

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OCAÑA					
Documento Código Fecha Revisión					
FORMATO HOJA DE RESUMEN	F-AC-DBL-007	10-04-2012	A		
PARA TRABAJO DE GRADO					
Dependencia		Aprobado	Pág.		
DIVISIÓN DE BIBLIOTECA	SUBDIRECTOR A	ACADEMICO	1(74)		

RESUMEN - TESIS DE GRADO

AUTORES	KEINER ANDRES ROMANO MOLINA
FACULTAD	DE INGENIERIAS
PLAN DE ESTUDIOS	INGENIERÍA MECÁNICA
DIRECTOR	ALFREDO EMILIO TRIGOS QUINTERO
TÍTULO DE LA TESIS	ESTUDIO DE CONFIABILIDAD Y MANTENIBILIDAD EN
	EQUIPOS DE OPERACIÓN MINERA DE LA EMPRESA
	PRODECO MINA LA JAGUA BASADO EN LAS TÉCNICAS
	RIM (RELIABILITY INFORMATION MANAGEMENT)

RESUMEN (70 palabras aproximadamente)

EL OBJETIVO PRINCIPAL DEL DEPARTAMENTO DE MANTENIMIENTO ES
MANTENER LOS EQUIPOS EN LAS MEJORES CONDICIONES PARA LOGRAR QUE LA
PRODUCCIÓN MARCHE EN FORMA CONSTANTE Y SIN CONTRATIEMPOS. UNA DE
LAS HERRAMIENTAS FUNDAMENTALES DEL DEPARTAMENTO DE
MANTENIMIENTO ES EL MONITOREO Y SEGUIMIENTO CONTINUO DE LAS FALLAS
DE CADA UNO DE LOS COMPONENTES DE LOS EQUIPOS, LOGRANDO ASÍ TENER
UN INTERVALO DE VIDA DE CADA COMPONENTE, DISMINUYENDO ASÍ EL TIPO
DE PARADAS IMPREVISTAS Y AUMENTANDO LAS REPARACIONES

PROGRAMADAS

CARACTERÍSTICAS					
PÁGINAS: 74	PÁGINAS: 74 PLANOS: ILUSTRACIONES: 46 CD-ROM: 1				

ESTUDIO DE CONFIABILIDAD Y MANTENIBILIDAD EN EQUIPOS DE OPERACIÓN MINERA DE LA EMPRESA PRODECO MINA LA JAGUA BASADO EN LAS TÉCNICAS RIM (RELIABILITY INFORMATION MANAGEMENT)

AUTOR:

KEINER ANDRES ROMANO MOLINA

Trabajo final de pasantías presentado para optar el título de Ingeniero Mecánico

Director

ALFREDO EMILIO TRIGOS QUINTERO

Ingeniero Mecánico

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OCAÑA FACULTAD DE INGENIERÍAS INGENIERIA MECANICA

Ocaña, Colombia Septiembre de 2017

Dedicatoria

Dedico primera mente este logro a Dios por ser mi ayuda incondicional y mi guía a lo largo de mi vida, a mis padres por su apoyo, mi hermana primos y amigos por creer en mis sueños, a mis profesores por sus enseñanzas y a la universidad por haberme acogido en su seno y poner a mi disposición todo su conocimiento.

A todos muchas gracias.

Agradecimientos

Mis agradecimientos son para Dios primeramente por ser mi guía y mi amigo en toda esta carrera y por hoy permitirme alcanzar este logro tan importante en mi vida.

A mi madre Candelaria Molina y a mi padre Ramón Romano porque a pesar de todos los obstáculos nunca me dieron la espalda. A mi hermana Kelly Romano molina por enseñarme que si crees y quieres lo puedes lograr.

A la familia Sanchez Gomez por hacerme parte de su familia durante mi estadía en Ocaña norte de Santander

A mis amigos de universidad Cristian Montañez, Yancarlos Saldaña, Cristian medina, Manuel Fonseca, Edgar Mauricio Pérez, Carlos Salazar y Sheily Rincon Suarez que más que amigos se convirtieron en hermanos, con quienes compartí buenos y malos momentos.

