacidad de manejar las condiciones extremas de la

calidad del agua, la planta de tecnología FIME que se construyó deja el agua apta para aplicarle un desinfectante químico y por lo tanto quedará apta para el consumo humano.

5.4.9 Parámetros de diseño de la PTAP Otaré.

5.4.9.1 Consideraciones básicas.

La planta de agua potable (PTAP) existente se fundamenta en las siguientes consideraciones:

Atender las necesidades futuras en materia de producción de agua potable a la población con una operación continua de 24 horas diarias.

De acuerdo con la calidad promedia del agua cruda, con bajos niveles de turbiedad, color, colifórmes totales y fecales, se proyecta un sistema simplificado de tratamiento, recomendado para pequeñas comunidades, consistente en:

- Desarenador de flujo horizontal
- Filtración gruesa descendente (grava)
- Filtración lenta de arena
- Postratamiento de desinfección (Cloración)

El tratamiento existente permite que bajo condiciones extremas, en que se pueda ver afectada la calidad del agua cruda, por incremento principalmente de los niveles de turbiedad, el agua finalmente tratada sea de buena calidad y que los filtros lentos (su principal componente) no se obstruyan, con la pérdida de su capacidad efectiva de operación.

132

Una descripción general de los componentes anteriormente relacionados, se hace

seguidamente:

Desarenación.

Existe un (1) módulo de flujo horizontal, de 2.0 L/s, para la remoción de partículas con

tamaño superior a 0.005 cm. De esta manera se evita que el sistema de filtración se obstruya

fácilmente, (se reduce la tasa de filtración y es necesario un mayor número de limpieza de los

filtros). Las dimensiones útiles de la estructura son:

Longitud: 3.70 m

Ancho: 0.75 m

Profundidad: 1.00 m (no incluye borde libre y foso de sedimentos).

Filtración gruesa.

Existe un (1) módulo de filtración gruesa de grava, con gradación variable de \$\phi\$ \frac{1}{4}\cdot\text{" a \$\phi\$ 1\cdot\text{"}},

para 2.0 L/s.

Éste tiene como finalidad remover la turbiedad excesiva que pueda afectar a la posterior

filtración lenta y que haya escapado de la prevista con la desarenación horizontal. El sentido del

flujo es descendente con una velocidad máxima de paso de 0.60 m/hora.

Dimensiones interiores:

Área superficial cuadrada de 3.50 m x 3.50 m

Altura: 1.65 m

133

Espesor del lecho de grava: 1.20 m

Filtración lenta.

Existe dos (2) módulos de filtración lenta de arena, cada unidad para 2.0 L/s. Esta

condición se requiere por cuanto al sacar un filtro para limpieza periódica, el tiempo que debe

dejarse en maduración (fuera de servicio) es relativamente largo para filtros completamente

nuevos de 10 a 20 días y de 1 a 2 días para filtros en uso. La tasa de filtración que se utiliza para

este caso es de 0.50 m/hora.

Cada unidad de filtración con las siguientes características:

Sección cuadrada superficial de 3.8 m x 3.8 m

Altura: 3.00 m

Espesor del lecho de arena: 1.20 m

Tamaño Efectivo (TE): 0.30 mm

Coeficiente de Uniformidad (CU): 2.00

5.4. 10 Cálculos hidráulicos.

La temperatura mínima del agua, para los análisis hidráulicos, se estima en 18°C.

5.4.10.1 .Desarenador.

Velocidad de sedimentación.

Ecuación básica:
$$V_s = [g (\rho_s - \rho_a)/(18 u)] d^2$$

 V_s : velocidad de sedimentación (cm/s) = V_0

g: aceleración de la gravedad = 981 cm/s²

 $\rho_s = peso \; específico \; de \; la \; arena = 2.65$

 ρ_a = peso específico del agua = 0.99823

u: viscosidad cinemática $(cm^2/s) = 0.0101$

d: diámetro de la partícula crítica (cm) = 0.005 cm

$$V_0 = 981/18 \text{ x} [(2.65 - 0.99823)/ 0.0101] 0.005^2 = 0.223 \text{ cm/s (vertical)}$$

Número de Hazen.

Para remoción del 75% \rightarrow Número de Hazen = $V_s/V_0 = 3$

Período de Retención Hidráulico (PRH).

Profundidad útil del desarenador (adoptada): 1.00 m

Tiempo de sedimentación: $t = H/V_0 = 100/0.223 = 448.4 \text{ s}$

PRH = Número de Hazen x t = 3 x 448.4 = 1345.2 s = 22.4 minutos (el tiempo mínimo de detención debe ser de 20 minutos).

Volumen y medidas del tanque.

$$V = 1345.2 \times 0.0020 = 2.69 \text{ m}^3$$

De acuerdo con el volumen final definido las medidas de la estructura serán las siguientes:

Área superficial: $A_s = V/H = 2.69/1.00 = 2.69 \text{ m}^2$

Relación Longitud: Ancho = 5: 1

Dimensiones adoptadas:

Ancho: 0.75 m

Longitud: 3.70 m

Profundidad útil: 1.00 m

Velocidad horizontal máxima.

$$V_{HM} = 20 \ v_s = 20 \ x \ 0.223 = 4.46 \ cm/s$$

Velocidad horizontal.

$$V_H = Q/(A \times H) = 0.0020/(0.75 \times 1.00) = 2.67 \times 10^{-3} \text{ m/s} = 0.27 \text{ cm/s}$$

Velocidad de resuspensión.

$$V_R = \left[(8 \text{ k d g}) \text{/f} \right) \text{ x (} \rho_S - \rho) \right]^{1/2} = \left[(8 \text{ x } 0.04 \text{ x } 0.005 \text{ x } 981 \text{/} 0.03) \text{ x } 1.65 \right]^{1/2} = 9.3 \text{ cm/s}$$

Vertedero de salida.

La altura de la lámina de agua a la salida es:

$$H = [0.0020/(1.838 \times 0.75)]^{2/3} = 0.013 \text{ m}$$

Velocidad en el vertedero: V = 0.0020/(0.75 x 0.013) = 0.21 m/s

Pantalla de distribución (entrada).

Se ubica a 0.60 m de la entrada. Su altura es de 1.25 m y la velocidad de paso a través de los orificios se fija en 0.08 m/s para no crear perturbaciones en la zona de decantación.

Área de orificios: $A = 0.0020/0.09 = 0.025 \text{ m}^2$

Entonces con orificios de ϕ 2" (0.05 m), se adoptan 12 (4 hileras de 3 orificios).

Depósito de sedimentos.

Con una pendiente longitudinal del 8% de la placa de fondo, en una longitud de 3.40 m, se conforma el depósito de sedimentos con una caída de 0.27 m.

El volumen del depósito que se genera es de 0.42 m³, equivalente al 15 % del volumen útil del desarenador.

Desagüe.

Tiempo de vaciado.

Se proyecta una compuerta lateral \(\phi \) 3" para evacuar los sedimentos peri\(\phi \) dicamente.

Se verifica el tiempo de vaciado para una profundidad útil de $1.27~\mathrm{m}$ de la lámina de agua y un área superficial de $2.78~\mathrm{m}^2$.

$$T = \frac{2 A h^{1/2}}{m a (2g)^{1/2}}$$

Donde:

T = tiempo de vaciado (s)

A =área superficial del desarenador = 2.78 m²

h = altura del agua sobre el centro del desagüe = 1.23 m

m = coeficiente de contracción del desagüe = 0.6

a = área de la sección del desagüe (ϕ 3") = 4.42 x 10⁻³ m²

$$T = \frac{2 \times 2.78 \times 1.23^{1/2}}{0.6 \times 4.42 \times 10^{-3} \times 19.62^{1/2}} = 525 \text{ s} = 8.75 \text{ minutos}$$

Caudal máximo instantáneo.

El caudal máximo que puede evacuarse por la compuerta de ϕ 3" para una altura de la lámina de agua en la cámara de 1.23 m es:

$$Q = 0.6 \text{ x A } (2\text{gh})^{1/2} = 0.6 \text{ x } 0.00442 (19.62 \text{ x } 1.23)^{1/2} = 0.013 \text{ m}^3/\text{s} = 13 \text{ L/s}$$

Alcantarillado receptor.

Se proyecta para la evacuación de los lodos una línea de ϕ 6" (PVC), con el 0.5% de pendiente. Entonces se tiene:

$$Q = 1/0.009 (0.0177 \times 0.0375^{2/3} \times 0.005^{1/2}) = 0.0156 \text{ m}^3/\text{s}$$

Este valor es aceptable, teniendo en cuenta que el caudal máximo de 0.013 m³/s es un valor instantáneo, que disminuye en la medida que desciende el nivel del agua en el desarenador.

5.4.10.2 Filtración gruesa.

Tasa promedia de filtración: $q=14 \text{ m}^3/\text{m}^2/\text{día}=0.60 \text{ m/hora}$

El área del filtro es: $(0.0020 \text{ x } 86400)/14 = 12.3 \text{ m}^2 \rightarrow \text{se}$ adopta una sección superficial de 3.50 m x 3.50 m.

El lecho de la unidad de filtración será de 1.20 m de espesor conformado por grava, de abajo hacia arriba, así:

Tabla 29.Granulometría del filtro grueso.

POSICIÓN	ESPESOR (cm)	TAMAÑO (pulgadas)
1 ^a capa (fondo)	30	1 - 3/4
2ª capa	20	3/4 - 1/2
3ª capa	70	1/2 - 1/4
Total	120	

Nota Fuente: Alcaldía Municipal de Ocaña.

El drenaje estará conformado por 4 tubos de φ 2" PVC con 10 orificios ø ½" cada uno (5 por costados), para un total de 40 orificios.

Pérdidas de carga durante la filtración

En la grava.

La pérdida de carga en la grava se determina con la ecuación de Dixon:

$$h_g = \frac{V \times L}{3}$$

V = velocidad de filtración (m/minuto) = 0.010

L = espesor del lecho (m) = 1.20

$$h_g = \frac{0.010 \times 1.20}{3} = 0.0004 \text{ m (despreciable)}$$

En el drenaje.

De acuerdo con las características del drenaje anteriormente descrito, el área de sus orificios, 40 de ϕ ½", equivale a 5.08 x 10⁻³ m².

$$h_{\rm d} = 0.051 \left(\frac{q}{c \, x \, A}\right)^2$$

Reemplazando se obtiene:

$$hd = 0.051 \left(\frac{0.0020}{0.61 \times 0.00503} \right)^2 = 0.022 \,\mathrm{m}$$

• Vertedero de control.

Longitud del vertedero: 0.60 m

Con la ecuación de Francis, se calcula la altura de la lámina de agua:

$$H = [Q/(C \times L)]^{2/3} = [0.0020/(1.838 \times 0.60)]^{2/3} = 0.015 \text{ m} \rightarrow \text{se adopta } 0.02 \text{ m}$$

Tabla 30.Altura de la unidad de filtración gruesa.

	(m)
Borde libre	0.25
Pérdida por filtración (adoptada)	0.03
Altura de la lámina de agua sobre el vertedero de salida	0.02
Altura entre el nivel superior de la grava y el vertedero	0.15
Grava	1.20
Total	1.65

Nota Fuente: Alcaldía Municipal de Ocaña.

• Vaciado de los filtros.

Para el drenaje total de la unidad de filtración en las tareas periódicas de mantenimiento, se proyecta una válvula de compuerta de ϕ 2" en el fondo de la cámara de salida, con descarga directa al sistema general de desagüe.

5.4.10.3 Filtración lenta.

Se proyectan dos unidades de filtración lenta, con una tasa media de 12 m³/(m² x día).

Cada unidad estará en capacidad de tratar el caudal de diseño, 0.0025 m³/s, teniendo en cuenta que en labores de mantenimiento periódico, de varios días, solamente operará un filtro.

Para el caudal de 2.0 l/s el área requerida es: $(0.0020 \text{ x } 86400)/12 = 14.40 \text{ m}^2 \rightarrow \text{se}$ adopta una sección superficial de 3.80 m x 3.80 m.

Lecho filtrante.

El lecho filtrante estará conformado por arena, con las siguientes especificaciones básicas:

Tabla 31. *Especificaciones del lecho de soporte.*

ESPECIFICACIONES	ARENA
Espesor (m)	1.20
Tamaño Efectivo D ₁₀ (mm)	0.30
Coeficiente de Uniformidad (CU)	2.00
Gravedad Específica	2.60
Porosidad	0.42
Coeficiente de Esfericidad	0.80

Nota Fuente: Alcaldía Municipal de Ocaña.

Lecho de soporte

El lecho de soporte será de grava, de 0.30 m de espesor de las siguientes características:

Tabla 32. *Granulometría del lecho de soporte.*

POSICIÓN	ESPESOR (cm)	TAMAÑO (pulg.)
1 ^a capa (fondo)	5	1 ½ - 1
2 ^a capa	5	$1 - \frac{1}{2}$
3 ^a capa	5	1/2 - 1/4
4 ^a capa	5	1/4 - 1/8
Gravilla	10	½ - 1/12
Total	30	

Nota Fuente: Alcaldía Municipal de Ocaña.

Drenaje.

El drenaje de cada unidad de filtración estará conformado por 4 tubos de ϕ 2", cada uno con 10 orificios de paso \emptyset ½" (total 40 orificios).

Hidráulica de la filtración (Pérdidas de carga):

Las pérdidas de carga se determinan para la tasa promedia de filtración, 0.002 m³/s

- En la arena

Para determinar la pérdida de carga se utiliza la ecuación de Fair y Hatch para partículas uniformes no esféricas:

$$h = 180 \frac{\text{L} \times \text{D}}{\text{g}} \times v \times \frac{(1-p)2}{p3} \times \frac{1}{\text{Ce2} \times \text{Dc2}}$$

Dónde:

h = pérdida de carga (cm)

L= espesor del lecho (cm) = 120

v = viscosidad cinemática = 0.01146 cm²/s

v= velocidad de filtración = 0.014 cm/s

P = porosidad = 0.42

 C_e = Coeficiente de Esfericidad = 0.80

 D_c = Diámetro representativo [TE] D_{10} (cm) = 0.03

Reemplazando en la ecuación se obtiene:

$$hf = 180 \frac{(1-0.42)^2}{981} \times 0.014 \times \frac{(1-0.42)}{0.42^3} \times \frac{1}{(0.80^2 \times 0.03^3)} = 27.85 \text{ cm}$$

$$0.42^3$$

- En el lecho de soporte

La pérdida de carga en la grava se determina con la ecuación de Dixon:

$$\Delta hg = \frac{vL}{3}$$

v = velocidad de filtración (m/minuto)

L = espesor del lecho (m)

$$\Delta hg = \frac{0.30}{100} x \frac{0.30}{3} = 8.4 \times 10 - 4 \text{ m} = 0.08 \text{ cm (despreciable)}$$

- En el drenaje

De acuerdo con las características del drenaje, las pérdidas de carga son:

$$hd = 0.051 \left(\frac{q}{CxA}\right)^2$$

Reemplazando se obtiene:

$$hd = 0.051 \left(\frac{0.0020}{0.61 \times 0.00508} \right)^2 = 0.02m$$

- Pérdida de carga total en la filtración

$$H_{TOTAL} = 0.28 + 0.02 = 0.30 \text{ m}$$

• Vertedero de control para la filtración.

Longitud del vertedero: 0.60 m

A partir de la ecuación de Francis, se calcula la altura de la lámina:

$$H = [Q/(C \times L)]^{2/3} = [0.002/(1.838 \times 0.60)]^{2/3} = 0.015 \text{ m} \rightarrow \text{ se adopta } H = 0.02 \text{ m}$$

• Altura de las unidades de filtración.

Tabla 33.Altura de las unidades de filtración.

	(m)
Borde libre	0.30
Pérdida por filtración	0.30
Altura por obstrucción del lecho filtrante	0.88
Altura de la lámina de agua sobre el vertedero de salida	0.02
Arena	1.20
Grava	0.30
Total	3.00

Nota Fuente: Alcaldía Municipal de Ocaña.

• Vaciado de los filtros.

Para el drenaje total de cada unidad de filtración en las tareas periódicas de mantenimiento, se proyecta una válvula de compuerta de ϕ 3" en el fondo de la cámara de salida de agua filtrada, con descarga directa al sistema de desagüe de los filtros.

A continuación resultados y análisis de las pruebas realizadas al agua al fin de los filtros para comprobar su eficiencia, al igual que el limite permisible establecido por la resolución 2115 del 2007.

Tabla 34.Análisis de las pruebas realizadas al agua al final de los dos filtros.

PARÁMETRO	UNIDAD	LIM. PERMISIBLE	VALOR	METODO
POTENCIAL DE HIDROGENO	рН	6.5-9.0	7.91	Estándar M etho ds 4500 H+B
TURBIEDAD	UNT	2	0.42	Estándar M etho ds 2310 B
COLOR	UPC	15	3	Estándar M etho ds 2120 A
SULFATOS	mg/L	300	1	Estándar M etho ds 4500 SO4E

HIERRO TOTAL	mg/L	0.3	0.03	Estándar M etho ds 3500 Fe B
DUREZA TOTAL	mg/L	300	67	Estándar M etho ds 2340 C
ALCALINIDAD	mg/L	200	78	Estándar M etho ds 2320 B
NITRATOS	mg/L	10	1.8	Estándar M etho ds 4500 N02B
NITRITOS	mg/L	0.1	0.01	Estándar M etho ds 4500 NO3 B
CONDUCTIVIDAD	μS/cm	1000	154	Estándar M etho ds 4500 P D
AEROBIOS MESOFILOS	UFC/100 ml	100	2000	Estándar M etho ds 2510 B
COLIFORMES TOTALES	UFC/100 ml	0	2000	Filtracion por membrana
COLIFORMES FECALES	UFC/100 ml	0	2000	Filtracion por membrana

Nota Fuente: Laboratorio de aguas UFPSO.

• Potencial De Hidrógeno:

Las muestras tomadas y analizadas al final del sistema de filtración de la PTAP, muestran que este parámetro se mantiene en los límites permitidos por el RAS 2000, por lo tanto es apto para el consumo humano. Otro aspecto a tener en cuenta es que debido a su estabilidad, las conducciones y las redes de distribución no van a tener problemas de corrosión, la cual desgasta la tubería hasta el punto de cambiarle las condiciones y no poder soportar las presiones de diseño. Tampoco presentará las tuberías de las conducciones y las redes problemas de incrustación, que hace disminuir los diámetros de la tubería, haciendo que esta no cumpla con la demanda del líquido. Si por alguna razón cambian las condiciones de pH se debe tener en cuenta lo mencionado anteriormente y actuar de una manera rápida.

• Turbiedad:

Los filtros están funcionando de una forma adecuada como podemos observar más

adelante en la tabla N°35, la turbiedad baja de 2.74 UNT a 0.42 UNT que representa una disminución del 84,67%, si bien este parámetro cumplía con la normatividad vigente, la PTAP lo mejora de una forma notable, trayendo consigo mejor calidad para el agua.

Si por alguna razón debido a los cambios repentinos que sufre nuestro entorno actualmente y específicamente cambian las condiciones de turbiedad del agua tratada, esta parámetro traerá condiciones muy adversas, tales como afectación a la estética del agua, debido a que mostrará un color no muy agradable y de presunto rechazo de los consumidores y algo muy importante, que no se puede menospreciar, es el hecho de que muchos microorganismos a la hora de la desinfección química, suelen refugiarse en la partículas causante de la turbiedad, trayendo así un riesgo biológico a los consumidores.

• Color:

Este parámetro baja de una manera positiva, porque si observamos las pruebas a la entrada de la PTAP, esta cantidad en el agua no era apta para el consumo humano, pero pasado el preciado líquido por todas las etapas de filtración, se reduce de una manera significativa, hasta llegar al valor de 3 UPC, sabiendo que el límite máximo es de 15 UPC.

Este parámetro cuando se sale de los límites establecidos, puede traer consigo uno de las consecuencias más graves para la salud humana, ya que al mezclarse con los agentes químicos desinfectantes, crea los trihalometanos, compuestos químicos, causantes de cáncer.

• Sulfatos:

La cantidad de sulfatos al pasar por todo el proceso de tratamiento de la PTAP es prácticamente nula, ya que solo llega al valor de 1 mg/L y comparado con el límite establecido por la norma que es de 300 mg/L podemos concluir que el agua en lo referente a esta propiedad,

es de muy buena calidad.

Si se presenta cambios en los sulfatos y estos sobrepasan los límites establecidos por las normas, tal como el de la organización mundial para la salud, hay que buscar la manera de controlarlos ya que causan en la salud problemas diarreicos y en las aducciones y las redes, corrosión.

• Hierro Total:

Afortunadamente para los habitantes de Otaré, el hierro presente en el agua que van a consumir, no es un problema, los resultados arrojan un valor de 0.03 mg/L muy por debajo del límite para el consumo humano, que es de 0.33 mg/L.

Si por algún motivo, el valor del hierro sobre pasa los límites establecidos por el RAS, unas de las consecuencias que trae consigo es el cambio en el sabor del agua, color de esta misma y corrosión en las redes en sus partes metálicas, la cual influye para que se presenten fugas en las aducciones y las redes, hasta el punto de causar cortes en el suministro.

• Dureza Total:

Haciendo una comparación de la dureza de la fuente, con la de la entrada a la planta y posterior proceso de tratamiento registra una leve variación, pero el valor final al igual que los anteriores no registra riesgo alguno para la salud humana. Siempre es bueno recalcar las consecuencias que trae un parámetro al salirse de los limites ya establecidos, por eso no está de más el decir que por si algún motivo, la dureza llega a sobrepasar su límite permisible, traerá un mayor consumo de agua ya que al lavar objetos, esta impide la formación de espuma y por lo tanto mayor uso de agua.