A amigos como Jeisson Niño y Mailen Carrascal que aparte de ser compañeros universitarios me brindaron todo su apoyo a lo largo de este proceso de pasantías.

A mi director Alfredo Emilio Trigos Quintero por su ayuda fundamental en la elaboración de este trabajo.

A mi director de pasantía en la empresa Rodny Jaramillo por darme la oportunidad en esta empresa y creer en mi trabajo

A mis compañeros de trabajo Oscar Salazar, Daniel Escamilla, José Ayus, Nair Vega, Flower Lopez, Carlos Hernandez, Miguel Arquez, David Prins. Por todas sus enseñanzas a lo largo de este proceso.

Índice

capitulo 1. Estudio de conflabilidad y Mantenibilidad en equipos de operación minera de 1
empresa Prodeco Mina la Jagua basado en las técnicas RIM (Reliability Information Management)
1.1 Descripción breve de la empresa
1.1.1 Misión
1.1.2 Visión
1.1.3 Objetivos de la Empresa
1.1.4 Descripción de la Estructura Organizacional Grupo PRODECO S.A
1.1.5 Descripción de la dependencia y/o proyecto al que fue asignado
1.2 Diagnóstico Inicial De La Dependencia Asignado
1.3 Objetivos.
1.3.1. General
1.3.2. Objetivos Específicos
1.4 Descripción de las actividades
Capítulo 2. Enfoques Referenciales
2.1. Enfoque conceptual
2.1.2. Confiabilidad
2.1.2. Conflaointadu
2.1.3. Mantemonidad
Capítulo 3. Informe de cumplimiento de trabajo14
3.1. Presentación de resultados
3.1.1 objetivo específico 1. Estudiar la confiabilidad y la mantenibilidad en los equipos d
operación minera de la empresa Prodeco Mina la Jagua basado en las Tecnicas RIN
(Realiability Information Management)
3.1.2 objetivo específico 2. Describir las fallas más comunes presentadas en cada uno de lo
equipos y como mitigar o reducir las mismas a través de las técnicas RIM
3.1.3 objetivo específico 3. Calcular porcentaje y viabilidad de costos de mantenibilidad d
un equipo o componente luego de un evento no planeado o crítico
Capítulo 4. Diagnostico final
5. Conclusiones
J. Conclusiones
6. Recomendaciones
o. Recomendaciones
Referencias 5
Apéndices5

Lista de figuras

Figura	1. Estructura Organizacional grupo PRODECO S.A	. 3
Figura	2. Estructura organizacional del departamento de mantenimiento PLJ mina la jagua	. 4
Figura	3. Problemas de confiablidad en los diferentes procesos.	11
Figura	4 Base de datos características principales de la falla	25
Figura	5. Base de datos análisis de las fallas	27
Figura	6.comentario directamente del software dispash	28
Figura	7. Base de Datos Paradas Equipo Minero - Malos Actores Informe Mensual	28
Figura	8. Eventos Dowm para cada equipo NO MARA Mina la Jagua	29
Figura	9. Captura de datos de parada equipo minero	30
Figura	10. Cantidad de Eventos Downtime	30
Figura	11. Cantidad de eventos y downtime desde enero hasta junio del 2017	31
Figura	12. Tiempo promedio para reparar Horas (MTTR)	31
Figura	13. Tiempo promedio para reparar Horas (MTTR)	32
Figura	14. Tiempo promedio para Reparar horas (MTTR) por sistemas	32
Figura	15. Tiempo promedio para Reparar horas (MTTR) por sistemas	33
Figura	16Cantidad de Eventos y Downtime	33
Figura	17. Cantidad de Eventos y Downtime desde enero hasta junio del 2017	34
Figura	18. Tiempo Promedio Para Reparar horas (MTTR)	34
Figura	19Tiempo Promedio Para Reparar horas (MTTR)	35
Figura	20. Tiempo Promedio Para Reparar horas (MTTR) por sistemas	35
Figura	21. Tiempo Promedio Para Reparar horas (MTTR) por sistemas	36