• Alcalinidad:

Otro parámetro que registra un valor aceptable para el consumo humano y por lo tanto calidad en el agua.

Si la alcalinidad por algún fenómeno, meteorológico, artificial o de otra índole, sobrepasa el límite de la Norma, este traerá consigo un sabor no agradable en el agua, corrosión en las tuberías, así como incrustación.

• Nitritos:

Los nitritos no son un problema para la calidad del agua, a pesar de que no hay variación en su valor con respecto al que llega a la entrada de la planta.

• Nitratos:

La PTAP muestra su efectividad en los filtros al bajar la cantidad de nitratos de 2.6 mg/L registrado en la entrada a la planta a 1.8 mg/L, si bien ninguno de los valores anteriores representa peligro para la salud humana, esta reducción mejora calidad del agua.

• Conductividad:

La conductividad en el agua pasada por los diferentes procesos, registra una leve variación, pues pasa de 156 μ S/cm a 154 μ S/cm, mejorando así la calidad del agua.

Aerobios Mesófilos:

La cantidad de estos microorganismos es preocupante no se registra ningún cambio y representan un alto riesgo para la salud de los consumidores.

• Coliformes Totales:

La cantidad de coliformes totales resulta preocupante, si bien no se registra ninguna variación desde la fuente, hasta el proceso realizado por los filtros de la PTAP, se considera un

agua muy deficiente, por lo tanto no apto para el consumo humano, pues la Ley es muy clara y dice enfáticamente que admite un valor de 0 UFC/100 ml de estos microorganismos.

• Coliformes Fecales:

Las pruebas hechas al final de los filtros no son las esperadas, pues no se registran cambios de ningún tipo en las colonias de estos microorganismos, por lo tanto el agua no es apta para el consumo humano.

A continuación en la tabla N°35 se compara la remoción producida por los filtros de la PTAP, con respecto a los valores de los parámetros del agua en la entrada de la planta, al igual que el limite permisible establecido por la resolución 2115 del 2007.

Tabla 35.Porcentaje removido en la PTAP.

PARÁMETRO	UNIDAD	LIM. PERMISIBLE	VALOR ENTRADA PLANTA	VALOR FINAL PTAP	% REMOVIDO
POTENCIAL DE HIDROGENO	рН	6.5-9,0	7.99	7.91	1
TURBIEDAD	UNT	2	2.74	0.42	84,67
COLOR	UPC	15	24	3	87.5
SULFATOS	mg/L	300	2	1	50
HIERRO TOTAL	mg/L	0.3	0.15	0.03	80
DUREZA TOTAL	mg/L	300	67	67	0

ALCALINIDAD	mg/L	200	80	78	2.5
NITRATOS	mg/L	10	2.6	1.8	30.77
NITRITOS	mg/L	0.1	0.01	0.01	0
CONDUCTIVIDAD	μS/cm	1000	156	154	1.28
AEROBIOS MESOFILOS	UFC/100 ml	100	2000	2000	0
COLIFORMES TOTALES	UFC/100 ml	0	2000	2000	0
COLIFORMES FECALES	UFC/100 ml	0	2000	2000	0

La tabla anterior muestra el buen desempeño de la PTAP en la remoción de los parámetros fisicoquímicos, pero analizando los parámetros microbiológicos, al parecer la planta de tratamiento presenta fallas en el proceso de desinfección, probablemente en la formación de la biopelícula o capa gelatinosa llamada schmutzdecke, que según lo escrito en el título C, literal C.7.4.3.2 del RAS 2000, es un medio que se forma en la superficie de la filtración lenta y lugar donde ocurre un conjunto de procesos físicos y biológicos, que además del cernido de las partículas suspendidas en el agua en ayuda con la arena, destruye los microorganismos patógenos. También se ha descubierto que es capaz de metabolizar algunos contaminantes químicos, gracias al desarrollo de comunidades microbianas. El tiempo de formación de esta biopelícula germicida ocurre entre 15 y 20 días después de iniciado el filtro, tiempo que es importante tener en cuenta para efectos del control de las características microbiológicas del

agua que se suministra a la población y un tratamiento en filtros lentos de arena. Las etapas de pretratamiento permiten enfrentar las concentraciones de sólidos suspendidos y microorganismos presentes en el agua cruda, mientras que la filtración lenta en arena es una etapa de pulido o tratamiento final antes de la desinfección como barrera de seguridad. Por lo anterior podemos decir que la planta debe estar en la capacidad de remover gran parte de estos microorganismos, pero no está ocurriendo, y debe poner en alerta a los que administran el acueducto, pues si bien los filtros remueven bien la parte fisicoquímica del agua, en la remoción microbiológica está fallando.

5.4.10.4 Desinfección.

La desinfección se realizará con una solución de hipoclorito de calcio en solución que se aplicará en la cámara donde se vierte el agua filtrada, mediante un conducto que irá de la Sala de Cloración hasta la cámara citada.

La solución que se aplicará deberá garantizar una concentración de cloro residual libre de 2 ppm en la red de distribución, acorde con la norma nacional (resolución 2115 del 2015).

La anterior información desde Diseño de la PTAP Otaré, hasta desinfección fue suministrada por la Alcaldía Municipal de Ocaña, exceptuando las tablas N°34 y N°35, de igual manera los análisis fisicoquímicos y microbiológicos hechos al agua.

Citada la anterior información, cabe resaltar que en Otaré actualmente no se lleva a cabo ningún proceso de desinfección de tipo químico, lo que es preocupante, porque según los análisis realizados al agua tratada por la PTAP no cumple con los requisitos microbiológicos, resultandos que resultan alarmantes, pues se encuentran muy por encima de los límites establecidos, por lo tanto no se está acogiendo a lo señalo por el RAS 2000. El cual en el título C resalta lo siguiente

para la calidad del agua tratada : "El agua para consumo humano debe cumplir con los requisitos de calidad fisicoquímica y microbiológica establecidos en la Resolución 2115 de 2007 por medio de la cual los Ministerios de la Protección Social y de Ambiente, Vivienda y Desarrollo Territorial señalan características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano, o en su defecto el que lo reemplace.

La calidad del agua no debe deteriorarse ni caer por debajo de los límites establecidos allí, durante el periodo de tiempo para el cual se diseñó el sistema de abastecimiento.

5.4.11 Tanque de almacenamiento.

El sistema de acueducto de Otaré cuenta actualmente con un tanque de almacenamiento, ubicado en el mismo terreno de la planta de tratamiento (PTAP). Para este se hizo importante estudiar el tipo de tanque, localización del tanque y capacidad del tanque.

5.4.11.1 Tipo de tanque.

El tanque está constituido por concreto reforzado, presenta un buen estado y su funcionamiento es por gravedad ya que se encuentra en un nivel superior a la red de distribución. La salida cuenta con cuatro tubos para conducción en diámetro 2", los cuales constituyen el mismo número de redes para abastecer la población del corregimiento. Dentro de sus componentes cabe destacar el tubos de rebose en PVC y el de entrada en hierro de diámetros 3".

5.4.11.2 Localización del tanque.

El tanque se encuentra ubicado en un sitio estratégico, la diferencia que existe en las elevaciones entre el tanque y el corregimiento, para este caso el más crítico es la zona más elevada, se cuenta con una carga disponible de 26.83 metros, dato calculado de acuerdo al topografía realizada.

5.4.11.3 Capacidad del tanque.

La capacidad de regulación del tanque de almacenamiento la describe Castillo, L; calderón, J y Zambrano, N. (1997) facultad de ingenierías universidad del valle de la siguiente manera "La capacidad de regulación del tanque, es sumamente importante, ya que su capacidad de almacenamiento, ayuda a mantener un flujo constante de agua en las redes de distribución, durante las 24 horas del día, en condiciones normales de operación."(p. 333).

5.4.11.4 Capacidad total de almacenamiento.

Para calcular la capacidad real de almacenamiento del tanque, se necesitó las siguientes dimensiones como ancho útil, largo útil, las cotas de rebose, entrada y salida arrojadas en la topografía de dicho tanque. Ver anexo N°5. Tanque regulador

Largo útil = Ancho útil =
$$5.0 \text{ m}$$

Profundidad útil = 2.50 m

Por lo tanto el volumen actual de almacenamiento del tanque es el siguiente:

$$V = 5m*5m*3.50m = 87.5 m^3$$

Este valor será comparado con la capacidad de almacenamiento que deberá tener el tanque a futuro para cubrir la demanda de agua de manera eficiente y constante, con el fin de analizar si es necesario optimizar.

Fotografía 18. Vista general del tanque de almacenamiento Nota Fuente: autores de la investigación.

5.4.11.5 Cálculo de volumen de almacenamiento.

La determinación de la capacidad de un tanque de almacenamiento en la mayoría de los casos se dificulta debido al inconveniente que hay para conocer las variaciones de la demanda de la población, pues en la mayoría de los casos, no existen los elementos necesarios para hacer las mediciones respectivas.

Sin embargo, ante la situación anterior se puede determinar el volumen requerido, basado en el método planteado por la Universidad del Cauca donde Y es variación horaria del consumo medio diario en porcentaje y K corresponde al coeficiente para el consumo máximo horario, que depende del número de habitantes de la población.

$$Y = 100 + C* sen \Theta$$

$$C = (K-1)*100.$$

Para población menor o igual a 5000 habitantes, se utiliza un valor de K=1.3 y para el valor que corresponde a θ, un valor de ángulo por cada hora del día, es decir 360°/24, que es lo mismo que tener 15°, aclarando que se inicia en cero y luego el valor de θ aumenta de 15° en 15°.Castillo, L; calderón, J & Zambrano, N. (1997). ACUEDUCTOS. Popayán: Universidad del Cauca.

Trasladados al caso puntual de la población de Otaré, lugar donde se desarrolla la investigación, cuenta con un total de 479 habitantes, por lo tanto se utiliza un K=1.3

Ahora:

$$C = (1.8-1)*100 = 80$$

Obtenido el valor de C y o se calcula el consumo medio diario.

D. bruta = 347 Lit/hab.día

c.m.d =
$$\frac{D. Bruta}{1000}$$
 x habitantes = 166.213 m3/día = 6.926 m3/hora

Se procede a calcular el porcentaje de consumo medio diario por hora, el cual será:

c.m.d =
$$\frac{c.m.d \left(\frac{m3}{hora}\right)}{c.m.d \left(\frac{m3}{dig}\right)} \times 100 = 4.17 \%$$
 hora.

Obtenidos los cálculos se procede a calcular la tabla N°30. Donde nos muestra datos de porcentaje de almacenamiento por hora, así; con el consumo en porcentaje de c.m.d.

Esta tabla fue realizada con el mismo proceso metodológico que nos presentan Castillo, L; calderón, J y Zambrano, N, en el libro de acueducto, de la Universidad del Cauca, el cual nos permite obtener el valor del volumen que debe tener el tanque de Otaré, para que mantenga un flujo de agua constante durante las 24 horas del día, sin que el suministro se vea afectado en condiciones normales de operación.

Tabla 36.Porcentaje de almacenamiento según demanda de la población.

HORAS	θ	Υ	APORTE % c.m.d	CONSUMO % DE c.m.d	ALMACENAMIENTO %
0 a 1	0	100.00	100/24	4.1667	0.0000
1 a 2	15	120.71	^	5.0294	-0.8627
2 a 3	30	140.00		5.8333	-1.6667
3 a 4	45	156.57		6.5237	-2.3570
4 a 5	60	169.28		7.0534	-2.8868
5 a 6	75	177.27		7.3864	-3.2198
6 a 7	90	180.00		7.5000	-3.3333
7 a 8	105	177.27		7.3864	-3.2198
8 a 9	120	169.28		7.0534	-2.8868
9 a 10	135	156.57		6.5237	-2.3570
10 a 11	150	140.00		5.8333	-1.6667
11 a 12	165	120.71		5.0294	-0.8627
12 a 13	180	100.00	4.1667	4.1667	0.0000
13 a 14	195	79.29	1	3.3039	0.8627
14 a 15	210	60.00		2.5000	1.6667
15 a 16	225	43.43		1.8096	2.3570
16 a 17	240	30.72		1.2799	2.8868
17 a 18	255	22.73		0.9469	3.2198
18 a 19	270	20.00		0.8333	3.3333
19 a 20	285	22.73		0.9469	3.2198
20 a 21	300	30.72		1.2799	2.8868
21 a 22	315	43.43		1.8096	2.3570
22 a 23	330	60.00		2.5000	1.6667
23 a 24	345	79.29	\downarrow	3.3039	0.8627
Σ		2400		100	

Con los cálculos de porcentaje de almacenamiento, se hace una suma de los valores negativos y los positivos.

 Σ (-) -25.3192 % Σ (+) 25.3192 %

Luego se aplica en la siguiente fórmula:

V = 1.20 x c.m.d x Σ (-ó+) = 1.2 x 166.213 x 25.3192% = 50.50 m^3 .

5.4.12 Red de distribución.

En la realización de caminatas en conjunto con la junta de acción comunal del corregimiento de Otaré y demás conocedores, con el firme propósito de analizar cada uno de los componentes existentes del sistema: trazado, tipo de tubería, diámetros, reducciones, ampliaciones, hidrantes, daños antiguos, daños actuales y verificación de llegada de agua a las casas en todos los puntos estratégicos como son puntos bajos y altos para el cual se pudo definir los siguientes aspectos:

Otaré en la actualidad cuenta con cuatro redes de distribución, de las cuales funcionan de manera independiente, es decir; tienen conexión directa desde el tanque de almacenamiento y no han presentado daño, sus diámetros serán detallados objetivamente en el desarrollo de los cálculos y textos a continuación expuestos.

Diámetros de tuberías por redes:

La red 1 presenta una reducción en el punto 11 de 2" a 11/4" y en el punto 22 de 11/4 a 1". Ver anexo $N^{\circ}6$

La red 2 presenta una reducción en el punto 11(ver anexo topografía) de 2" a 11/4" y en el punto 44 una ampliación de 11/4 a 11/2". Ver anexo N°6

La red 3 presenta una reducción en el punto 11 de 2" a 11/4" y en el punto A una ampliación de 11/4 a 11/2". Ver anexo N°6

La red 4 no presenta reducciones, es decir en todo su trayecto cuenta con un diámetro de 2 pulgadas.

Las tuberías de las redes de distribución tienen las siguientes características:

El acueducto cuenta con una cobertura del 100%.

Existen cuatro válvulas de control.

El sistema de acueducto de Otaré no cuenta con micromedición.

No se hacen estudios de fugas.

El agua llega a todos los sectores de la cabecera de Otaré

Se presentan cortes en el servicio durante largas horas del día.

En la siguiente fotografía se muestra una vista general de la cabecera del corregimiento, la cual fue tomada desde la planta de tratamiento. Se demarco con una línea azul parte de la trayectoria de los cuatros tubos de conducción y el punto rojo al final de esta línea corresponde al lugar donde están ubicadas las válvulas de control, lugar donde se inicia las redes distribución.

Fotografía 19. Vista general de Otaré desde la PTAP. La línea azul corresponde a la línea de conducción y el punto rojo al lugar donde están ubicadas las válvulas de corte.

5.4.13 Evaluación hidráulica de la red actual.

Para la modelación hidráulica en EPANET de las redes actuales, es necesario conocer los siguientes caudales: q.m.d, QMD y QMH, presentados en la tabla N°37. Para el cálculo de estos se utilizó los datos de la tabla N° 38, así como la información de *cálculo de proyecciones* (páginas 29-30)

Tabla 37. *Habitantes por red*

# Red	# Casas	Habitantes por red
1	32	112
2	41	132
3	22	83
4	45	152
Total	140	479

Cálculos de caudales:

Tabla 38.Caudales necesarios para la modelación en EPANET (red actual).

CAUDAL TOTAL POR RED (L/s)					
RED	qmd	QMD	QMH		
1	0.27	0.35	0.57		
2	1.08	1.40	2.24		
3	0.20	0.26	0.42		
4	0.37	0.48	0.77		
TOTAL	1.92	2.50	4.00		

Nota Fuente: Autores de la investigación.

Con los datos obtenidos se realiza la modelación en EPANET versión 2.0, con el objeto de determinar el comportamiento de las redes teniendo en cuenta las condiciones actuales de consumo, y garantizado el QMH en cada red como lo estipula el RAS. Los resultados de la evaluación se presentan en las siguientes tablas y para un análisis más detallado se muestra los gráficos de presiones correspondientes a cada red.

A continuación se detallan los parámetros de diseño para la modelación del programa:

Método utilizado = Hardy Cross

Fórmula aplicada = Darcy Weisbach

Rugosidad PVC = 0.0015 mm

Velocidad máxima = 6 m/s

Velocidad mínima = 0.5 m/s

Caudal de diseño = QMH (mirar tabla $N^{\circ}38$)

PRIMERA PANTALLA

Número de nudos de la red a evaluar

Número de tramos de la red a evaluar

Factor de mayoración

Máxima pérdida en m/km

Diferencia de caudal para cierre de cálculos en L/s

SEGUNDA PANTALLA

Nudo inicial

Tramo entre nudos

Longitud del tramo

Diámetro del tramo

Coeficiente de fricción de Darcy Weisbach

TERCERA PANTALLA

Cota clave de cada nudo

Caudal de salida en cada nudo

DATOS DE SALIDA

El programa después de hacer sus iteraciones y ajustar los caudales en los tramos y el sentido de flujo de los mismos, presenta los siguientes resultados adicionales:

Caudal del tramo corregido

Velocidad del tramo

Pérdida en m/km del tramo

Caudal de salida en el nudo

Cota clave del nudo

Presión de servicio en el nudo

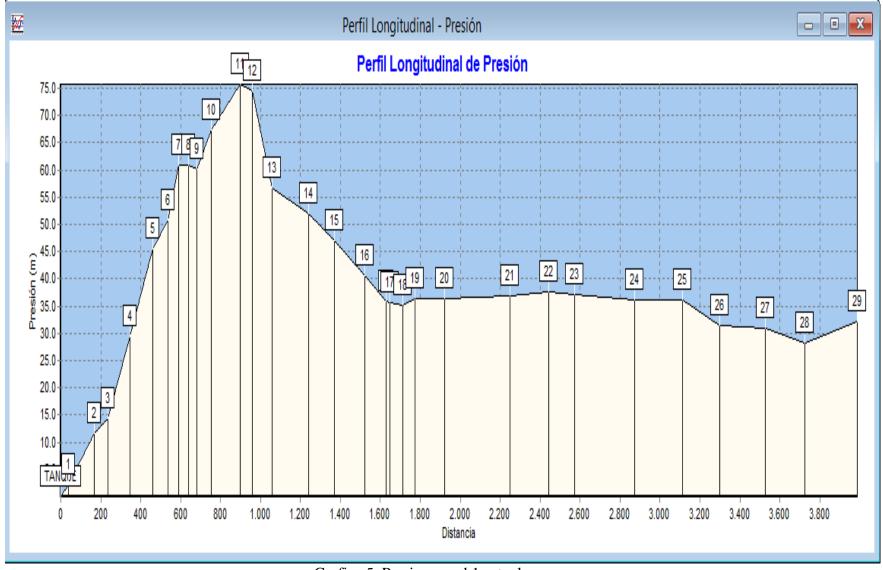
5.4.13.1.1 Modelación de la red 1 actual.

Tabla 39.Datos de entrada de la red 1 actual.

	CALCULO RED 1 EPANET 2.0								
	DATOS DE ENTRADA								
II	1	Nodo I	Nodo F	Longitud m	Diámetro mm	Rugosidad	Caudal L/s		
		TANQUE	1	7.383	54.58	0.0015	0.033		
		1	2	24.748	54.58	0.0015	0.033		
		2	3	12.981	54.58	0.0015	0.033		
	\bigcirc	3	4	23.443	54.58	0.0015	0.033		
	0	4	5	27.225	54.58	0.0015	0.033		
	nd	5	6	14.559	54.58	0.0015	0.033		
	onducción	6	7	14.072	54.58	0.0015	0.033		
	$\mathcal{C}_{\mathcal{C}}$	7	8	8.862	54.58	0.0015	0.033		
	<u> </u>	8	9	5.826	54.58	0.0015	0.033		
	ח	9	10	15.25	54.58	0.0015	0.033		
		10	11	27.252	54.58	0.0015	0.033		
		11	12	10.533	54.58	0.0015	0.033		
		12	13	25.314	54.58	0.0015	0.033		

	13	14	34.505	54.58	0.0015	0.033
	14	15	25.369	54.58	0.0015	0.033
	15	16	8.953	54.58	0.0015	0.033
	16	Α	20.263	54.58	0.0015	0.033
	Α	17	4.487	54.58	0.0015	0.0475
	17	18	5.803	54.58	0.0015	0.0475
-	18	19	7.325	54.58	0.0015	0.0475
Red	19	20	10.62	54.58	0.0015	0.0475
d c	20	21	22.153	54.58	0.0015	0.0475
de	21	22	22.887	54.58	0.0015	0.0475
di	22	23	23.985	54.58	0.0015	0.0475
str	23	24	55.354	54.58	0.0015	0.0475
ibi	24	25	19.015	54.58	0.0015	0.0475
distribución	25	26	8.281	54.58	0.0015	0.0475
iói	26	27	22.576	54.58	0.0015	0.0475
)	27	28	23.027	54.58	0.0015	0.0475
	28	29	33.378	54.58	0.0015	0.0475

Tabla 40.Cálculos hidráulicos obtenidos en las líneas de la red1 actual.


	CALCULO RED 1 EPANET 2.0							
	CALCULOS	OBTENIDOS	EN LINEAS					
ID tubouío	Velocidad Perd. Unit. Factor d							
ID tubería	Caudal L/s	m/s	m/km	Fricción				
PVC1	0.57	0.28	2.59	0.033				
PVC2	0.57	0.28	2.59	0.033				
PVC3	0.57	0.28	2.59	0.033				
PVC4	0.57	0.28	2.59	0.033				
PVC5	0.57	0.28	2.59	0.033				
PVC6	0.57	0.28	2.59	0.033				
PVC7	0.57	0.28	2.59	0.033				
PVC8	0.57	0.28	2.59	0.033				
PVC9	0.57	0.28	2.59	0.033				
PVC10	0.57	0.28	2.59	0.033				
PVC11	0.57	0.28	2.59	0.033				
PVC12	0.57	0.72	23.96	0.029				
PVC13	0.57	0.72	23.96	0.029				
PVC14	0.57	0.72	23.96	0.029				

PVC15	0.57	0.72	23.96	0.029
PVC16	0.57	0.72	23.96	0.029
PVC17	0.57	0.72	23.96	0.029
PVC18	0.57	0.72	23.96	0.029
PVC19	0.57	0.72	23.96	0.029
PVC20	0.57	0.72	23.96	0.029
PVC21	0.57	0.72	23.96	0.029
PVC22	0.57	0.72	23.96	0.029
PVC23	0.57	0.72	23.96	0.029
PVC24	0.57	1.12	69.08	0.027
PVC25	0.57	1.12	69.08	0.027
PVC26	0.57	1.12	69.08	0.027
PVC27	0.57	1.12	69.08	0.027
PVC28	0.57	1.12	69.08	0.027
PVC29	0.57	1.12	69.08	0.027
PVC30	0.57	1.12	69.08	0.027

Tabla 41.Cálculos hidráulicos obtenidos en los nodos de la red 1 actual.

CALCULO RED 1 EPANET 2.0							
CALCULOS OBTENIDOS EN NODOS							
ID Nodo	Cota m	Altura m	Presión m				
TANQUE	596.471						
1	594.32	596.45	2.13				
2	584.86	596.39	11.53				
3	581.91	596.35	14.44				
4	566.93	596.29	29.36				
5	550.79	596.22	45.43				
6	545.53	596.18	50.65				
7	535.14	596.15	61.01				
8	535.14	596.13	60.99				
9	535.96	596.11	60.15				
10	528.68	596.07	67.39				
11	520.25	596.00	75.75				
12	521.34	596.05	74.71				
13	538.43	595.14	56.71				

14	542.26	594.31	52.05
15	546.63	593.71	47.08
16	552.96	593.49	40.53
Α	557.03	593.01	35.98
17	557.28	592.90	35.62
18	557.63	592.76	35.13
19	556.08	592.58	36.50
20	555.83	592.38	36.55
21	554.83	591.80	36.97
22	553.67	591.25	37.58
23	552.41	589.59	37.18
24	549.68	585.77	36.09
25	548.28	584.46	36.18
26	552.52	583.88	31.36
27	551.49	582.32	30.83
28	552.56	580.73	28.17
29	546.24	578.43	32.19

Grafica 5. Presiones red 1 actual.

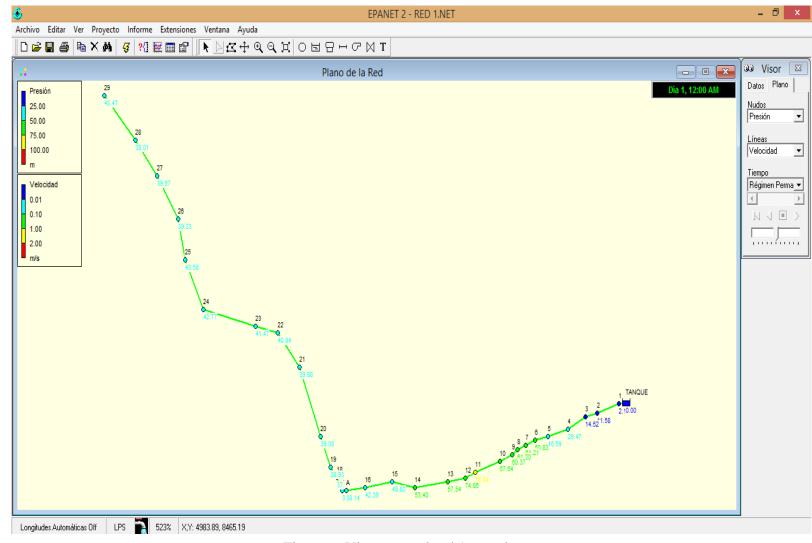


Figura 6. Vista general red 1 actual.

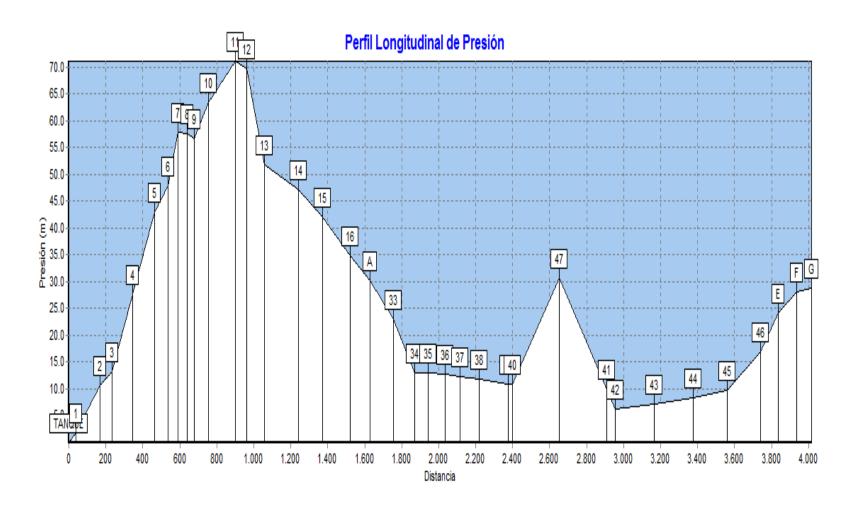
5.4.13.1 .2Modelación de la red 2 actual.

Tabla 42.Datos de entrada de la red 2 actual.

		CALCU	LO RED 2	EPANET 2.0)	
		DA	TOS DE EN	ITRADA		
ID tubería	Nodo I	Nodo F	Longitud m	Diámetro mm	Rugosidad	Caudal Lps
	TANQUE	1	7.383	50.8	0.0015	0.028
	1	2	24.748	50.8	0.0015	0.028
	2	3	12.981	50.8	0.0015	0.028
	3	4	23.443	50.8	0.0015	0.028
\bigcirc	4	5	27.225	50.8	0.0015	0.028
10	5	6	14.559	50.8	0.0015	0.028
ıdı	6	7	14.072	50.8	0.0015	0.028
Conducción	7	8	8.862	50.8	0.0015	0.028
<u>C</u> .	8	9	5.826	50.8	0.0015	0.028
ón	9	10	15.25	50.8	0.0015	0.028
_	10	11	27.252	50.8	0.0015	0.028
	11	12	10.533	31.75	0.0015	0.028
	12	13	25.314	31.75	0.0015	0.028
	13	14	34.505	31.75	0.0015	0.028
	14	15	25.369	31.75	0.0015	0.028
	15	16	28.953	31.75	0.0015	0.028
	16	Α	20.263	31.75	0.0015	0.028
_	Α	33	23.618	31.75	0.0015	0.028
Red de distribució	33	34	21.693	31.75	0.0015	0.028
d o	34	35	1.045	31.75	0.0015	0.028
de	35	36	6.899	31.75	0.0015	0.22
di:	36	37	6.686	31.75	0.0015	0.22
str	37	38	10.757	31.75	0.0015	0.22
jb	38	39	16.383	31.75	0.0015	0.22
uc	39	40	1.862	31.75	0.0015	0.22
<u>10</u> 1	40	41	6.765	31.75	0.0015	0.08
n	42	41	4.72	31.75	0.0015	0.08
	43	42	10.624	31.75	0.0015	0.08
	44	43	11.227	31.75	0.0015	0.08
	44	45	11.763	38.1	0.0015	0.11
	45	46	11.179	38.1	0.0015	0.11
	46	Е	8.614	38.1	0.0015	0.11
	Е	F	4.507	38.1	0.0015	0.11
	F	G	3.933	38.1	0.0015	0.11

41	47	15.626	31.75	0.0015	0.08
34	44	25.691	31.75	0.0015	0.08

Tabla 43.Cálculos hidráulicos obtenidos en las líneas de la red 2 actual.


	CVICIII	O RED 2 EPA	NET 2 0	
		O RED 2 EPA		
		Velocidad	Perd. Unit.	Factor de
ID tubería	Caudal L/s	m/s	m/km	Fricción
PVC1	2.24	1.11	28.20	0.023
PVC2	2.24	1.11	28.20	0.023
PVC3	2.24	1.11	28.20	0.023
PVC4	2.24	1.11	28.20	0.023
PVC5	2.24	1.11	28.20	0.023
PVC6	2.24	1.11	28.20	0.023
PVC7	2.24	1.11	28.20	0.023
PVC8	2.24	1.11	28.20	0.023
PVC9	2.24	1.11	28.20	0.023
PVC10	2.24	1.11	28.20	0.023
PVC11	2.24	1.11	28.20	0.023
PVC12	2.24	1.15	28.20	0.026
PVC13	2.24	1.15	28.20	0.026
PVC14	2.24	1.15	28.20	0.026
PVC15	2.24	1.15	28.20	0.026
PVC16	2.24	1.15	28.20	0.026
PVC17	2.24	1.15	28.20	0.026
PVC18	2.24	1.15	28.20	0.026
PVC19	2.24	1.15	28.20	0.026
PVC20	0.91	1.15	54.01	0.026
PVC21	0.91	1.15	54.01	0.026
PVC22	0.91	1.15	54.01	0.026
PVC23	0.91	1.15	54.01	0.026
PVC24	0.91	1.15	54.01	0.026
PVC25	0.91	1.15	54.01	0.026
PVC26	0.91	1.15	54.01	0.026
PVC27	0.01	0.01	0.07	0.032
PVC28	0.01	0.01	0.07	0.032
PVC29	0.01	0.01	0.07	0.032
PVC30	1.34	1.18	44.92	0.024
PVC31	1.34	1.18	44.92	0.024

PVC32	1.34	1.18	44.92	0.024	
PVC33	1.34	1.18	44.92	0.024	
PVC34	1.34	1.18	44.92	0.024	
PVC35	1.34	1.14	53.18	0.026	
PVC36	1.34	1.68	106.04	0.023	

Tabla 44.Cálculos hidráulicos obtenidos en los nodos de la red 2 actual.

CALCULO RED 2 EPANET 2.0 CALCULOS OBTENIDOS EN NODOS					
-					
ID Nodo	Cota m	Altura m	Presión m		
TANQUE	596.471				
1	594.32	596.43	2.11		
2	584.86	596.31	11.45		
3	581.91	596.25	14.34		
4	566.93	596.14	29.21		
5	550.79	596.00	45.21		
6	545.53	593.36	47.83		
7	535.14	592.96	57.82		
8	535.14	592.71	57.57		
9	535.96	592.55	56.59		
10	528.68	592.12	63.44		
11	520.25	591.35	71.10		
12	521.34	591.05	69.71		
13	538.43	590.34	51.91		
14	542.26	592.38	50.12		
15	546.63	591.23	44.60		
16	552.96	589.91	36.95		
Α	557.03	588.99	31.96		
33	563.45	586.55	23.10		
34	567.7	580.76	13.06		
35	567.69	580.71	13.02		
36	567.66	580.33	12.67		
37	567.62	579.97	12.35		
38	567.59	579.39	11.80		
39	567.56	578.51	10.95		
40	567.52	578.40	10.88		
41	568.08	578.04	9.96		
42	571.72	578.04	6.32		
43	570.74	578.04	7.30		

44	569.64	578.04	8.40
45	567.64	577.51	9.87
46	560.02	577.01	16.99
Ε	552.41	576.62	24.21
F	548.31	576.42	28.11
G	547.36	576.24	28.88
47	546.63	577.21	30.58

Grafica 5. Presiones red 2 actual.

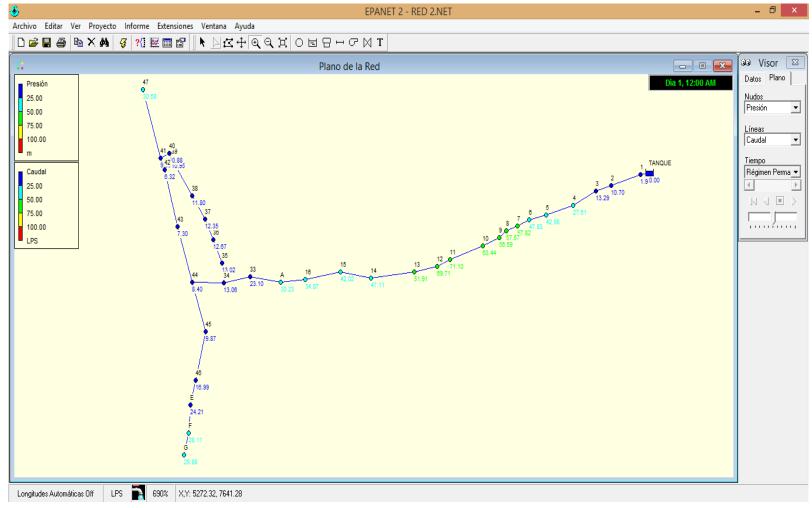


Figura 7. Vista general de la red 2.

5.4.13.1 .3Modelación de la red 3 actual.

Tabla 45.Datos de entrada de la red 3 actual.

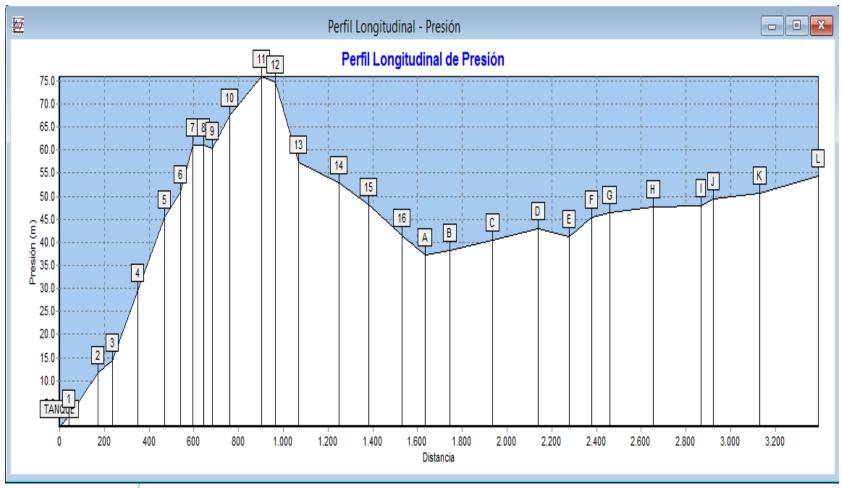

CALCULO RED 3 EPANET 2.0 DATOS DE ENTRADA						
ID tubería	Nodo I	Nodo F	Longitud m	Diámetro mm	Rugosidad	Caudal L/s
	TANQUE	1	7.383	54.58	0.0015	0.024
	1	2	24.748	54.58	0.0015	0.024
	2	3	12.981	54.58	0.0015	0.024
	3	4	23.443	54.58	0.0015	0.024
\circ	4	5	27.225	54.58	0.0015	0.024
10,	5	6	14.559	54.58	0.0015	0.024
Conducción	6	7	14.072	54.58	0.0015	0.024
nc	7	8	8.862	54.58	0.0015	0.024
Ci.	8	9	5.826	54.58	0.0015	0.024
ón	9	10	15.25	54.58	0.0015	0.024
_	10	11	27.252	54.58	0.0015	0.024
	11	12	10.533	54.58	0.0015	0.024
	12	13	25.314	54.58	0.0015	0.024
	13	14	34.505	54.58	0.0015	0.024
	14	15	25.369	54.58	0.0015	0.024
	15	16	28.953	54.58	0.0015	0.024
	16	Α	20.263	54.58	0.0015	0.024
	Α	В	8.193	54.58	0.0015	0.038
77	В	С	18.205	54.58	0.0015	0.038
ec ?	С	D	17.767	54.58	0.0015	0.038
1 d	D	Е	26.544	54.58	0.0015	0.038
e (E	F	4.507	54.58	0.0015	0.038
dis	F	G	3.933	54.58	0.0015	0.038
Ħ.	G	Н	7.606	54.58	0.0015	0.038
Red de distribución	1	Н	16.806	54.58	0.0015	0.038
C1(1	J	5.26	54.58	0.0015	0.038
ón	J	K	15.121	54.58	0.0015	0.038
	K	L	21.233	54.58	0.0015	0.038

Tabla 46.Cálculos hidráulicos obtenidos en las líneas de la red 3 actual.

CALCULO RED 3 EPANET 2.0 CALCULOS OBTENIDOS EN LINEAS						
_	CALCULUS			Factor de		
ID tubería	Caudal L/s	Velocidad	Perd. Unit.			
D) /C1	0.42	m/s	m/km	Fricción		
PVC1	0.42	0.21	1.54	0.036		
PVC2	0.42	0.21	1.54	0.036		
PVC3	0.42	0.21	1.54	0.036		
PVC4	0.42	0.21	1.54	0.036		
PVC5	0.42	0.21	1.54	0.036		
PVC6	0.42	0.21	1.54	0.036		
PVC7	0.42	0.21	1.54	0.036		
PVC8	0.42	0.21	1.54	0.036		
PVC9	0.42	0.21	1.54	0.036		
PVC10	0.42	0.21	1.54	0.036		
PVC11	0.42	0.21	1.54	0.036		
PVC12	0.42	0.53	14.12	0.031		
PVC13	0.42	0.53	14.12	0.031		
PVC14	0.42	0.53	14.12	0.031		
PVC15	0.42	0.53	14.12	0.031		
PVC16	0.42	0.53	14.12	0.031		
PVC17	0.42	0.53	14.12	0.031		
PVC18	0.42	0.37	5.97	0.033		
PVC19	0.42	0.37	5.97	0.033		
PVC20	0.42	0.37	5.97	0.033		
PVC21	0.42	0.37	5.97	0.033		
PVC22	0.42	0.37	5.97	0.033		
PVC23	0.42	0.37	5.97	0.033		
PVC24	0.42	0.37	5.97	0.033		
PVC25	0.42	0.37	5.97	0.033		
PVC26	0.42	0.37	5.97	0.033		
PVC27	0.42	0.37	5.97	0.033		
PVC28	0.42	0.37	5.97	0.033		

Tabla 47.Cálculos hidráulicos obtenidos en los nodos de la red 3 actual.

CALCULO RED 3 EPANET 2.0					
CALCULOS OBTENIDOS EN NODOS					
ID Nodo	Cota m	Altura m	Presión m		
TANQUE	596.471				
1	594.32	596.47	2.15		
2	584.86	596.45	11.59		
3	581.91	596.45	14.54		
4	566.93	596.43	29.50		
5	550.79	596.42	45.63		
6	545.53	596.41	50.88		
7	535.14	596.28	61.14		
8	535.14	596.40	61.26		
9	535.96	596.29	60.33		
10	528.68	596.23	67.55		
11	520.25	596.37	76.12		
12	521.34	596.32	74.98		
13	538.43	596.18	57.75		
14	542.26	595.99	53.73		
15	546.63	595.86	49.23		
16	552.96	595.70	42.74		
Α	557.03	595.59	38.56		
В	555.78	594.10	38.32		
С	553.61	593.99	40.38		
D	551.02	593.88	42.86		
Ε	552.41	593.72	41.31		
F	548.31	593.70	45.39		
G	547.36	593.67	46.31		
Н	546.06	593.63	47.57		
I	545.74	593.53	47.79		
J	544.02	593.50	49.48		
K	542.89	593.41	50.52		
L	539.00	593.28	54.28		

Grafica 6. Presiones red 3 actual

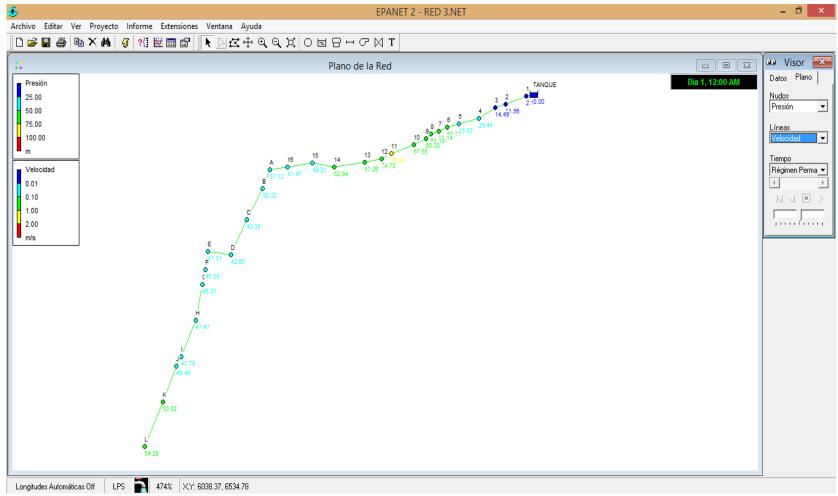


Figura 8. Vista general de la red 3 actual.

5.4.12.1 .4Modelación de la red 4 actual.