Figura 22. Cantidad de eventos y Downtime desde enero hasta junio del 2017	36
Figura 23Cantidad de eventos y downtime desde enero hasta junio del 2017	37
Figura 24. Tiempo Promedio Para Reparar horas (MTTR)	37
Figura 25. Tiempo Promedio Para Reparar horas (MTTR)	38
Figura 26. Tiempo Promedio Para Reparar horas (MTTR) por sistemas	38
Figura 27 Tiempo Promedio Para Reparar horas (MTTR) por sistemas	39
Figura 28.Cantidad de eventos y tiempo de parada de los equipos en marcha de las flotas DM	1 L y
DM45E	39
Figura 29. Cantidad de eventos y tiempo de parada de los equipos en marcha de las flotas D	ML
y DM45E	40
Figura 30. MTTR a lo largo de la primera mitad del año 2017	40
Figura 31 MTTR a lo largo de la primera mitad del año 2017	41
Figura 32. MTTR por sistemas de la flota por perforadores	41
Figura 33. MTTR por sistemas de la flota por perforadores	42
Figura 34. Flotas no mara y promedio de los sistemas que tienen mayor tiempo de reparació	n 42
Figura 35. Flotas no mara y promedio de los sistemas que tienen mayor tiempo de reparació	in 43
Figura 36. Reparación o restauración de componentes.	44
Figura 37. Reparación cilindros, tanques de combustible, tanques hidráulicos entre otras,	45
Figura 38. Horometro del equipo	46
Figura 39, Pool componentes flota 793C	47
Figura 40. Grafica Pool componentes flota 793C	48
Figura 41. Pool componentes flota 777F	48
Figura 42. Grafica Pool componentes flota 777F	49

Figura	43. Pool componentes flota RH120E	49
Figura	44. Grafica Pool componentes flota RH120E	50
Figura	45. Pool componentes flota DML Y DM45E	50
Figura	46. Grafica Pool componentes flota DML Y DM45E	51

Lista de tablas

Tabla 1 Diagnóstico Inicial de la Dependencia de Mantenimiento Prodeco Mina la Jagua	a través
de la Matriz DOFA.	5
Tabla 2. Descripción de las actividades a desarrollar por cada objetivo especifico	7
Tabla 3 Equipos flota NO MARA mina LA JAGUA	14
Tabla 4 Equipos NO MARA por flota de mina LA JAGUA	16

Lista de apéndices

Apéndice	A. Camión CATERPILLAR 793C Mina LA JAGUA	59
Apéndice	B. Camiones CATERPILLAR 777 F mina LA JAGUA	60
Apéndice	C. PALAS TEREX RH120E mina LA JAGUA	61
Apéndice	D. Perforador ATLAS COPCO DML	62

Introducción

El objetivo principal del departamento de mantenimiento es mantener los equipos en las mejores condiciones para lograr que la producción marche en forma constante y sin contratiempos. Una de las herramientas fundamentales del Departamento de Mantenimiento es el monitoreo y seguimiento continuo de las fallas de cada uno de los componentes de los equipos, logrando así tener un intervalo de vida de cada componente, disminuyendo así el tipo de paradas imprevistas y aumentando las reparaciones programadas.

El detallado estudio, la recolección y organización de datos presentados en este documento nos ayudará a identificar y comprender los problemas de rendimiento relacionados con la operación de equipos pesados en la minería cielo abierto. Esta recolección de datos se realiza como soporte para el cálculo de los indicadores manejados en el mantenimiento de confiabilidad. Estos indicadores se definen de la siguiente manera: Tiempo Promedio Paradas (MTBS), Tiempo Promedio Para Reparar (MTTR), Tiempo Promedio entre Fallas. (MTBF).