Tabla 48.

Datos de entrada de la red 4 actual.

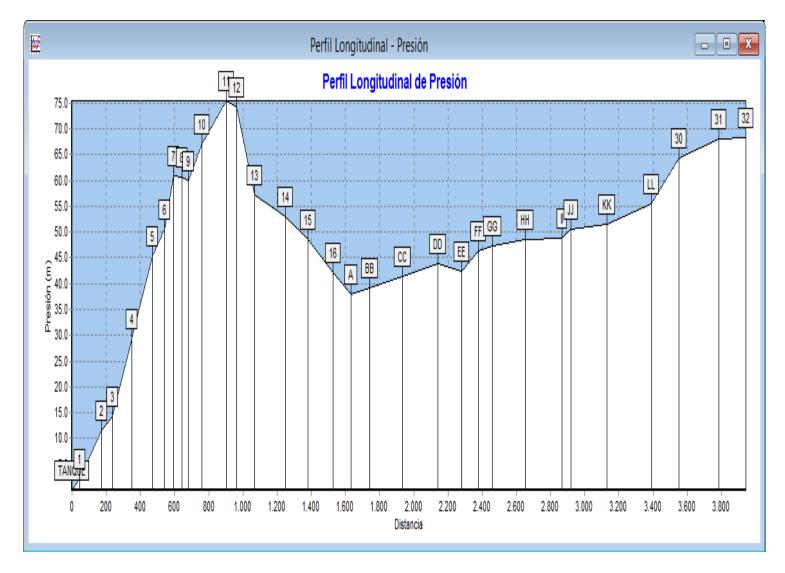

			O RED 4 EPA			
DATOS DE ENTRADA						
ID tuberia	Nodo I	Nodo F	Longitud m	Diámetro mm	Rugosidad	Caudal L/s
	TANQUE	1	7.383	50.8	0.0015	0.045
	1	2	24.748	50.8	0.0015	0.045
	2	3	12.981	50.8	0.0015	0.045
	3	4	23.443	50.8	0.0015	0.045
\bigcirc	4	5	27.225	50.8	0.0015	0.045
10	5	6	14.559	50.8	0.0015	0.045
Conducción	6	7	14.072	50.8	0.0015	0.045
uc	7	8	8.862	50.8	0.0015	0.045
<u>C</u> :	8	9	5.826	50.8	0.0015	0.045
ón	9	10	15.25	50.8	0.0015	0.045
	10	11	27.252	50.8	0.0015	0.045
	11	12	10.533	50.8	0.0015	0.045
	12	13	25.314	50.8	0.0015	0.045
	13	14	34.505	50.8	0.0015	0.045
	14	15	25.369	50.8	0.0015	0.045
	15	16	28.953	50.8	0.0015	0.045
	16	Α	20.263	50.8	0.0015	0.045
	Α	BB	8.193	50.8	0.0015	0.055
	ВВ	CC	18.205	50.8	0.0015	0.055
	CC	DD	17.767	50.8	0.0015	0.055
\aleph	DD	EE	26.544	50.8	0.0015	0.055
ed	EE	FF	4.507	50.8	0.015	0.055
d	FF	GG	3.933	50.8	0.0015	0.055
C)	GG	HH	7.606	50.8	0.0015	0.055
Red de distribución	II	НН	16.806	50.8	0.0015	0.055
<u> </u>	II	JJ	5.26	50.8	0.0015	0.055
'n	JJ	KK	15.121	50.8	0.0015	0.055
Cić	KK	LL	21.233	50.8	0.0015	0.055
'n	LL	30	18.25	50.8	0.0015	0.055
	30	31	31.42	50.8	0.0015	0.055
	31	32	0.86	50.8	0.0015	0.055

Tabla 49.Cálculos hidráulicos obtenidos en las líneas de la red 4 actual.

	CALCULO RED 4 EPANET 2.0						
	CALCULOS OBTENIDOS EN LINEAS						
ID tuberia	Caudal L/s	Velocidad	Perd. Unit.	Factor de			
ib tabella	Caddai L/3	m/s	m/km	Fricción			
PVC1	0.77	0.38	4.36	0.030			
PVC2	0.77	0.38	4.36	0.030			
PVC3	0.77	0.38	4.36	0.030			
PVC4	0.77	0.38	4.36	0.030			
PVC5	0.77	0.38	4.36	0.030			
PVC6	0.77	0.38	4.36	0.030			
PVC7	0.77	0.38	4.36	0.030			
PVC8	0.77	0.38	4.36	0.030			
PVC9	0.77	0.38	4.36	0.030			
PVC10	0.77	0.38	4.36	0.030			
PVC11	0.77	0.38	4.36	0.030			
PVC12	0.77	0.38	4.36	0.030			
PVC13	0.77	0.38	4.36	0.030			
PVC14	0.77	0.38	4.36	0.030			
PVC15	0.77	0.38	4.36	0.030			
PVC16	0.77	0.38	4.36	0.030			
PVC17	0.77	0.38	4.36	0.030			
PVC18	0.77	0.38	4.36	0.030			
PVC19	0.77	0.38	4.36	0.030			
PVC20	0.77	0.38	4.36	0.030			
PVC21	0.77	0.38	4.36	0.030			
PVC22	0.77	0.38	4.36	0.030			
PVC23	0.77	0.38	4.36	0.030			
PVC24	0.77	0.38	4.36	0.030			
PVC25	0.77	0.38	4.36	0.030			
PVC26	0.77	0.38	4.36	0.030			
PVC27	0.77	0.38	4.36	0.030			
PVC28	0.77	0.38	4.36	0.030			
PVC29	0.77	0.38	4.36	0.030			
PVC30	0.77	0.38	4.36	0.030			
PVC31	0.77	0.38	4.36	0.030			

Tabla 50.Cálculos hidráulicos obtenidos en los nodos de la red 4 actual.

CALCULO RED 4 EPANET 2.0				
CALCU	JLOS OBTEN	IDOS EN NO	DDOS	
ID Nodo	Cota m	Altura m	Presión m	
TANQUE	596.471			
1	594.32	596.46	2.14	
2	584.86	596.42	11.56	
3	581.91	596.40	14.49	
4	566.93	596.36	29.43	
5	550.79	596.31	45.52	
6	545.53	596.29	50.76	
7	535.14	596.26	61.12	
8	535.14	596.25	61.11	
9	535.96	596.24	60.28	
10	528.68	596.21	67.53	
11	520.25	596.17	75.92	
12	521.34	596.15	74.81	
13	538.43	596.11	57.68	
14	542.26	596.05	53.79	
15	546.63	596.01	49.38	
16	552.96	595.96	43.00	
Α	557.03	595.93	38.90	
BB	555.78	595.01	39.23	
EE	552.41	594.74	42.33	
DD	551.02	594.86	43.84	
CC	553.61	594.93	41.32	
GG	547.36	594.70	47.34	
FF	548.31	594.72	46.41	
НН	546.06	594.67	48.61	
II	545.74	594.60	48.86	
JJ	544.02	594.57	50.55	
KK	542.89	594.51	51.62	
LL	539.00	594.42	55.42	
30	530.05	594.34	64.29	
31	526.09	589.20	63.11	
32	526.01	589.20	63.19	

Grafica 7. Presiones red 4 actual.

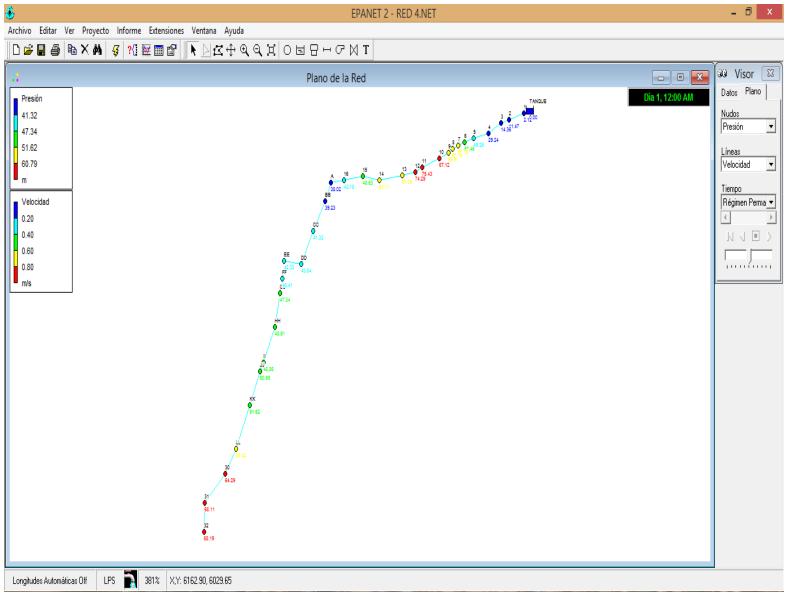


Figura 9. Vista general red 4 actual

184

5.4.14Optimización del sistema de acueducto.

5.4.14.1 Red de distribución.

Mirando los parámetros exigidos en el Reglamento Técnico Del Sector De Agua Potable Y

Saneamiento Básico - RAS numeral (B.7.4.5) donde establece presiones mínimas de 10 m.c.a y

máximas 60 m.c.a y el numeral (B.7.4.6.1) donde señala diámetro mínimo de 2.5" para Nivel

de Complejidad Bajo, con lo cual se concluye que los diámetros actuales y las presiones

obtenidas anteriormente en la tabla N°50, página 109 no cumplen con la normatividad, dando

motivo a la optimización del sistema.

El RAS recomienda diseñar la red con un sistema de mallas, ya que es el más conveniente

desde el punto de vista de eficiencia y de garantía del servicio, Pues; ante el posible daño en uno

de sus tramos, la cantidad de usuarios afectados será menor, al haber rutas alternas para la

circulación del flujo a través de las mallas, por la cual está conformada la red de distribución.

En el diseño de esta red se tuvo en cuenta lo establecido en la Normatividad, en el cual se

debe utilizar como parámetro de diseño el QMH futuro para atender la demanda requerida en

condiciones normales de uso establecido en el RAS numeral B.7.4.2

A continuación se muestran los parámetros utilizados para modelación del programa:

Método utilizado = Hardy Cross

Fórmula aplicada = Darcy Weisbach

Rugosidad PVC = 0.0015 mm

Velocidad máxima = 6 m/s

Velocidad mínima = 0.5 m/s

Caudal de diseño = QMH año 2040 (2.30 L/s)

PRIMERA PANTALLA

Número de nudos de la red a evaluar

Número de tramos de la red a evaluar

Factor de mayoración

Máxima pérdida en m/km

Diferencia de caudal para cierre de cálculos en L/s

SEGUNDA PANTALLA

Nudo inicial

Tramo entre nudos

Longitud del tramo

Diámetro del tramo

Coeficiente de fricción de Darcy Weisbach

TERCERA PANTALLA

Cota clave de cada nudo

Caudal de salida en cada nudo

DATOS DE SALIDA

El programa después de hacer sus iteraciones y ajustar los caudales en los tramos y el sentido de flujo de los mismos, presenta los siguientes resultados adicionales:

Caudal del tramo corregido

Velocidad del tramo

Pérdida en m/km del tramo

Caudal de salida en el nudo

Cota clave del nudo

Presión de servicio en el nudo

Tabla 51.Datos de entrada de la red optimizada.

	C		RED DISTRIBU DATOS DE EN	CIÓN EPANET	2.0	
ID tubería	Nodo I	Nodo F	Longitud m	Diámetro mm	Rugosidad	Caudal L/s
	TANQUE	1	7.383	83.42	0.0015	0.135
	1	2	24.748	83.42	0.0015	0.135
	2	3	12.981	83.42	0.0015	0.135
	3	4	23.443	83.42	0.0015	0.135
	4	5	27.225	83.42	0.0015	0.135
	5	6	14.559	83.42	0.0015	0.135
\mathcal{O}	6	7	14.072	83.42	0.0015	0.135
on	7	8	8.862	83.42	0.0015	0.135
Conducción	8	9	5.826	83.42	0.0015	0.135
100	9	10	15.250	83.42	0.0015	0.135
216	10	11	27.252	83.42	0.0015	0.135
'n	11	12	10.533	83.42	0.0015	0.135
	12	13	25.314	83.42	0.0015	0.135
	13	14	34.505	83.42	0.0015	0.135
	14	15	25.369	83.42	0.0015	0.135
	15	16	28.953	83.42	0.0015	0.135
	16	Α	20.263	83.42	0.0015	0.135
	Α	18	10.29	67.45	0.0015	0.172
×	18	19	7.325	67.45	0.0015	0.172
ed	19	20	10.620	67.45	0.0015	0.172
Red de distribución	20	21	22.153	67.45	0.0015	0.172
dis	21	22	22.887	67.45	0.0015	0.247
iri.	22	23	23.985	67.45	0.0015	0.247
ouc	23	24	55.354	67.45	0.0015	0.208
ión	24	25	19.015	67.45	0.0015	0.208
	25	26	8.281	67.45	0.0015	0.208
	26	27	22.576	67.45	0.0015	0.208
	27	28	23.027	67.45	0.0015	0.208
di	28	29	33.378	67.45	0.0015	0.208
stı	Α	В	8.193	67.45	0.0015	0.115
di	В	С	18.205	67.45	0.0015	0.115
Red de distribución	С	D	17.767	67.45	0.0015	0.115

D	Е	26.544	67.45	0.0015	0.115
40	21	39.544	67.45	0.0015	0.195
47	23	17.249	67.45	0.0015	0.377
Α	33	23.618	67.45	0.0015	0.575
33	34	21.693	67.45	0.0015	0.575
44	34	25.691	67.45	0.0015	0.693
35	34	1.045	67.45	0.0015	0.076
35	36	6.899	67.45	0.0015	0.076
36	37	6.686	67.45	0.0015	0.076
37	38	10.757	67.45	0.0015	0.076
38	39	16.383	67.45	0.0015	0.076
39	40	1.862	67.45	0.0015	0.076
40	41	6.765	67.45	0.0015	0.652
41	47	15.626	67.45	0.0015	0.377
42	41	4.720	67.45	0.0015	0.034
43	42	10.624	67.45	0.0015	0.034
44	43	11.227	67.45	0.0015	0.034
44	45	11.763	67.45	0.0015	0.196
45	46	11.179	67.45	0.0015	0.196
46	Ε	8.614	67.45	0.0015	0.196
Ε	F	4.507	67.45	0.0015	0.104
F	G	3.933	67.45	0.0015	0.104
G	Н	7.606	67.45	0.0015	0.104
I	Н	16.806	67.45	0.0015	0.104
I	J	5.260	67.45	0.0015	0.104
J	K	15.121	67.45	0.0015	0.104
K	L	21.233	67.45	0.0015	0.104
L	30	18.250	67.45	0.0015	0.104
30	31	31.420	67.45	0.0015	0.104
31	32	0.860	67.45	0.0015	0.104

Tabla 52.Cálculos hidráulicos obtenidos en las líneas de la red optimizada.

CA			ÓN EPANET 2	2.0
	CALCULOS	OBTENIDOS		Footon do
ID tubería	Caudal L/s	Velocidad m/s	Perd. Unit. m/km	Factor de Fricción
PVC1	2.30	0.42	2.78	0.026
PVC1 PVC2		0.42		0.026
	2.30 2.30	0.42	2.78	
PVC3		_	2.78	0.026
PVC4 PVC5	2.30 2.30	0.42	2.78	0.026 0.026
PVC5 PVC6		0.42	2.78	0.026
	2.30	0.42	2.78	
PVC7	2.30	0.42	2.78	0.026
PVC8	2.30	0.42	2.78	0.026
PVC9	2.30	0.42	2.78	0.026
PVC10	2.30	0.42	2.78	0.026
PVC11	2.30	0.42	2.78	0.026
PVC12	2.30	0.42 0.42	2.78	0.026
PVC13 PVC14	2.30	_	2.78	0.026 0.026
	2.30	0.42	2.78	
PVC15	2.30	0.42	2.78	0.026
PVC16	2.30	0.42	2.78	0.026
PVC17	2.30	0.42	2.78	0.026
PVC18	0.78	0.22	1.16	0.032
PVC19	0.78	0.22	1.16	0.032
PVC20	0.78	0.22	1.16	0.032
PVC21	0.78	0.22	1.16	0.032
PVC22	0.56	0.16	0.66	0.036
PVC23	0.56	0.16	0.66	0.036
PVC24	1.15	0.32	2.28	0.029
PVC25	1.15	0.32	2.28	0.029
PVC26	1.15	0.32	2.28	0.029
PVC27	1.15	0.32	2.28	0.029
PVC28	1.15	0.32	2.28	0.029
PVC29	1.15	0.32	2.28	0.029
PVC30	0.75	0.21	1.09	0.033
PVC31	0.75	0.21	1.09	0.033
PVC32	0.75	0.21	1.09	0.033
PVC33	0.75	0.21	1.09	0.033
PVC34	0.22	0.06	0.08	0.029
PVC35	0.59	0.17	0.72	0.035

PVC36	0.78	0.22	1.16	0.032
PVC37	0.78	0.22	1.16	0.032
PVC38	0.78	0.22	1.16	0.032
PVC39	0.31	0.09	0.21	0.038
PVC40	0.31	0.09	0.21	0.038
PVC41	0.31	0.09	0.21	0.037
PVC42	0.31	0.09	0.21	0.038
PVC43	0.31	0.09	0.21	0.037
PVC44	0.31	0.09	0.2	0.036
PVC45	0.52	0.15	0.59	0.037
PVC46	0.59	0.17	0.72	0.035
PVC47	0.07	0.02	0.02	0.092
PVC48	0.07	0.02	0.02	0.095
PVC49	0.07	0.02	0.02	0.090
PVC50	0.4	0.11	0.38	0.039
PVC51	0.4	0.11	0.38	0.039
PVC52	0.4	0.11	0.38	0.039
PVC53	1.15	0.32	2.28	0.029
PVC54	1.15	0.32	2.28	0.029
PVC55	1.15	0.32	2.28	0.029
PVC56	1.15	0.32	2.28	0.029
PVC57	1.15	0.32	2.28	0.029
PVC58	1.15	0.32	2.28	0.029
PVC59	1.15	0.32	2.28	0.029
PVC60	1.15	0.32	2.28	0.029
PVC61	1.15	0.32	2.28	0.029
PVC62	1.15	0.32	2.25	0.029

Tabla 53.Cálculos hidráulicos obtenidos en los nodos de la red optimizada.

CALCULO RED DISTRIBUCIÓN EPANET 2.0 CALCULOS OBTENIDOS EN NODOS

CALCULOS	OBTENIDO	S EN NODOS
ID Nodo	Cota m	Presión m
TANQUE	596.471	
1	594.3	2.13
2	584.86	11.52
3	581.91	14.44
4	566.93	29.35
5	550.79	45.41
6	545.53	50.63
7	535.14	60.98
8	535.14	60.96
9	535.96	60.12
10	528.68	67.36
11	520.25	75.72
12	521.34	74.60
13	538.43	57.44
14	542.26	53.51
15	546.63	49.07
16	552.96	42.66
Α	557.03	38.53
18	557.63	37.92
19	556.08	39.46
20	555.83	39.70
21	554.83	40.67
22	553.67	41.82
23	552.41	43.06
24	549.68	45.67
25	548.28	47.02
26	552.52	42.76
27	551.49	43.74
28	552.56	42.62
29	546.24	48.86
В	555.78	39.77
С	553.61	41.92
D	551.02	44.49
E	552.41	43.07
33	563.45	32.08

34	567.70	27.81
35	567.69	27.82
36	567.66	27.85
37	567.62	27.89
38	567.59	27.91
39	567.56	27.94
40	567.52	27.98
41	568.08	27.42
42	571.72	23.78
43	570.74	24.76
44	569.64	25.86
45	567.64	27.85
46	560.02	35.47
47	546.63	48.85
Е	552.41	43.07
F	548.31	47.16
G	547.36	48.11
Н	546.06	49.39
I	545.74	49.67
J	544.02	51.38
K	542.89	52.47
L	539.00	56.32
30	530.05	57.62
31	526.09	59.11
32	526.01	59.19

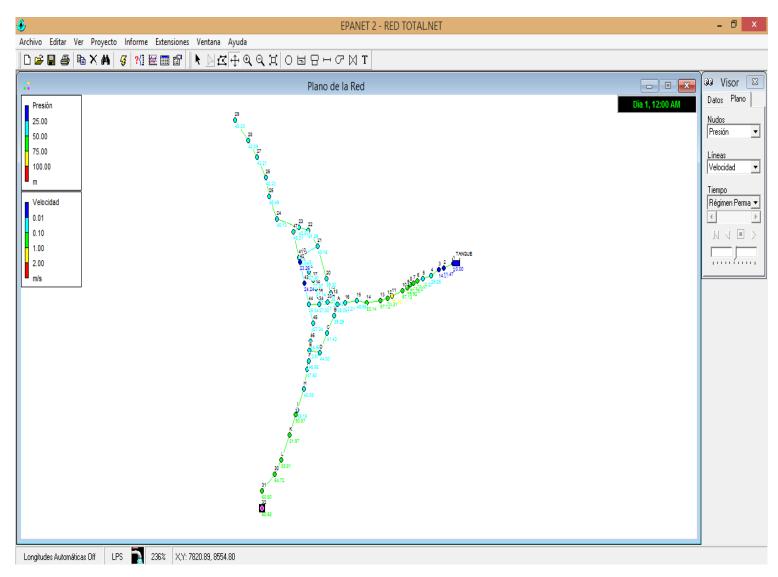


Figura 10. Vista general red optimizada

5.4.14.2 Análisis de resultados.

De acuerdo a los resultados obtenidos en la modelación de la red es importante recalcar sobre las velocidades obtenidas las cuales están por debajo de lo permitido en el reglamento técnico del sector de agua potable y saneamiento básico RAS estipuladas en 0.6 m/s para la mínima y 6 m/s para la máxima, sin embargo en la Tabla B.7.5 recomienda para nivel de complejidad bajo un diámetro mínimo de 64 mm (2.5") por lo que utilizar un diámetro inferior para el aumento de estas velocidades no es permitido.

Las presiones obtenidas se encuentran en el rango establecido por el RAS en los numerales B.7.4.5.1 (10 mca la mínima) y B.7.4.5.2 (60 mca la máxima). Estos valores garantizan un buen funcionamiento de las instalaciones hidráulicas y sanitarias residenciales.

Los tubos deberán ser instalados a una profundidad clave mínima de un metro con un ancho de 0.70 para la facilidad del equipo de compactación tipo rana y la maniobrabilidad de los obreros.

Los diámetros y accesorios del diseño son especificados en el Anexo N°7. Planta general red de distribución optimizada.

Capítulo 6. Presupuesto

Tabla 54.Presupuesto para diseños nuevos.

	PRESUPUESTO GENE	RAL DE OBRA PARA	OPTIMIZAR			
ITEM	DESCRIPCION	UNIDAD	CANTIDAD	V	R UNITARIO	
1.	PRELIMINARES					
1.1	LOCALIZACION Y REPLANTEO	ml	1012	\$	5,588	
1.2	EXCAVACION MANUAL PARA CAMBIO DE TUBERIA	m^3	486	\$	37,920	
2.	RED DE DISTRIBUCIÓN					
2.3	INSTALACION RDE DE 32.5 (125 PSI) DE DIAMETRO 3"	ml	326.54	\$	38,852.41	
2.4	INSTALACION RDE DE 26 (160 PSI) DE DIAMETRO 21/2"	ml	685.248	\$	36,463.41	
2.5	ACOMETIDA DOMICILIARIA	UND	140	\$	288,225.19	
2.6	SUMINISTRO E INSTALACION DE VALVULA DE CORTE	UND	14	\$	701,348.92	
2.7	SUMINISTRO E INSTALACION DE VALVULA DE PURGA	UND	1	\$	711,198.92	:
2.8	SUMINISTRO E INSTALACION DE CODOS	UND	3	\$	121,350.65	:
2.9	SUMINISTRO E INSTALACION DE TEE	UND	6	\$	257,851.65	
3.	CONCRETO					
3.1	DEMOLICIÓN DE CONCRETO	m^3	479.67	\$	11,765.99	
3.2	CONCRETO PARA RESANE 3000 PSI	m^3	76.64	\$	369,477.84	
3.	RELLENO					
3.1	RELLENO CON MISMO MATERIAL	m^3	48.699	\$	11,375.99	
4.	BOCATOMA			·	,	
4.1	CURADO PARA TANQUE DE RECOLECCIÓN	m^2	3.3	\$	25,818.98	
5.	LIMPIEZA Y RETIRO DE SOBRANTES	110		,		
5.1	RETIRO DE SOBRANTES	m^3	20.871	\$	23,519	
	THE DESCRIPTION OF THE PROPERTY OF THE PROPERT			7		
			SUB TOT	AL		\$
			ADMINISTRAC	ION 1	15%	\$
			IMPREVIST	OS 5%	ó	\$
			UTILIDAD	10%		\$
			COSTO TO	TAL		

Capítulo 7. Conclusiones

La quebrada el Silencio reúne las condiciones de caudal mínimo, que establece el RAS 2000, para abastecer la comunidad de Otaré. El aforo para determinar el caudal, se hizo en época de verano con el fin de definir las condiciones más adversas, obteniendo resultados favorables que permiten concluir que no se debe buscar una fuente alterna para el abastecimiento futuro del corregimiento de Otaré.

Los análisis microbiológicos y fisicoquímicos, de las pruebas realizadas a la quebrada el silencio, no muestran resultados satisfactorios, ya que; el agua no se debe consumir directamente, pero como bien es sabido la PTAP de Otaré cuenta con tecnología FIME, la cual reduce de manera satisfactoria los parámetros fisicoquímicos dejándolos aptos para aplicarle un desinfectante químico, quedando el agua apta para el consumo humano.

El caudal de diseño de la rejilla debe ser mayor que QMD + 5% Qmd + 5% Qmd obteniendo resultados favorables que permite definir que la captación está en capacidad de captar la demanda actual y futura.

El caudal de diseño en la aducción bocatoma - desarenador es mayor que el caudal máximo diario (QMD), por lo tanto la aducción está en la capacidad de conducir la demanda actual y futura.

El diseño actual del desarenador está en capacidad de remover las partículas finas suspendidas en el agua que la captación de la fuente permite pasar, las cuales pueden causar daños en la línea de aducción, por el efecto de la fricción y la colmatación, hasta el punto de causar graves daños

La línea de aducción actual, sus válvulas de purga y ventosas para la limpieza y remoción del aire en la tubería se encuentran en muy buena ubicación al igual que el estado de la línea no presenta fugas o daños que afecten la eficiencia hidráulica del sistema, se cuenta con una presión dinámica correcta para el funcionamiento del sistema, así mismo todo esto nos permite definir que la aducción está en la capacidad conducir la demanda actual y futura.

Los resultados obtenidos de los análisis fisicoquímicos hechos al agua al final de la PTAP, muestran valores favorables, los cuales se reducen y quedan en los límites establecidos por el RAS 2000, lo que significa que la filtración en grava y sus filtros lentos están funcionando correctamente. Los parámetros microbiológicos, no registran ninguna reducción, por lo tanto estos agentes patógenos se deben combatir con un desinfectante químico, de obligatorio cumplimiento según la normatividad colombiana (RAS 2000).

El tanque regulador o tanque de almacenamiento tiene una capacidad actual que permite atender las variaciones del consumo de agua con suficiente capacidad para almacenar en los periodos en los cuales el suministro de agua al tanque es mayor que el consumo y suministrar parte del caudal almacenando, en los periodos en los cuales el consumo es mayor que el suministro, para suplir así la deficiencia y mantener las presiones de servicio en la red de distribución.

Para la modelación de la red de distribución fue necesario el uso del programa EPANET versión 2.0 el cual fue de gran utilidad para el desarrollo de este importante proyecto pues permitió conocer de manera muy concreta las presiones, velocidades y perdidas en el sistema actual y futuro.

De acuerdo a los análisis que se realizaron a todo el sistema de acueducto se concluye que actualmente el corregimiento de Otaré está en capacidad de mantener el servicio las 24 horas, desde los caudales de la cuenca hasta la red de distribución presenta una gran capacidad en su sistema, motivo por el cual damos relevancia al mal uso que se le está dando al recurso hídrico.

Capítulo 8. Recomendaciones

Es importante que se sigan empleando mecanismos de reforestación o consecución de predios para dar protección a la cuenca, tal como se ha venido haciendo en los últimos años, con el fin de mantener el caudal de la quebrada y así están asegurando la conservación de los recursos naturales.

La bocatoma actual presenta fisuras en la cámara de derivación, reduciendo la capacidad del mismo, por lo tanto se recomienda un recubrimiento en sikatop 121, para dar una mayor durabilidad y resistencia. Finalmente contratar un operario o fontanero responsable de la operación y mantenimiento para hacer una limpieza más periódica (cada 8 días) pues la acumulación de material de arrastre reduce la capacidad de recolección del tanque y obstruye la entrada de la aducción que va hacia el desarenador, la rejilla se debe limpiar desde fuera del agua con rastrillo, deberá ser sometida a limpieza con el retiro de las hojas, ramas, troncos o cualquier otro elemento que esté dificultando el paso del agua.

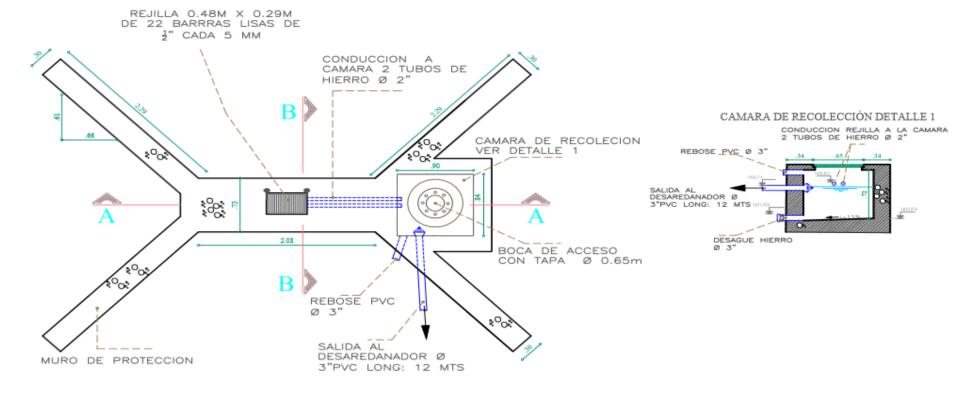
En la aducción desarenador – planta de tratamiento se recomienda ubicar 2 ventosas de 50 mm en los puntos 40 y 10 (ver anexo 3) con la finalidad de reducir las sobrepresiones como consecuencia de la compresión de las bolsas de aire atrapado durante la operación de llenado o después del mantenimiento de estructuras anteriores a ello, así mismo ubicar 2 purgas de 3" en los puntos 22 y 43 (ver anexo 3) para dar más eficiencia al sistema y así evitar la concentración de sedimentos que reduzcan el área de flujo del agua.

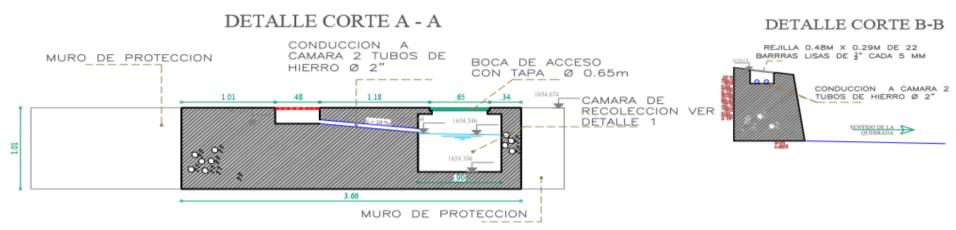
Se recomienda la protección de tramos de tubería que estén a cielo abierto, sometidos a la acción de la intemperie, estos tramos deben protegerse para aumentar su vida útil y evitar su deterioro.

Debido a que la PTAP no está cumpliendo la función de eliminar los microorganismos patógenos, es necesario y de obligatorio cumplimiento la aplicación de un desinfectante químico, la desinfección se realizará con una solución de hipoclorito de calcio en solución que se aplicará en la cámara donde se vierte el agua filtrada, mediante un conducto que irá de la Sala de Cloración hasta la cámara citada. La solución que se aplicará deberá garantizar una concentración de cloro residual libre de 2 ppm en la red de distribución, acorde con la resolución 2115 del 2015

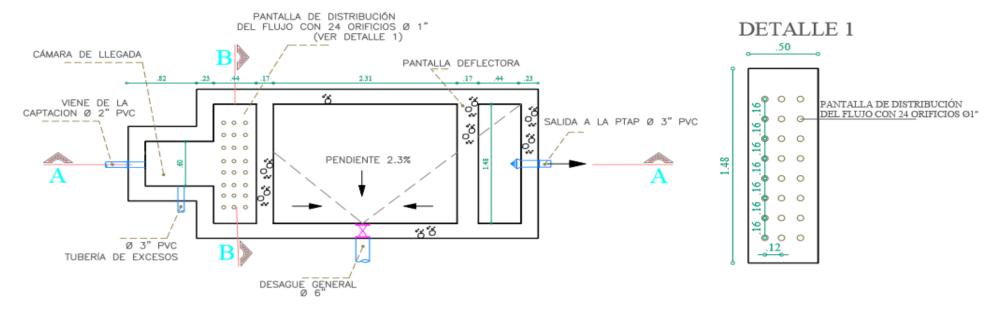
Es necesaria la instalación de medidores de agua o de reguladores de consumo, importantes en un sistema de acueducto, pues constituyen el corazón de sus finanzas y permiten determinar los volúmenes de agua entregados en forma diaria, así como las variaciones de gastos. Ello permitirá determinar fallas del servicio, desperdicios y usos no controlados, pudiendo tomarse medidas correctivas para el mejor funcionamiento del sistema, además de poder establecer un sistema de tarifas costeables basado en los consumos medidos por los usuarios que permita al corregimiento financiar los gastos que demanda, su administración, operación y mantenimiento del sistema.

Referencias

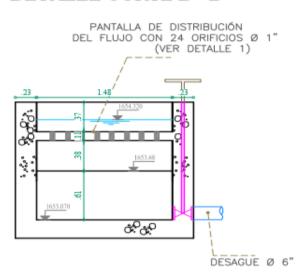

- Arboleda, C. (2008). Manual de Diseño de acueductos. Bogotá, Colombia: Ecoe ediciones.
- Castillo, L; calderón, J y Zambrano, N. (1997). *ACUEDUCTOS*. Popayán, Colombia: Universidad del Cauca
- Chow, V. (1994). Hidráulica de canales abiertos. (1994). Bogotá, Colombia: Mc Graw Gil.
- Corcho, F. (2005). Acueductos, teoría y diseño. Medellín, Colombia: U. de Medellín.
- Corponor. (2015). Mapa geológico municipio de Ocaña. Ocaña, Colombia: Alcaldía Municipal.
- Fox, R & Mc Donald, A (2005). *Mecánica de fluidos e hidráulica*. Quinta Edición. Bogotá, Colombia: Mc Graw Gil.
- Giles, R; Evett, J & Liu, C. (2011). *Mecánica de los Fluidos e Hidráulica. Tercera Edición*. Bogotá, Colombia: Mc Graw Gil.
- López, R. (2003). *Elementos de Diseño para Acueductos y Alcantarillados*. Bogotá, Colombia: Escuela Colombiana de Ingeniería.
- Mendoza, M & Ibáñez, W. (2006). *Tratamiento de agua potable, operación, procesos, talleres y monitoreo*. (Tesis de especialización). Universidad Industrial de Santander, Bucaramanga, Colombia.
- Palacios, Á. (2005). *Acueductos, cloacas y drenajes*. Caracas, Venezuela: Universidad católica Andrés Bello.
- Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico R.A.S. 2000. Sección II, Título B. (noviembre del 2000). *Sistemas de Acueducto*. Bogotá, Colombia: ministerio de Ambiente y Desarrollo Territorial.
- Silva, L. (1975). *Diseño de Acueductos y Alcantarillados*. Bogotá, Colombia: U. de Santo Tomás
- Smith, H. (20015). *Diagnóstico de los Recursos Hídricos*. Cuarta Edición. México DF, México: Unesco
- Young, M. (2005). *Mecánica de los Fluidos e Hidráulica*. Cuarta Edición. Bogotá; Colombia: Mc Graw Gil.


Referencias electrónicas.

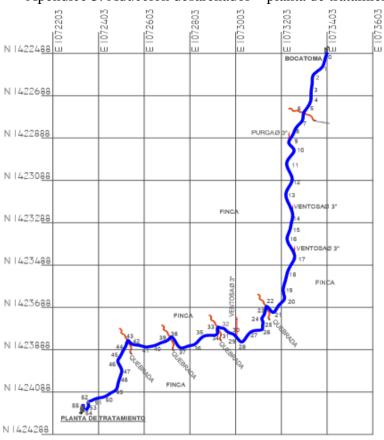
- Acueducto de Popayán. (2016). *Acueducto y Alcantarillado de Popayán*. Recuperado 2 Febrero 2016, de http://www.acueductopopayan.com.co
- Amat, Y. (20 de septiembre del 2015). El rio Magdalena en el nivel más bajo de su historia. *El Tiempo*. Recuperado de http://eltiempo.com
- ANMAT. (2014). *Microorganismos Indicadores*. (Pdf). Volumen 3. Buenos Aires: INAL. Recuperado de: http://www.anmat.gov.ar.
- Arcos, M; Ávila, S; Estupiñán, S; Gómez, A. (2005). (Pdf). *Indicadores microbiológicos de contaminación de las fuentes de agua*. Bogotá: Universidad Colegio Mayor de Cundinamarca. Recuperado de: http://www.unicolmayor.edu.co
- Consejo Municipal para la Gestión del Riesgo de Desastres (2016). Recuperado 5 Febrero 2016, de http://www.ocana-nortedesantander.gov.co
- Flinn & Westom. (1952). *Abastecimiento de agua*. Madrid: editorial labor. Recuperado de http://www.iberlibro.com
- García Velásquez, O. (2016). *Historia de Otaré*. Ocaña. Recuperado de http://academiaocana.blogspot.com.co.
- Mora, D. (2014). *Los acueductos en la historia*. La Nación opinión: Recuperado de http://www.nacion.com
- Sigler, A & Bauder, J. (2016). *Hierro o ferro total*. Universidad Estatal de Montana Programa de Extensión en Calidad del Agua Departamento de Recursos de la Tierra y Ciencias Ambientales. Recuperado de http://region8water.colostate.edu
- Organización Mundial de la Salud. (2006). 3rd ed. (Pdf). Génova: *Guías para la calidad del agua potable*. Recuperado de http://www.who.int (22 Feb. 2016).
- Rocha, E. (2010). (Pdf). *Parámetros y características de las aguas naturales*. México DF: Universidad Autónoma de Chihuahua. Recuperado de http://www.libreroonline.com.

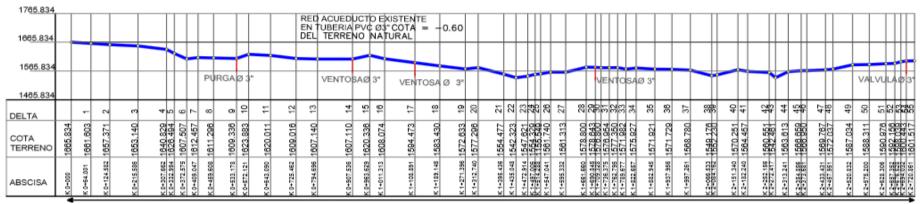

Apéndices

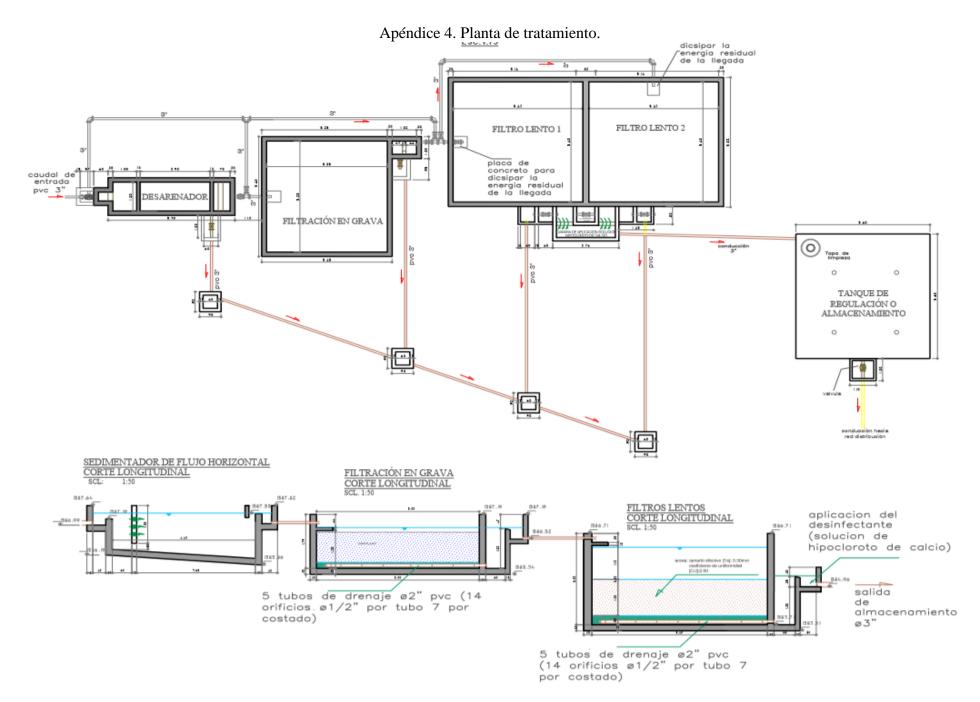
Apéndice 1. Plano de captación.