El grupo de Planeación de mantenimiento juega un papel muy importante en este proceso ya es el encargado de realizar estos estudios y de tener el pool de componentes actualizado y disponible para el momento que se programe un cambio o que se presente una falla imprevista.

Capítulo 1. Estudio de confiabilidad y Mantenibilidad en equipos de operación minera de la empresa Prodeco Mina la Jagua basado en las técnicas RIM (Reliability Information Management)

1.1 Descripción breve de la empresa.

Mina La Jagua, ubicada en el municipio de La Jagua de Ibirico, en el departamento de Cesar, es una mina de carbón a cielo abierto que se compone de cinco títulos mineros, en poder de tres compañías: Carbones de La Jagua S.A., Consorcio Minero Unido S.A. y Carbones El Tesoro S.A. Después de comprar la totalidad de estas operaciones, Glencore procedió a integrarlas en una sola, con la aprobación de las autoridades competentes.

Además de producir carbón térmico bajo en azufre y de alto contenido energético, en la mina La Jagua también se extrae carbón metalúrgico de alta volatilidad. El carbón triturado es transportado por camión hasta las instalaciones de manejo de carbón en la mina Calenturitas, donde es cargado en vagones de tren y transportado al puerto en Ciénaga, Magdalena.

Actualmente la empresa alcanzo una producción de 7 millones de toneladas de carbón con un alto contenido energético lo que lo hace apetecido en los mercados internacionales.

Estamos comprometidos en prevenir, minimizar, mitigar y compensar los impactos ambientales propios de la actividad de minería a gran escala. Por eso nuestro compromiso y

esfuerzo están dirigidos a la preservación de los recursos naturales y a la restauración de los hábitats que de una u otra forma han sido intervenidos con nuestras actividades.

Nuestras acciones se enfocan en apoyar y respetar los derechos humanos de acuerdo con la Declaración Universal de Derechos Humanos; asimismo, defendemos la dignidad, las libertades fundamentales y los derechos humanos de nuestros empleados, contratistas, comunidades donde operamos y personas afectadas por nuestras actividades, es por esto, que nos aseguramos que la concientización en materia de derechos humanos esté incorporada en nuestros procesos internos de evaluación de riesgos. (PRODECO G., 2016)

1.1.1 Misión. Nos encargamos de la explotación, producción, transporte y embarcación de nuestro carbón con destino a mercados internacionales.

Nos esforzamos por la mejora continua de nuestro negocio a través de una gestión de personal de primer nivel, el desarrollo de una infraestructura operativa eficiente de bajo costo, la aplicación de sistemas de gestión adecuados y el diseño de políticas que nos permitan ejecutar una operación segura y responsable con la sociedad y el medioambiente. (PRODECO L. I., 2016).

1.1.2 Visión. Ser productor y exportador de carbón más importante de Colombia, mediante la ejecución segura de nuestras operaciones mineras y de toda la cadena de manejo de carbón hasta su exportación, la promoción de nuestro talento humano, el cuidado de nuestras comunidades vecinas y siendo responsables con el medioambiente en donde operamos, como un

esfuerzo integral para alcanzar nuestras metas de producción y exportación. (**PRODECO L. I., 2016**).

1.1.3 Objetivos de la Empresa. Tenemos como objetivos construir relaciones duraderas con nuestros vecinos al identificar y abordar sus preocupaciones y contribuyendo a las actividades y programas destinados a mejorar su calidad de vida. Nuestro enfoque de sostenibilidad se basa en el principio de valor compartido y en la conexión entre progreso económico y social en las regiones donde operamos. Con Este enfoque buscamos evaluar nuestras decisiones y oportunidades desde la lógica de la creación de valor, la maximización de beneficios y la minimización de impactos en nuestras operaciones.. Nuestros Valores y Código de Conducta son la base de nuestro enfoque de sostenibilidad y establecen nuestras expectativas sobre los empleados, contratistas y socios comerciales. (PRODECO G., 2016)