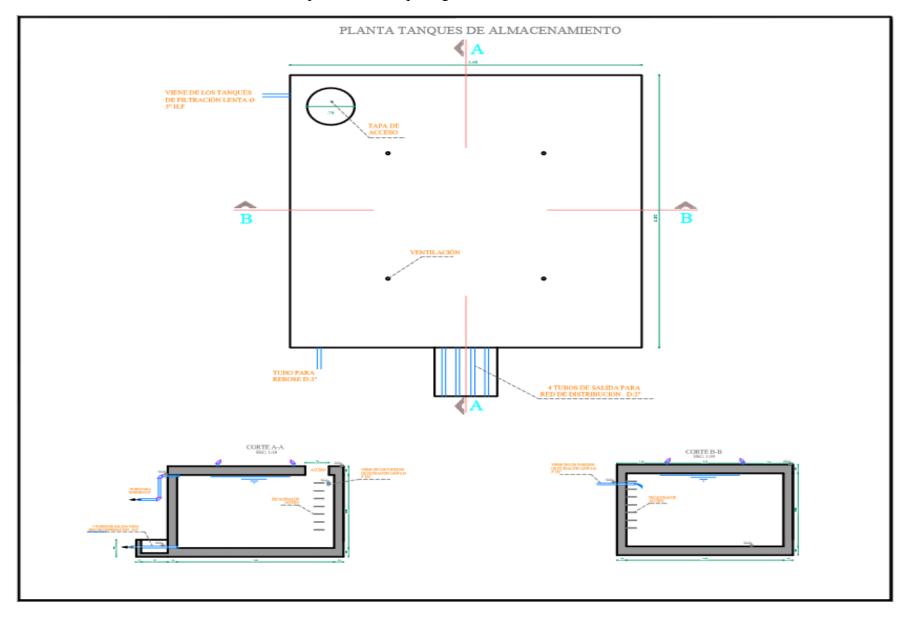


Apéndice 2. Plano desarenador. DETALLE EN PLANTA




DETALLE CORTE A - A PANTALLA DE DISTRIBUCIÓN (VER DETALLE 1) PANTALLA DEFLECTORA CAMARA DE LLEGADA ENTRADA Ø 3" PVC .83 .23 1654.540 .44 .17 2,8,0 \$00° \$00° \$⁰0\$ DESAGUE Ø 6" A LA PLANTA DE TRATAMIENTO


DETALLE CORTE B - B


Apéndice 3. Aducción desarenador – planta de tratamiento.

Apéndice 5. Tanque regulador ó almacenamiento.

Apéndice 6. Planta general red de distribución.

日本 日	a 246.34	F 60 7 827 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 V 1291110 3	13 CD 13 CD 13 CD 15 CD	Q: Q: 123 124 125 126 126 126 126 126 126 126 126 126 126	G 072327 & 19
N 14.50 9 14.000	25	2551.49 257 552.52 258 258				
N M.208 E.550		2540.68 245.63 20 552.41	2553.67 24.254.83			
N 14587 E.540		550.03 571.72 571.74	567.50 507.62	11025EK 2535EK 255	504.50 504.50 504.50	TANGLE DE ALMALENAMIENTO
NI 14,254-18 ,000	CLIAGRO DE SIMBOLOS Crate Topic Topic Hod 1 End 1 End 4 Crate in	56 580 D	252.TM SSLAS S57,63 VALVULAS S57,63 VALVULAS S51,611 S51,023 S51,023		CUMBRO DE LONGITUDES TOTAL T	
NI 14.283 II .040		546 D01 1 1	NOTA: Del tasque de al secentamin 4 telhou de 2º seno para cult restativa de la constanti de l	neto sallen rad. coste (11) 11/4" 11/4"	0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000	
NI 14,284 W .080		\$47.897. Jx			- 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60	
	256.01 236.00	120,000 20 3 51 32			Table Tabl	

Apéndice 7. Planta general red de distribución optimizada.

D: 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 54624 11 54624 2 0 21/2" 552.56	이 이 보고 수 있다.	त । इ.स. १८५०	R 0070017 & 07	G BYELT ÓB	한 약 65510 대	다 다 나는
N к209 на дво	B21G*	y 553,49 y 553,53 0.311=					
м жирами.		549.68 ©21.72 S40.63	2552.41 2553.67 03/2* 1* 2567.52 2554.83				
M %-20716-/288		521.TZ	567.59 2 567.59 2 57.50 2 57.50 2 57.50 2 587.60 2 587.60 2 587.60 2 587.60 2	TAI <u>580AI</u> 542.76 <u>558</u>	\$25.50 275.00 d 5° \$25.50 p d 5° \$21.14 d 5°	556.47 294.32 356.86 31.91 317	TANGLE DE ALMACENAMENTO
M %200 W 250	CLADRO DE SAMBOLOS Codo Tres Valente		\$67.64 \$67.64 \$60.02 \$52.438 \$61.023	252.200 257.03 VALVULAS 253.790		CUADRO DE LONGITUDES TOTAL T	
м ж203 ж.дәя		545.786.	9.367 @2112*	MOTA: Del tamagno de ofrescomerciasto safe 1 sabo de 3º y gura la ved mutrir de 21/2º		- 10	
M NobA-W 480		\$60.897 B 21	2"				
	326.01 526.01	2 6217				- 12	

Apéndice 8. A.P.U. Localización y replanteo.

ITEM: Localización y rep	olanted)					UNI	IDAD: I	ml	
I. EQUIPO										
Descripcio	ón		Tipo	Tari	ifa/hora	Rendimiento	Val	or-Unit		
Herramienta menor (10%	6)						\$	159.91		
								la de de la		
							5	ub-total	\$	159.91
II. MATERIALES EN OBRA						T	T			
Descripcio	ón		Unidad	1	cio-Unit	Cantidad	1	or-Unit		
Puntillas de 11/2" a 3"			Lb	\$	2,000	0.052	\$	104		
Tabla 0.30m x 3m			UND	\$	10,000	0.33	\$	3,300		
Estacas de madera			UND	\$	425	1	\$	425		
III. TRANSPORTE							S	ub-total	\$	3,829
Descripción	C	Cantidad	Distancia	r	m³ – km	Tarifa	Val	or-Unit		
							S	ub-total		
IV. MANO DE OBRA						T .	1			
Descripción		Jornal	Prestaciones		nal total	Rendimiento		or-Unit		
1 Obrero	\$	28,727	180%		51,709.05	98	\$	527.64		
Oficial	\$	58,333	180%	\$ 1	104,999.40	98	\$	1,071.42		
							C	ub-total	¢	1,599.07
								un-iulai	Ą	1,393.07
		то	TAL COSTO DIR	ECTO	O				\$	5,587.97

Apéndice 9. A.P.U. Localización y replanteo.

ITEM: EXCAVACIÓN MA	ANUAL				UNIDAD:	m³	
I. EQUIPO							
Descripc	ión	Tipo	Tarifa/hora	Rendimiento	Valor-Unit		
Herramienta menor (109	%)				\$ 3,447.27		
					Sub-total	\$	3,447.27
II. MATERIALES EN OBR		1	I	1	T		
Descripc	ión	Unidad	Precio-Unit.	Cantidad	Valor-Unit		
					Sub-total		
III. TRANSPORTE	ı	1		1	Γ		
Descripción	Cantidad	Distancia	m³ – Km	Tarifa	Valor-Unit		
					Sub-total		
IV. MANO DE OBRA					L		
Descripción	Jornal	Prestaciones	Jornal total	Rendimiento	Valor-Unit.		
5 Obreros	\$ 143,636	180%	\$ 258,545.25	7.5	\$ 34,473		
					Sub-total	\$	34,473
					340 (344)	_ ~	3 ., ., .
	тот	AL COSTO DIR	ЕСТО			\$	37,920

Apéndice 10. A.P.U. RDE 26 Θ 3".

ITEM: RDE 26 Φ 3"							U	NIDAD:	m	l
I. EQUIPO										
Descripc	ión		Tipo	Tari	fa/hora	Rendimiento	Valo	or-Unit		
Herramienta menor (10	%)						\$	2,174.31		
							Sı	ıb-total	\$	2,174.31
II. MATERIALES EN OBR			Τ				ı			
Descripc			Unidad		io-unit	Cantidad		or-Unit		
Limpiador removedor 1	32)	UND	\$	8,220	0.05	\$	411			
tubo pvc presión RDE 26	5 D=3"		ml	\$	18,080	1.00	\$	18,080		
							Sı	ıb-total	\$	18,491
III. TRANSPORTE									۲	10, 10
Descripción	Ca	antidad	Distancia	r	n ³ - km	Tarifa	Valo	or-Unit		
							Su	ıb-total		
IV. MANO DE OBRA										
Descripción		Jornal	Prestaciones	Jo	nal total	Rendimiento	Va	lor-Unit		
2 Obrero	\$	57,455	180%	\$	103,418	12	\$	8,618.18		
1 Oficial	\$	58,333	180%	\$	104,999	8	\$1	3,124.93		
							Su	ıb-total	\$ 2	1,743.1
		TOT	AL COSTO DIR	ГСТО					<i>-</i> 4	2,408.41

Apéndice 11. A.P.U. RDE 32.5 Θ 3".

ITEM: RDE 32.5 Ф 3"							UNIDAD:		ml
I. EQUIPO									
Descripc	ión		Tipo	Tari	fa/hora	Rendimiento	Valor-Unit		
Herramienta menor (109	%)						\$ 2,174.31		
								-	
II. MATERIALES EN OBR	A		<u> </u>				Sub-total	\$	2,174.31
Descripc	ión		Unidad	Pred	cio-Unit	Cantidad	Valor-Unit		
Limpiador removedor 112 gm (1/32)			UND	\$	8,220	0.05	\$ 411		
tubo pvc presión RDE 32.5 D=3"			MI	\$	14,524	1.00	\$ 14,524		
							Sub-total	\$	14,935
Descripción	C	antidad	Distancia m³ - km T			Tarifa	Tarifa Valor-Unit.		
								- -	
IV. MANO DE OBRA							Sub-total		
Descripción		Jornal	Prestaciones	Jo	rnal total	Rendimiento	Valor-Unit.		
2 Obrero	\$	57,455	180%	\$	103,418	12	\$ 8,618.18	1	
1 Oficial	\$	58,333	180%	\$	104,999	8	\$ 13,124.93		
	1						Sub-total	\$ 2	21,743.10
		ТОТ	AL COSTO DIR	ECTC)			\$ 3	

Apéndice 12. A.P.U. RDE 26 Θ 2 1/2".

ITEM: RDE 26 Φ 2 1/2"	ı						UNIDA	D:	ml
I. EQUIPO									
Descripc	ión		Tipo	Tari	fa/hora	Rendimiento	Valor-Unit.		
Herramienta menor (10	%)						\$ 2,174.31		
II. MATERIALES EN OBR	Δ						Sub-total	\$	2,174.31
Descripc			Unidad	Pred	io-Unit.	Cantidad	Valor-Unit.		
Limpiador removedor 112 gm (1/32)			UND	\$	8,220	0.05	\$ 411		
tubo pvc presión RDE 26			ml	\$	12,135	1.00	\$ 12,135		
							Sub-total	\$	12,546
III. TRANSPORTE	1		T	ı	2	T .		l	
Descripción	Ca	antidad	Distancia	r	n³ - km	Tarifa	Valor-Unit.		
							Sub-total		
IV. MANO DE OBRA	1	lowal	Ducatacianas	l la		Dondinsianta	Valor Unit		
Descripción 2 Obrara		Iornal 57.455	Prestaciones 180%		rnal total	Rendimiento	Valor-Unit.		
2 Obrero 1 Oficial	\$	57,455 58,333	180%	\$	103,418 104,999	12 8	\$ 8,618.18 \$ 13,124.93		
1 0 11 clui	۲	30,333	10070	7	107,555	J	Ψ 13,12π.33		
							Sub-total	\$:	21,743.10
								1	
TOTAL COSTO DIRECTO									36,463.41

Apéndice 13. A.P.U. acometida domiciliaria 21/2 x 1/2

I. EQUIPO							
	escripción	Tipo	Tarifa/hora	Rendimiento	Valor-Unit		
	menor (10%)	•	•		\$ 5,223.62		
	· · ·						
					Sub-total	\$	5,223.62
II. MATERIAL		11.1.1.1	D	Control	N/-111-21		
	escripción	Unidad	Precio-Unit.	Cantidad	Valor-Unit	<u> </u>	
	ación 21/2" x 1/2"	UND	\$ 11,323	1	\$ 11,323	 	
Tubería 1/2"		ml	\$ 1,667	1.5	\$ 2,501	<u> </u>	
Registro de c		UND	\$ 10,000	1	\$ 10,000	<u> </u>	
Universal 1/2)" 	UND	\$ 3,500	1	\$ 3,500	 	
Medidor		UND	\$ 73,700	1	\$ 73,700		
Accesorios p	vc ½	UND	\$ 400	5	\$ 2,000		
Cajilla con ta	ра	UND	\$ 119,924	1	\$ 119,924	ļ	
soldadura 1/4	4 galón	UND	\$ 97,724	0.08	\$ 7,818		
III. TRANSPO	DTE				Sub-total	\$	230,765
Descripción	Cantidad	Distancia	Valor-Unit				
-							
					Sub-total		
IV. MANO DE	OBRA				Jub-tutai		
Descripción	Jornal	Prestaciones	Jornal total	Rendimiento	Valor-Unit		
1 Obrero	\$ 28,727	180%	\$ 51,709.05	3	\$ 17,236.35		
Oficial	\$ 58,333	180%	\$ 104,999.400	3	\$ 34,999.80		
					Sub-total	\$	52,236.15
		TOTAL COSTO	DIRECTO			\$	288,225.2

Apéndice 14. Demolición y concreto

ITEM: Demo	olicion de concreto				UNIDAD:	ı	ml
I. EQUIPO							
De	escripción	Tipo Tarifa/hora Rendimiento Valor-Unit					
Herramienta	menor (10%)				\$ 861.82		
II. MATERIAL	ES EN ORDA			1	Sub-total	\$	861.82
De	escripción	Unidad	Precio-Unit	Cantidad	Valor-Unit		
martillo neur	mático	UND	\$ 2,286	1.00	\$ 2,286		
III. TRANSPO	IDTE				Sub-total	\$	2,286
Descripción	Cantidad	Distancia	m³ – km	Tarifa	Valor-Unit		
				<u> </u>	Sub-total		
IV. MANO DI		Dunatanian	lowed total	Don dinaio et e	Valan Hust		
Descripción 2 Obrero	Jornal \$ 57,455	Prestaciones 180%	Jornal total \$ 103,418	Rendimiento 12	Valor-Unit \$ 8,618.18		
2 Objeto	رر+,33	100/0	7 105,418	12	φ 0,010.1δ		
l l			l	I	Sub-total	\$	8,618.18
		TOTAL COSTO	DIRECTO			\$	11,765.99

Apéndice 15. Concreto para 300 psi

ITEM: concreto para 3000 psi UNIDAD: I										
I. EQUIPO										
Descripción			Tipo	Tari	fa/hora	Rendimiento	Valor-Unit			
Herramienta	meno	or (10%)					\$	5,202.53		
Mezcladora			2 bultos		6250	6	\$3	7,500.00		
							Si	ub-total	\$	42,702.53
II. MATERIAI	LES EN	OBRA								
	escrip	ción	Unidad		cio-Unit.	Cantidad		or-Unit		
Cemento			kg	\$	500	350.00	\$	175,000		
arena			m³	\$	56,250	0.56	\$	31,500		
grava		m ³	\$	81,250	0.84	\$	68,250			
							Si	ub-total	\$	274,750
III. TRANSPO	RTE									
Descripción		Cantidad	Distancia	$m^3 - km$		Tarifa	Val	or-Unit		
							Sı	ub-total		
IV. MANO D	E OBR	Α								
Descripción		Jornal	Prestaciones	Jornal total		Rendimiento	Vā	lor-Unit		
3 Obrero	\$	86,182	180%	\$	155,127	5	\$3	1,025.43		
1 oficial	\$	58,333	180%	\$	104,999	5	\$	21,000		
							Sı	ub-total	\$	52,025.31
			TOTAL COSTO	DIR	ЕСТО				\$3	69,477.841

Apéndice 16. Instalación de codos 90° .

ITEM: Insta	lacion de cod	dos 90°					UNI	DAD: ml		
I. EQUIPO										
	Descripció	n	Tipo	Tarifa	/hora	Rendimiento	Valo	or-Unit		
Herramienta	menor (10%)					\$	7,835.42		
II. MATERIAI	ES EN OBRA							Sub-total	\$	7,835.42
Descripción Unidad Precio-Un						Cantidad	Valo	or-Unit		
Limpiador removedor 112 gm (1/32)			UND	\$	8,220	0.05	\$	411		
codos 90° D	codos 90° D=21/2"		UND	\$ 3	34,750	1.00	\$	34,750		
III. TRANSPO	RTE							Sub-total	\$	35,161
Descripción		intidad	Distancia	m³ - km		Tarifa	Valor-Unit			
IV. MANO DI	E ODDA							Sub-total		
Descripción		ornal	Prestaciones	Jornal	total	Rendimiento	Val	or-Unit		
1 Obrero	\$	28,727	180%		1,709	2	\$	25,854.53		
Oficial	\$	58,333	180%	 	4,999	2	\$	52,499.70		
								Sub-total	Ċフ	8,354.23
								Jub-total		
	TOTAL COSTO DIRECTO									

Apéndice 17. Válvula de corte 21/2.

ITEM: Valve	ula de corte 21/2"				UNIDAD: ml	
I. EQUIPO	-					
	Descripción	Tipo	Tarifa/hora	Rendimiento	Valor-Unit	
Herramienta	n menor (10%)				\$ 24,108.99	
	_				Sub-total	\$24,108.99
II. MATERIA	LES EN OBRA	1	T		I	T
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Descripción	Unidad	Precio-unit	Cantidad	Valor-Unit.	
	orte HF 21/2"	UND	\$ 368,700	1	\$ 368,700	<u> </u>
Tapa válvula	comun	UND	\$ 67,450	1.00	\$ 67,450	
					Sub-total	\$ 436,150
III. TRANSPO	ORTE					,,
Descripción	Cantidad	Distancia	m³ - km	Tarifa	Valor-Unit	
	<u> </u>				Sub-total	
IV. MANO D	F ORRA				Sub-total	
Descripción	Jornal	Prestaciones	Jornal total	Rendimiento	Valor-Unit	
1 Obrero	\$ 28,727		\$ 51,709	0.65	\$ 79,552	1
Oficial	\$ 58,333	180%	\$ 104,999	0.65	\$ 161,538	
						\$ 241,090
Sub-total Sub-total						
TOTAL COSTO DIRECTO						
TOTAL COSTO DIRECTO						\$ 701,349

Apéndice 18. Instalación de tee 2 1/2.

ITEM: Instala	cion d	e tee 2 1/2"				UNI	DAD: m	I	
I. EQUIPO									
De	scripci	ión	Tipo	Tar	rifa/hora	Rendimiento	Valor-Unit		
Herramienta n	nenor ((10%)					\$ 7,835.4	2	
II. MATERIALE	S EN O	BRA					Sub-total		\$ 7,835.42
	scripci		Unidad	Pre	ecio-Unit	Cantidad	Valor-Unit		
Limpiador rem	ovedo	r 112 g (1/32)	UND	\$	8,220	0.05	\$ 41	1	
tee D=21/2"			UND	\$	171,251	1.00	\$ 171,25	51	
							Sub-total	!	\$ 171,662
III. TRANSPOR	TE								
Descripción		Cantidad	Distancia	r	m³ – km	Tarifa	Valor-Unit		
							Sub-total		
IV. MANO DE	OBRA							·	
Descripción		Jornal	Prestaciones	Jor	nal total	Rendimiento	Valor-Unit		
1 Obrero	\$	28,727	180%	\$	51,709	2	\$25,854.5		
Oficial	\$	58,333	180%	\$	104,999	2	\$52,499.7		
								\dashv	
							Sub-total		\$78,354.23
		TC	OTAL COSTO D	IREC	то				\$ 257,852

Apéndice 19. Válvula de purga.

ITEM: Válvu	ula de purga 3"				UNIDAD	:	ml
I. EQUIPO							
Des	scripción	Tipo	Tarifa/hora	Rendimiento	Valor-Unit		
Herramienta	menor (10%)				\$24,108.99		
II. MATERIAI	LES EN OBRA				Sub-total	\$2	4,108.99
	scripción	Unidad	Precio-Unit	Cantidad	Valor-Unit		
Valvula de pi	urga HF 21/2"	UND	\$ 378,550	1.00	\$ 378,550		
Tapa valvula	común	UND	\$ 67,450	1.00	\$ 67,450		
III. TRANSPO	ORTE				Sub-total	\$	446,000
Descripción	Cantidad	Distancia	m³ – km	Tarifa	Valor-Unit		
IV. MANO D	E OBRA				Sub-total		
Descripción	Jornal	Prestaciones	Jornal total	Rendimiento	Valor-Unit		
1 Obrero	\$ 28,727	180%	\$ 51,709	0.65	\$ 79,552		
Oficial	\$ 58,333	180%	\$ 104,999	0.65	\$ 161,538		
					Sub-total	\$	241,090
		TOTAL COSTO	DIRECTO			\$	711,199

Apéndice 20. A.P.U. Relleno de excavación.

ITEM: RELLENO DE EXC	AVACIÓN			UNIDAD: r	m³		
I. EQUIPO							
Descripci	ón	Tipo	Tarifa/hora	Rendimiento	Valor-Unit		
Herramienta menor (10%	6)				\$ 1,034.18		
					Sub-total	\$	1,034.18
II. MATERIALES EN OBRA		T	T	T	ı	T	
Descripci	ón	Unidad	Precio-Unit	Cantidad	Valor-Unit		
				ı	Sub-total		
III. TRANSPORTE				1		•	
Descripción	Cantidad	Distancia	m³ – km	Tarifa	Valor-Unit.		
					Sub-total		
IV. MANO DE OBRA					Jub total		
Descripción	Jornal	Prestaciones	Jornal total	Rendimiento	Valor-Unit		
1 Obrero	\$ 28,727	180%	\$ 51,709.05	5	\$ 10,342		
					Ch. + - + - !	۲.	10.242
					Sub-total	\$	10,342
	тот	AL COSTO DIR	ЕСТО			\$	11,376

Apéndice 21. A.P.U. Curado tanque recolección bocatoma.

ITEM: CURADO TANQU	JE RECOLECCIÓN B	OCATOMA			UNIDAD:	m^2
I. EQUIPO						
Descripc	Descripción Tipo Tarifa/hora Rendimiento					
Herramienta menor (109	%)				\$ 300	
					Sub-total	\$ 300
II. MATERIALES EN OBR. Descripci		Unidad	Precio-Unit.	Cantidad	Valor-Unit.	
Sikatop 121 para 3mm e		m ²	\$ 3,217	7.0	\$ 22,519	
omatop === para omm o		111	γ 5,==:	7.0	Ψ ==,0=0	
		•			Sub-total	\$ 22,51
III. TRANSPORTE		1				
Descripción	Cantidad	Distancia	m³ – km	Tarifa	Valor-Unit	
					Sub-total	
IV. MANO DE OBRA					Sub-total	
Descripción	Jornal	Prestaciones	Jornal total	Rendimiento	Valor-Unit	
1 Oficial	\$ 58,333	180%	\$ 104,999		\$ 2,999.98	
	,		7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			_			
	-				Sub-total	\$ 2,999.9
						\$ 25,818.9
TOTAL COSTO DIRECTO						

Apéndice 22. A.P.U. Retiro de sobrantes

ITEM: RETIRO DE SOBI	RANTES	U	INIDAD: m³				
I. EQUIPO							
Descripo	ción	Tipo	Tarifa/hora	Rendimiento	Valor-Unit		
Herramienta menor (10	Herramienta menor (10%)						
II. MATERIALES EN OBR					Sub-total	\$	1,034.18
Descripo		Unidad	Precio-Unit	Cantidad	Valor-Unit.		
III. TRANSPORTE					Sub-total		
Descripción	Capacidad	Distancia	$m^3 - km$	Tarifa	Valor-Unit		
VIAJES	8	1	1	12143	12143		
IV. MANO DE OBRA	I		<u> </u>		Sub-total		12143
Descripción	Jornal	Prestaciones	Jornal total	Rendimiento	Valor-Unit		
2 Obreros	\$ 57,455	180%	\$ 103,418.10	10	\$ 10,342		
					Sub-total	\$	10,342
	тот	AL COSTO DIR	ЕСТО			\$	23,519

Apéndice 23. Resultados análisis de pruebas de agua en bocatoma.

LABORATORIO DE AGUAS

RESULTADOS ANALISIS FISICOQUIMICOS Y MICROBIOLOGICOS

MATRIZ DE LA MUESTRA: Agua Cruda

TIPO DE MUESTRA: Puntual

LUGAR DE MUESTREO: Corregimiento de Otaré PUNTO: Acueducto - Bocatoma

TOMADA POR: Sr. Javier Alonso Ovallos; Jhon Alexander Urquijo HORA: 9:30 am

FECHA TOMA DE MUESTRA: 9 Noviembre 2015

SOLICITANTE: Sr. Javier Alonso Ovallos; Jhon Alexander Urquijo

ANALISIS SOLICITADOS: Ver tabla

PARAMETRO	UNIDAD	LIM. PERMISIBLE	VALOR	METODO
POTENCIAL DE H	pH	6,5-9,0	7,97	Standard Methods 4500 H +B
TURBIEDAD	UNT	2	10,2	Standard Methods 2310 B
COLOR	UPC	15	61	Standard Methods 2120 A
SULFATOS	mg/L	300	3	Standard Methods 4500 SO, E
HIERRO TOTAL	mg/L	0,3	0,43	Standard Methods 3500 Fe B
DUREZA TOTAL	mg/L	300	68	Standard Methods 2340 C
ALCALINIDAD	mg/L	200	85	Standard Methods 2320 B
NITRATOS	mg/L	10	4.4	Standard Methods 4500 NO. B
NITRITOS	mg/L	0,1	0,02	Standard Methods 4500 NO. 8
CONDUCTIVIDAD	µS/cm	1000	164	Standard Methods 4500 P D
AEROBIOS MESOFILOS	UFC/100 ml	100	2000	Standard Methods 2510 B
COLIFORMES TOTALES	UFC/100 ml	0	2000	Filtracion por membrana
COLIFORMES FECALES	UFC/100 mi	0	2000	Filtracion por membrana

CARLOS ALBERTO PATIÑO P.

Vía Acolsure, Sede el Algodonal, Ocaña, Colombia - Código postal: 546552 Línea gratuita nacional: 01 8000 121 022 - PBX: (+57) (7) 569 00 88 - Fax: Ext. 104 info@ufpso.edu.co - www.ufpso.edu.co

Apéndice 24. Resultados análisis de pruebas de agua entrada planta.

LABORATORIO DE AGUAS

RESULTADOS ANALISIS FISICOQUIMICOS Y MICROBIOLOGICOS

MATRIZ DE LA MUESTRA: Agua Cruda

TIPO DE MUESTRA: Puntual

LUGAR DE MUESTREO: Corregimiento de Otaré PUNTO: Acueducto - Entrada Planta

TOMADA POR: Sr. Javier Alonso Ovallos; Jhon Alexander Urquijo HORA: 10:30 am

FECHA TOMA DE MUESTRA: 9 Noviembre 2015

SOLICITANTE: Sr. Javier Alonso Ovallos; Jhon Alexander Urquijo

ANALISIS SOLICITADOS: Ver tabla

PARAMETRO	UNIDAD	LIM. PERMISIBLE	VALOR	METODO
POTENCIAL DE H	pH	6,5-9,0	7,99	Standard Methods 4500 H +B
TURBIEDAD	UNT	2	2,74	Standard Methods 2310 B
COLOR	UPC	15	24	Standard Methods 2120 A
SULFATOS	mg/L	300	2	Standard Methods 4500 SO, E
HIERRO TOTAL	mg/L	0,3	0,15	Standard Methods 3500 Fe 8
DUREZA TOTAL	mg/L	300	67	Standard Methods 2340 C
ALCALINIDAD	mg/L	200	80	Standard Methods 2320 B
NITRATOS	mg/L	10	2,6	Standard Methods 4500 NO. B
NITRITOS	mg/L	0,1	0.01	Standard Methods 4500 NO. B
CONDUCTIVIDAD	µS/cm	1000	156	Standard Methods 4500 P D
AEROBIOS MESOFILOS	UFC/100 mi	100	2000	Standard Methods 2510 B
COLIFORMES TOTALES	UFC/100 ml	0	2000	Fitracion por membrana
COLIFORMES FECALES	UFC/100 ml	0	2000	Filtracion por membrana

CARLOS ALBERTO PATIÑO P. Químico

Via Acolsure, Sede el Algodonal, Ocaña, Colombia → Código postal: 546552 Línea gratuita nacional: 01 8000 1.21 0.22 → PBX: (+57) (7) 569 00 88 → Fax: Ext. 104 info@ufpso.edu.co → www.ufpso.edu.co

Apéndice 25. Resultados análisis de pruebas de agua en el tanque de almacenamiento.

LABORATORIO DE AGUAS

RESULTADOS ANALISIS FISICOQUIMICOS Y MICROBIOLOGICOS

MATRIZ DE LA MUESTRA: Agua Cruda

TIPO DE MUESTRA: Puntual

LUGAR DE MUESTREO: Corregimiento de Otaré

PUNTO: Acueducto - Tanque de Almacenamiento

TOMADA POR: Sr. Javier Alonso Ovallos; Jhon Alexander Urquijo HORA: 11:45 am

FECHA TOMA DE MUESTRA: 9 Noviembre 2015

SOLICITANTE: Sr. Javier Alonso Ovallos; Jhon Alexander Urquijo

ANALISIS SOLICITADOS: Ver tabla

PARAMETRO	UNIDAD	LIM. PERMISIBLE	VALOR	METODO
POTENCIAL DE H	pH	6,5-9,0	7,91	Standard Methods 4500 H +8
TURBIEDAD	UNT	2	0,42	Standard Methods 2310 B
COLOR	UPC	15	3	Standard Methods 200 A
SULFATOS	mg/L	300	1	Standard Methods 4500 SO, E
HIERRO TOTAL	mg/L	0,3	0,03	Standard Methods 3500 Fe B
DUREZA TOTAL	mg/L	300	67	Standard Mathods 2340 C
ALCALINIDAD	mg/L	200	78	Standard Methods 2320 B
NITRATOS	mg/L	10	1,8	Standard Methods 4500 NO. B
NITRITOS	mg/L	0,1	0,01	Standard Methods 4500 NO ₃ B
CONDUCTIVIDAD	µS/cm	1000	154	Standard Methods 4500 P D
AEROBIOS MESOFILOS	UFC/100 ml	100	2000	Standard Methods 2510 B
COLIFORMES TOTALES	UFC/100 ml	0	2000	Fitracion por membrana
COLIFORMES FECALES	UFC/100 ml	0	2000	Filtracion por membrana

CARLOS ALBERTO PATIÑO P.

Via Acolsure, Sede el Algodonal, Ocaña, Colombia - Código postal: 546552 Linea gratuita nacional: 01 8000 121 022 - PBX: (+57) (7) 569 00 88 - Fax: Ext. 104 info@ufpso.edu.co - www.ufpso.edu.co

Apéndice 26. Carta dirigida al director de departamento de ingenieria civil para topografia

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OCAÑA

 Radicado:
 007075

 Fecha:
 13-OCT-15 18:14:29

 Destino:
 DEPARTAMENTO INGENIERÍA CIVIL
 Destino: DEPARTAMENTO :
Correo: jhonu80@hotmail.com
Usuario: María Elvira Quintero www.ufpso.edu.co

Fecha: 13-10-2015

Magister **ROMEL GALLARDO AMAYA** Director Departamento de ingeniería civil

Asunto: solicitud de equipos

Cordial saludo:

Yo Javier Alonso Lindarte Ovallos identificado con código 170170 y Jhon Alexander Urquijo Corredor identificado con código 170176 nos dirigimos a usted por medio de la presente con el fin de solicitar los equipos de topografía relacionados de la siguiente forma:

- ✓ Estación total.
- Trípode.
- Prisma-portaprisma.
- Cinta
- ✓ GPS

Esto con el fin de realizar la topografía requerida en el proyecto de investigación "OPTIMIZACIÓN DEL SISTEMA DE ACUEDUCTO DE OTARÉ, CORREGIMIENTO DE OCAÑA, NORTE DE SANTANDER", dirigido por el ingeniero Napoleón Gutiérrez De Piñeres y Así mismo, tener el acompañamiento del coordinador de laboratorio de topografía Jonathan Becerra.

Agradezco la atención prestada.

Atentamente,

Firma del Estudiante: <u>Javier Lindate</u>. Correo Electrónico: jalindarteo@ufpso.edu.co

código: 170170 Celular: 3212148201

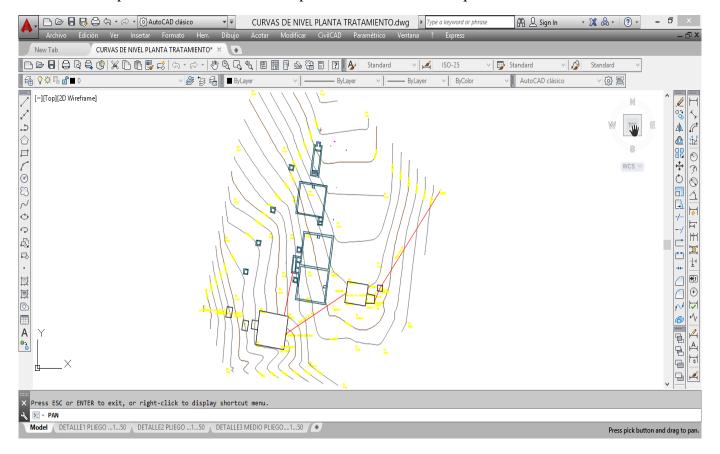
Firma del Estudiante: Correo Electrónico: jhonu80@hotmail.com código: 170176 Celular: 3125332565

MULLI

m80982 Firma del Director. Correo Electrónico: ingenieronapoleon@gmail.com Celular: 3005672156

VIA ACOLSURE, SEDE EL ALGODONAL OCAÑA N. DE S. Linea Gratuita Nacional 018000121022 / PBX:097-5690088 / Codigo Postal 546552 www.ufnen.edu.co

Apéndice 27. Cartera topográfica planta de tratamiento y tanque de almacenamiento.


CARTERA DE CAMPO							
FECHA	21 Noviembre de						
HORA	12:25 p.m.	mie-					
LOCALIZACIÓN	Planta de tratam	iento de Otaré					
			ENEL FUTURO DE TODOS □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □				
			Universidad Francisco de Paula Santander Ocaña				
Δ	NORTE	ESTE	ALTURA				
1	1069086.084	1448158.371	1605.745				
4499	1069087.427	1448158.464	1605.481				
4500	1069084.534	1448157.408	1605.403				
4501	1069084.524	1448157.305	1605.192				
4502	1069085.920	1448152.349	1604.663				
4503	1069086.251	1448150.909	1604.387				
4504	1069085.212	1448150.573	1604.236				
4505	1069085.343	1448149.783	1603.544				
4506	1069089.432	1448151.972	1604.957				
4507	1069091.057	1448152.098	1605.043				
4508	1069093.366	1448144.440	1604.331				
4509	1069095.597	1448145.124	1604.591				
4510	1069097.387	1448138.713	1604.228				
4511	1069098.731	1448133.086	1603.667				
4512	1069095.018	1448132.104	1602.756				
4513	1069092.258	1448131.387	1602.817				
4514	1069091.604	1448133.846	1602.721				
4515	1069090.905	1448133.859	1602.658				
4516	1069090.429	1448135.359	1602.576				
4517	1069089.743	1448135.187	1602.652				
4518	1069089.082	1448138.138	1602.479				
4519	1069089.764	1448138.299	1602.348				
4520	1069089.433	1448139.849	1602.697				
4521	1069090.042	1448140.268	1602.700				

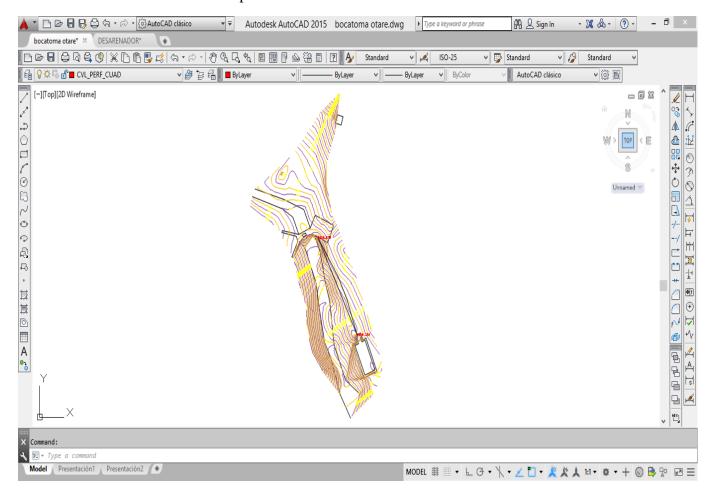
İ	İ	i	i i
4522	1069089.495	1448142.546	1603.122
4523	1069089.066	1448142.444	1603.164
4524	1069088.810	1448143.384	1603.331
4525	1069091.161	1448143.857	1603.862
4526	1069091.294	1448144.444	1603.881
4527	1069091.139	1448145.055	1603.816
4528	1069090.420	1448144.890	1603.765
4529	1069090.179	1448145.451	1603.815
4530	1069089.008	1448145.136	1603.576
4531	1069086.731	1448144.537	1603.060
4532	1069086.009	1448146.836	1603.184
4533	1069080.248	1448157.397	1604.975
4534	1069083.243	1448158.962	1605.929
4535	1069089.346	1448160.904	1606.352
4536	1069091.059	1448156.582	1606.077
4537	1069093.345	1448151.313	1605.502
4538	1069095.141	1448146.452	1604.953
4539	1069097.074	1448140.570	1604.330
4540	1069099.054	1448132.890	1603.635
4541	1069101.434	1448134.586	1603.913
4542	1069105.287	1448135.531	1603.965
4543	1069100.446	1448138.091	1604.069
4544	1069104.502	1448139.059	1604.051
4545	1069098.591	1448129.887	1603.363
4546	1069097.232	1448125.530	1602.789
4547	1069097.017	1448121.637	1602.360
4548	1069091.532	1448120.646	1601.244
4549	1069086.486	1448119.730	1600.345
4550	1069085.558	1448123.382	1600.341
4551	1069084.217	1448127.985	1600.619
4552	1069083.443	1448130.829	1601.527
4553	1069082.221	1448135.701	1601.862
•			

4555 1069079.871 1448146.942 1602.521 4556 1069076.638 1448156.681 1603.923 4557 1069082.622 1448154.063 1604.822 4558 1069083.836 1448150.267 1603.975 4559 1069084.172 1448143.192 1602.511 4560 1069085.672 1448136.761 1602.225 4561 1069087.319 1448130.486 1601.707 4562 1069092.001 1448128.190 1602.094 4563 1069094.673 1448128.015 1602.475 4564 1069095.594 1448124.333 1602.410 4565 1069093.420 1448121.987 1601.764 4566 1069090.720 1448121.987 1601.158 4567 1069088.041 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069088.533 1448124.306 1600.498 4570 1069088.533 1448151.372 1604.593 4571 1069086.983 1448151.372 1604.593 4572 1069085.521 1448156.374 1604.880 4573 1069085.814 1448157.206 1604.949 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.207 1604.948 4577 1069086.889 1448157.207 1604.949 4578 1069087.173 1448156.981 1604.946 4577 1069087.173 1448156.981 1604.946 4577 1069087.173 1448157.207 1604.948 4578 1069087.921 144815.586 1604.975 4578 1069087.921 144815.586 1604.978 4580 1069091.024 1448144.498 1604.169 4582 1069092.064 1448144.498 1604.169 4583 1069092.064 1448143.824 1604.142 4584 106909.194 1448135.325 1602.672	4554	1069081.837	1448141.457	1602.100
4556 1069076.638 1448156.681 1603.923 4557 1069082.622 1448154.063 1604.822 4558 1069083.836 1448150.267 1603.975 4559 1069084.172 1448143.192 1602.511 4560 1069085.672 1448136.761 1602.225 4561 1069097.319 1448130.486 1601.707 4562 1069092.001 1448128.190 1602.094 4563 1069094.673 1448128.015 1602.475 4564 1069095.594 1448124.333 1602.410 4565 1069093.420 1448121.987 1601.158 4566 1069090.720 1448121.987 1601.158 4567 1069088.041 1448124.339 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.372 1604.593 4571 1069085.931 1448156.374 1604.880 4573 1069085.999 1448156.389 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.949 4576 1069086.889 1448157.468 1604.975 4576 1069086.889 1448151.586 1604.949 4577 1069087.73 1448151.586 1604.949 4578 1069087.921 1448151.586 1604.948 4579 1069087.921 1448150.007 1604.637 4580 1069091.526 1448144.498 1604.169 4582 1069092.064 1448142.824 1604.145 4583 1069090.194 1448135.647 1604.142 4584 106909.194 1448135.325 1602.672				
4557 1069082.622 1448154.063 1604.822 4558 1069083.836 1448150.267 1603.975 4559 1069084.172 1448143.192 1602.511 4560 1069085.672 1448136.761 1602.225 4561 1069087.319 1448128.190 1602.094 4562 1069092.001 1448128.190 1602.094 4563 1069094.673 1448128.015 1602.475 4564 1069095.594 1448122.699 1601.764 4565 1069093.420 1448121.987 1601.158 4566 1069090.720 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.372 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.991 1448156.389 1605.041 4574 1069085.814 1448157.468 1604.949 4575 1				
4558 1069083.836 1448150.267 1603.975 4559 1069084.172 1448143.192 1602.511 4560 1069085.672 1448136.761 1602.225 4561 1069087.319 1448130.486 1601.707 4562 1069092.001 1448128.190 1602.094 4563 1069094.673 1448128.015 1602.475 4564 1069095.594 1448124.333 1602.410 4565 1069093.420 1448122.699 1601.764 4566 106909.720 1448121.439 1600.654 4567 1069088.041 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.372 1604.593 4571 1069085.521 1448156.374 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.814 1448157.206 1604.949 4576 1069086.658 1448157.027 1604.948 4577 10	4556	1069076.638	1448156.681	1603.923
4559 1069084.172 1448143.192 1602.511 4560 1069085.672 1448136.761 1602.225 4561 1069087.319 1448130.486 1601.707 4562 1069092.001 1448128.190 1602.094 4563 1069094.673 1448128.015 1602.475 4564 1069095.594 1448124.333 1602.410 4565 1069093.420 1448122.699 1601.764 4566 1069090.720 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069086.983 1448151.372 1604.593 4571 1069085.993 1448156.374 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.814 1448157.206 1604.949 4576 1069086.658 1448157.027 1604.948 4577 1069087.173 1448157.027 1604.948 4578 1	4557	1069082.622	1448154.063	1604.822
4560 1069085.672 1448136.761 1602.225 4561 1069087.319 1448130.486 1601.707 4562 1069092.001 1448128.190 1602.094 4563 1069094.673 1448128.015 1602.475 4564 1069095.594 1448124.333 1602.410 4565 1069093.420 1448122.699 1601.764 4566 106909.720 1448121.987 1601.158 4567 1069088.041 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.772 1604.593 4571 1069088.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.978 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1602.672	4558	1069083.836	1448150.267	1603.975
4561 1069087.319 1448130.486 1601.707 4562 1069092.001 1448128.190 1602.094 4563 1069094.673 1448128.015 1602.475 4564 1069095.594 1448124.333 1602.410 4565 1069093.420 1448122.699 1601.764 4566 1069090.720 1448121.987 1601.158 4567 1069088.041 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.372 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.921 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069086.658 1448157.206 1604.949 4575 1069086.889 1448157.468 1604.975 4576 1069087.173 1448156.981 1604.946 4578 1	4559	1069084.172	1448143.192	1602.511
4562 1069092.001 1448128.190 1602.094 4563 1069094.673 1448128.015 1602.475 4564 1069095.594 1448124.333 1602.410 4565 1069093.420 1448122.699 1601.764 4566 1069090.720 1448121.987 1601.158 4567 1069088.041 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.372 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069087.173 1448157.027 1604.948 4579 1069088.239 1448151.586 1604.578 4580 1	4560	1069085.672	1448136.761	1602.225
4563 1069094.673 1448128.015 1602.475 4564 1069095.594 1448124.333 1602.410 4565 1069093.420 1448122.699 1601.764 4566 1069090.720 1448121.987 1601.158 4567 1069088.041 1448121.439 1600.654 4568 1069087.073 1448126.915 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.772 1604.593 4571 1069086.983 1448156.374 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069087.173 1448157.027 1604.948 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1	4561	1069087.319	1448130.486	1601.707
4564 1069095.594 1448124.333 1602.410 4565 1069093.420 1448122.699 1601.764 4566 1069090.720 1448121.987 1601.158 4567 1069088.041 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069085.33 1448151.772 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.949 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 10	4562	1069092.001	1448128.190	1602.094
4565 1069093.420 1448122.699 1601.764 4566 1069090.720 1448121.987 1601.158 4567 1069088.041 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.772 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069087.173 1448157.027 1604.948 4578 1069087.173 1448157.027 1604.948 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.145 4583 1	4563	1069094.673	1448128.015	1602.475
4566 1069090.720 1448121.987 1601.158 4567 1069088.041 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.772 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.149 4582 1069092.469 1448142.824 1604.145 4583 1	4564	1069095.594	1448124.333	1602.410
4567 1069088.041 1448121.439 1600.654 4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.772 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1602.672	4565	1069093.420	1448122.699	1601.764
4568 1069087.073 1448124.306 1600.498 4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.772 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1602.672	4566	1069090.720	1448121.987	1601.158
4569 1069086.519 1448126.915 1600.691 4570 1069088.533 1448151.772 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1602.672	4567	1069088.041	1448121.439	1600.654
4570 1069088.533 1448151.772 1604.593 4571 1069086.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4568	1069087.073	1448124.306	1600.498
4571 1069086.983 1448151.372 1604.528 4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4569	1069086.519	1448126.915	1600.691
4572 1069085.521 1448156.374 1604.880 4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4570	1069088.533	1448151.772	1604.593
4573 1069085.999 1448156.589 1605.041 4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4571	1069086.983	1448151.372	1604.528
4574 1069085.814 1448157.206 1604.949 4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4572	1069085.521	1448156.374	1604.880
4575 1069086.658 1448157.468 1604.975 4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4573	1069085.999	1448156.589	1605.041
4576 1069086.889 1448156.981 1604.946 4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4574	1069085.814	1448157.206	1604.949
4577 1069087.173 1448157.027 1604.948 4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4575	1069086.658	1448157.468	1604.975
4578 1069087.921 1448151.586 1604.578 4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4576	1069086.889	1448156.981	1604.946
4579 1069088.239 1448150.007 1604.637 4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4577	1069087.173	1448157.027	1604.948
4580 1069091.526 1448145.761 1602.994 4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4578	1069087.921	1448151.586	1604.578
4581 1069092.064 1448144.498 1604.169 4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4579	1069088.239	1448150.007	1604.637
4582 1069092.469 1448142.824 1604.145 4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4580	1069091.526	1448145.761	1602.994
4583 1069096.857 1448135.647 1604.142 4584 1069090.194 1448135.325 1602.672	4581	1069092.064	1448144.498	1604.169
4584 1069090.194 1448135.325 1602.672	4582	1069092.469	1448142.824	1604.145
	4583	1069096.857	1448135.647	1604.142
4585 1069091.003 1448131.448 1602.630	4584	1069090.194	1448135.325	1602.672
	4585	1069091.003	1448131.448	1602.630

4586	1069091.648	1448128.126	1602.591
4587	1069086.746	1448126.027	1602.720
4588	1069086.444	1448126.115	1599.687

Apéndice 28. Curvas de nivel planta de tratamiento-tanque de almacenamiento.

Apéndice 29. Cartera topográfica bocatoma.


CARTERA DE CAMPO				
FECHA	21 Noviembre de 2015			
HORA	8:35 a. m.			
LOCALIZACIÓN	Bocatoma de O	taré		
			ENEL RUTURO DE TODOS. DICAÑA	
			Universidad Francisco de Paula Santander Ocaña	
Δ	NORTE	ESTE	ALTURA	
1	1070147.828	1449794.544	1654.618	
4415	1070147.935	1449809.368	1656.803	
4416	1070142.484	1449820.979	1657.043	
4417	1070142.730	1449821.914	1657.322	
4418	1070143.054	1449824.228	1658.094	
4419	1070140.287	1449822.063	1656.324	
4420	1070141.938	1449821.585	1656.622	
4421	1070142.635	1449820.919	1657.128	
4422	1070139.704	1449817.330	1655.544	
4423	1070141.356	1449816.953	1655.966	
4424	1070139.653	1449814.509	1655.358	
4425	1070140.526	1449814.416	1655.428	
4426	1070141.228	1449814.314	1655.978	
4427	1070142.020	1449811.089	1655.460	
4428	1070142.940	1449809.458	1654.752	
4429	1070143.925	1449807.266	1655.278	
4430	1070145.291	1449804.535	1655.007	
4431	1070146.440	1449801.549	1654.885	
4432	1070147.412	1449798.886	1654.919	
4433	1070148.735	1449795.695	1654.547	
4434	1070148.989	1449794.145	1654.350	

•	i		
4435	1070146.680	1449797.890	1654.540
4436	1070144.944	1449797.146	1654.540
4437	1070146.494	1449793.654	1654.526
4438	1070148.158	1449794.302	1654.539
4439	1070145.887	1449798.455	1654.405
4440	1070145.095	1449798.094	1654.538
4441	1070145.428	1449798.000	1654.153
4442	1070145.455	1449798.186	1654.509
4443	1070144.067	1449801.974	1654.479
4444	1070142.827	1449804.502	1654.652
4445	1070141.408	1449808.143	1654.801
4446	1070139.263	1449809.099	1654.619
4447	1070137.506	1449808.296	1654.654
4448	1070136.605	1449806.522	1654.737
4449	1070137.379	1449809.004	1654.759
4450	1070138.965	1449809.714	1654.731
4451	1070138.436	1449808.934	1654.629
4452	1070138.014	1449808.735	1654.634
4453	1070137.923	1449808.997	1654.680
4454	1070138.341	1449809.201	1654.674
4455	1070139.370	1449808.770	1653.837
4456	1070137.610	1449808.015	1653.981
4457	1070138.286	1449807.461	1653.813
4458	1070139.347	1449804.940	1653.759
4459	1070139.800	1449803.694	1653.684
4460	1070140.236	1449801.100	1653.383
4461	1070140.959	1449797.389	1653.277
4462	1070141.774	1449795.805	1653.089
4463	1070143.100	1449791.814	1653.059
4464	1070144.521	1449789.293	1653.134
4465	1070145.773	1449791.885	1653.091
			·

4466 1070143.895 1449793.339 1652.934 4467 1070142.293 1449797.085 1653.183 4468 1070141.649 1449801.844 1653.401 4469 1070140.0383 1449807.087 1653.680 4471 1070140.068 1449808.632 1654.374 4472 1070139.680 1449805.959 1654.533 4473 1070141.392 1449805.959 1654.533 4474 1070142.819 1449802.766 1654.316 4475 1070143.779 1449799.793 1654.175 4476 1070144.800 1449793.487 1653.923 4477 1070146.365 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070135.548 1449810.879 1654.721 4482 1070135.126 1449811.812 1654.797 4483 1070135.263 1449812.788 1654.918 4486	I	1	1	1
4468 1070141.649 1449801.844 1653.401 4469 1070141.106 1449803.634 1653.471 4470 1070140.083 1449807.087 1653.680 4471 1070139.680 1449808.670 1653.918 4472 1070139.680 1449805.959 1654.533 4473 1070141.392 1449802.766 1654.316 4475 1070143.779 1449799.793 1654.175 4476 1070146.365 1449793.487 1653.923 4477 1070146.365 1449793.487 1653.702 4478 1070147.367 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070138.060 1449811.743 1654.721 4482 1070133.516 1449811.812 1654.733 4483 1070135.126 1449811.812 1654.797 4485 1070135.981 1449813.990 1655.243 4488 1	4466	1070143.895	1449793.339	1652.934
4469 1070141.106 1449803.634 1653.471 4470 1070140.383 1449807.087 1653.680 4471 1070140.068 1449808.632 1654.374 4472 1070139.680 1449808.670 1653.918 4473 1070141.392 1449805.959 1654.533 4474 1070142.819 1449802.766 1654.316 4475 1070143.779 1449799.793 1654.175 4476 1070144.800 1449793.487 1653.923 4477 1070146.365 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.243 4489 1	4467	1070142.293	1449797.085	1653.183
4470 1070140.383 1449807.087 1653.680 4471 1070140.068 1449808.632 1654.374 4472 1070139.680 1449808.670 1653.918 4473 1070141.392 1449805.959 1654.533 4474 1070142.819 1449802.766 1654.316 4475 1070143.779 1449799.793 1654.175 4476 1070146.365 1449793.487 1653.923 4477 1070146.365 1449793.487 1653.702 4478 1070147.367 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070135.126 1449811.812 1654.797 4485 1070135.263 1449813.990 1655.241 4486 1070130.686 1449813.990 1655.094 4489 1	4468	1070141.649	1449801.844	1653.401
4471 1070140.068 1449808.632 1654.374 4472 1070139.680 1449808.670 1653.918 4473 1070141.392 1449805.959 1654.533 4474 1070142.819 1449802.766 1654.316 4475 1070143.779 1449799.793 1654.175 4476 1070146.365 1449793.487 1653.923 4477 1070146.365 1449793.487 1653.702 4478 1070147.367 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1655.241 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449813.893 1654.859 4490 1	4469	1070141.106	1449803.634	1653.471
4472 1070139.680 1449808.670 1653.918 4473 1070141.392 1449805.959 1654.533 4474 1070142.819 1449802.766 1654.316 4475 1070143.779 1449799.793 1654.175 4476 1070144.800 1449793.487 1653.923 4477 1070146.365 1449793.487 1653.702 4478 1070147.367 1449793.890 1654.288 4479 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1655.741 4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449813.990 1655.094 4487 1070130.686 1449813.990 1655.243 4488 1070131.361 1449813.893 1654.859 4489 1070136.901 1449815.585 1655.437 4491 1	4470	1070140.383	1449807.087	1653.680
4473 1070141.392 1449805.959 1654.533 4474 1070142.819 1449802.766 1654.316 4475 1070143.779 1449799.793 1654.175 4476 1070144.800 1449797.206 1653.923 4477 1070146.365 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1655.094 4487 1070130.686 1449813.990 1655.094 4488 1070130.686 1449813.893 1654.859 4489 1070135.062 1449813.893 1654.869 4490 1070136.780 1449815.585 1655.247 4492 1	4471	1070140.068	1449808.632	1654.374
4474 1070142.819 1449802.766 1654.316 4475 1070143.779 1449799.793 1654.175 4476 1070144.800 1449797.206 1653.923 4477 1070146.365 1449793.487 1653.702 4478 1070147.367 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070131.361 1449813.893 1654.859 4490 1070135.062 1449815.585 1655.437 4491 1070136.901 1449805.646 1654.854 4493 1	4472	1070139.680	1449808.670	1653.918
4475 1070143.779 1449799.793 1654.175 4476 1070144.800 1449797.206 1653.923 4477 1070146.365 1449793.487 1653.702 4478 1070147.367 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070135.126 1449810.251 1655.241 4484 1070135.263 1449811.812 1654.797 4485 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070131.361 1449813.893 1654.859 4489 1070135.062 1449813.893 1654.869 4490 1070136.780 1449817.770 1655.247 4492 1070136.901 1449803.531 1655.034 4493 1070137.483 1449803.531 1655.034 4494 107013	4473	1070141.392	1449805.959	1654.533
4476 1070144.800 1449797.206 1653.923 4477 1070146.365 1449793.487 1653.702 4478 1070147.367 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070135.126 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.893 1654.859 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449803.531 1655.034 4493 1070137.483 1449803.531 1655.034 4494 107013	4474	1070142.819	1449802.766	1654.316
4477 1070146.365 1449793.487 1653.702 4478 1070147.367 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.893 1654.859 4490 1070135.062 1449813.893 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 107013	4475	1070143.779	1449799.793	1654.175
4478 1070147.367 1449793.890 1654.288 4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449813.990 1655.094 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.893 1654.859 4489 1070131.361 1449813.893 1654.869 4490 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4476	1070144.800	1449797.206	1653.923
4479 1070147.575 1449791.689 1654.090 4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.070 1654.859 4489 1070131.361 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4477	1070146.365	1449793.487	1653.702
4480 1070134.404 1449809.731 1655.140 4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.893 1654.859 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4478	1070147.367	1449793.890	1654.288
4481 1070136.548 1449810.879 1654.721 4482 1070138.060 1449811.743 1654.733 4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.893 1654.859 4489 1070131.361 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4479	1070147.575	1449791.689	1654.090
4482 1070138.060 1449811.743 1654.733 4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.070 1654.859 4489 1070131.361 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4480	1070134.404	1449809.731	1655.140
4483 1070133.511 1449810.251 1655.241 4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.893 1654.859 4489 1070135.062 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4481	1070136.548	1449810.879	1654.721
4484 1070135.126 1449811.812 1654.797 4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.070 1654.859 4489 1070131.361 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4482	1070138.060	1449811.743	1654.733
4485 1070135.263 1449812.788 1654.918 4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.070 1654.859 4489 1070131.361 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4483	1070133.511	1449810.251	1655.241
4486 1070135.981 1449813.990 1655.094 4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.070 1654.859 4489 1070131.361 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4484	1070135.126	1449811.812	1654.797
4487 1070130.686 1449811.958 1655.243 4488 1070130.988 1449813.070 1654.859 4489 1070131.361 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4485	1070135.263	1449812.788	1654.918
4488 1070130.988 1449813.070 1654.859 4489 1070131.361 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4486	1070135.981	1449813.990	1655.094
4489 1070131.361 1449813.893 1654.869 4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4487	1070130.686	1449811.958	1655.243
4490 1070135.062 1449815.585 1655.437 4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4488	1070130.988	1449813.070	1654.859
4491 1070136.780 1449817.770 1655.247 4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4489	1070131.361	1449813.893	1654.869
4492 1070136.901 1449805.646 1654.854 4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4490	1070135.062	1449815.585	1655.437
4493 1070137.483 1449803.531 1655.034 4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4491	1070136.780	1449817.770	1655.247
4494 1070138.462 1449801.299 1654.754 4495 1070138.427 1449799.552 1654.929	4492	1070136.901	1449805.646	1654.854
4495 1070138.427 1449799.552 1654.929	4493	1070137.483	1449803.531	1655.034
	4494	1070138.462	1449801.299	1654.754
4496 1070139.203 1449796.328 1655.059	4495	1070138.427	1449799.552	1654.929
	4496	1070139.203	1449796.328	1655.059

4497	1070140.517	1449794.491	1655.084
4498	1070145.246	1449797.549	1654.135

Apéndice 30. Curvas de nivel bocatoma.

Apéndice 31. Cartera topográfica redes de distribución.

CARTERA DE CAMPO				
FECHA	21 Noviembre o			
HORA	3:32 p. m.			
LOCALIZACIÓN Redes de Otaré			PS	
			Universidad Francisco de Paula Santander Ocaña	
Δ	NORTE	ESTE	ALTURA	
RED1				
Α	1072027.619	1420718.082	1557.033	
17	1072023.139	1420720.260	1557.286	
18	1072017.346	1420731.192	1557.630	
19	1072010.186	1420740.091	1556.086	
20	1071999.569	1420766.144	1555.839	
21	1071977.439	1420824.761	1554.834	
22	1071954.581	1420854.191	1553.677	
23	1071930.629	1420859.928	1552.416	
24	1071875.342	1420874.136	1549.686	
25	1071856.379	1420915.777	1548.286	
26	1071849.209	1420950.465	1552.429	
27	1071826.652	1420987.686	1551.493	
28	1071803.650	1421017.816	1552.560	
29	1071770.875	1421056.072	1546.244	
RED 2				
А	1072027.619	1420718.082	1557.033	
33	1072004.892	1420722.793	1563.459	
34	1071983.619	1420718.123	1567.709	
35	1071982.574	1420732.297	1567.692	
36	1071975.675	1420748.379	1567.661	
37	1071968.989	1420762.396	1567.629	
38	1071958.232	1420778.365	1567.598	
39	1071941.849	1420803.465	1567.561	
40	1071939.987	1420807.451	1567.524	
41	1071933.245	1420804.301	1568.084	
42	1071936.250	1420796.052	1571.724	
43	1071946.829	1420757.182	1570.747	
44	1071958.001	1420718.796	1569.640	
45	1071969.593	1420685.333	1567.640	
46	1071961.413	1420651.930	1560.020	
E	1071957.363	1420634.536	1552.418	
F	1071955.496	1420615.764	1548.316	

1071951.679	1420600.449	1547.367
1071918.093	1420851.520	1564.264
1072027.619	1420718.082	1557.033
1072019.522	1420698.008	1555.78
1072001.447	1420666.462	1553.611
1071983.870	1420631.026	1551.023
1071957.363	1420634.536	1552.418
1071955.496	1420615.764	1548.316
1071951.679	1420600.449	1547.367
1071944.186	1420564.766	1546.061
1071927.383	1420527.124	1545.746
1071922.413	1420518.353	1544.024
1071907.334	1420481.865	1542.897
1071886.461	1420435.801	1539.001
1071870.552	1420409.904	1530.059
1071839.383	1420378.792	1526.093
1071838.527	1420347.958	1526.010
	1071918.093 1072027.619 1072019.522 1072001.447 1071983.870 1071957.363 1071955.496 1071951.679 1071944.186 1071927.383 1071922.413 1071907.334 1071886.461 1071870.552 1071839.383	1071918.093 1420851.520 1072027.619 1420718.082 1072019.522 1420698.008 1072001.447 1420666.462 1071983.870 1420631.026 1071957.363 1420634.536 1071955.496 1420615.764 1071951.679 1420600.449 1071944.186 1420564.766 1071927.383 1420527.124 1071907.334 1420481.865 1071886.461 1420435.801 1071839.383 1420378.792

Apéndice 32. Cartera de campo línea de aducción.

CARTERA DE CAMPO LINEA DE ADUCCIÓN					
Δ	DESCRIPCION	ESTE	NORTE	ALTITUD	
0	desarenador	1073403.12	1422488.834	1665.834	
1		1073384.31	1422427.659	1661.603	
2		1073342.1	1422384.199	1657.371	
3		1073334.8	1422320.006	1653.140	
4		1073331.91	1422266.176	1640.829	
5		1073322.91	1422242.494	1626.494	
6	caño	1073301.86	1422208.976	1607.507	
7		1073295.61	1422173.044	1612.457	
8		1073265.24	1422132.620	1611.296	
9		1073236.29	1422064.984	1609.336	
10		1073258.75	1422033.171	1623.883	
11		1073226.78	1421969.808	1620.011	
12		1073250.5	1421890.922	1609.016	
13		1073223.69	1421827.089	1607.140	
14	ventosa	1073252.82	1421718.073	1607.110	
15		1073242.58	1421662.923	1620.366	
16		1073228.59	1421617.338	1608.074	
17	ventosa	1073261.44	1421525.457	1594.473	
18		1073229.26	1421451.937	1583.430	
19		1073211.14	1421371.707	1572.633	
20		1073216.97	1421330.776	1577.296	
21		1073166.43	1421265.318	1554.477	
22	caño	1073138.51	1421293.413	1542.323	
23		1073128.65	1421256.852	1547.621	
24		1073117.83	1421235.329	1554.329	
25		1073122.91	1421218.808	1555.549	
26		1073120.06	1421186.178	1561.74	
27		1073073.18	1421174.613	1561.313	
28		1073028.63	1421125.470	1578.800	
29	ventosa	1073008.21	1421146.326	1578.643	
30		1072996.01	1421160.204	1576.800	
31		1072971.23	1421171.064	1576.954	
32		1072951.78	1421188.940	1577.350	
33	caño	1072925.59	1421195.011	1571.982	
34		1072921.530	1421162.282	1575.927	
35		1072862.19	1421151.609	1571.921	
36		1072822.28	1421113.756	1571.729	
37		1072765.38	1421097.019	1568.780	

38	caño	1072718.37	1421147.891	1549.176
39		1072706.76	1421134.624	1552.230
40		1072645.300	1421107.495	1570.251
41		1072614.97	1421101.607	1564.457
42		1072546.81	1421117.213	1560.551
43	caño	1072532.96	1421132.001	1542.461
44		1072516.03	1421094.855	1563.613
45		1072497.73	1421057.477	1566.659
46		1072488.44	1421041.108	1566.950
47		1072504.48	1420983.551	1569.767
48		1072497.44	1420960.062	1572.037
49		1072479.62	1420899.759	1587.034
50		1072434.58	1420869.314	1588.311
51		1072383.64	1420854.313	1590.976
52		1072357.61	1420841.410	1592.156
53		1072359.04	1420822.288	1598.039
54		1072351.35	1420806.564	1600.443
55	planta	1072330.660	1420823.643	1601.517