1.1.4 Descripción de la Estructura Organizacional Grupo PRODECO S.A

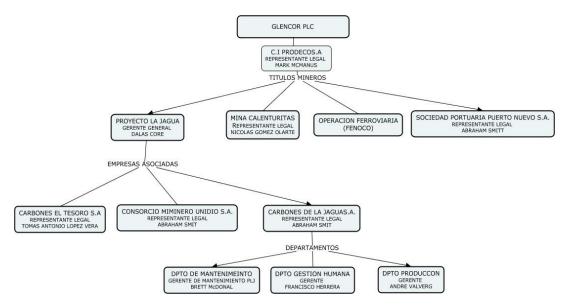


Figura 1. Estructura Organizacional grupo PRODECO S.A

Fuente: (PRODECO L. I., 2016)

1.1.5 Descripción de la dependencia y/o proyecto al que fue asignado. La dependencia en la que fui asignado fue al departamento de mantenimiento en el área de planeación la cual está a cargo del Ing. Rodny Jaramillo Superintendente del área de planeación de mantenimiento mina la jagua. Fui asignado Como apoyo a la aplicación de un proyecto basado en el análisis y administración de la información de mantenimiento (RIM) y de fallas RCA dirigido por el Ing. Muigel Arquez Planador de mantenimiento para la empresa Prodeco mina la jagua, lo cual se pretende aplicar a la flota de equipos NO MARA (Maintenance And Repair According) acuerdo o contrato de mantenimiento y reparación por parte de nuestra empresa y no por la empresa contratista RELIANZ.

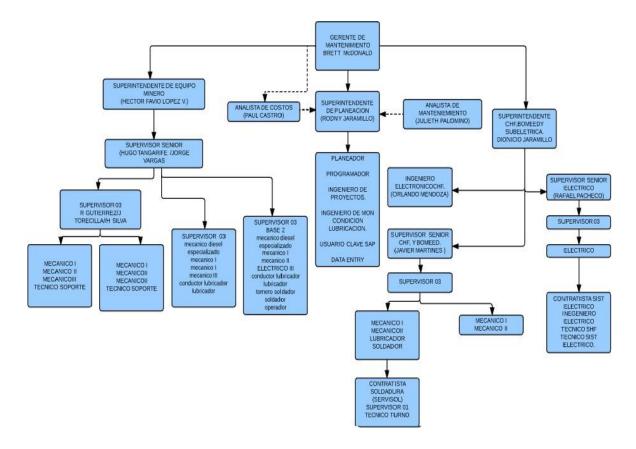


Figura 2. Estructura organizacional del departamento de mantenimiento PLJ mina la jagua. Fuente: (L., 2016)

1.2 Diagnóstico Inicial De La Dependencia Asignado

Tabla 1 Diagnóstico Inicial de la Dependencia de Mantenimiento Prodeco Mina la Jagua a través de la Matriz DOFA.

FA.		
	FORTALEZAS	DEBILIDADES
C.I PRODECO S.A. MINA LA JAGUA	El departamento de mantenimiento se encuentra bien organizado y estructurado, Se divide en dos partes: planeación y ejecución logrando así una mejor gestión de mantenimiento	No se realiza un análisis de confiabilidad efectivos puntuales ya que no se socializan y se toman acciones que sirva para mitigar o reducir los índices de MTBF (Time between failure), MTTR(average time for repairs). En cada uno de los EQUPEMENT NO MARA de la empresa procedo mina la jagua.
OPORTUNIDADES	FO	DO
El gerente del área de mantenimiento brinda toda la información requerida y sus conocimientos para realizar planes de mantenimientos. Se tiene la oportunidad de estructurar un grupo de mantenimiento que se basa en estrategias que van acorde a las eventualidades que se presentan en los equipos, teniendo en cuenta las recomendaciones de los fabricantes y la experiencia de ingeniería del staff de mantenimiento.	Con el análisis de confiablidad se pretende crear indicadores que muestren eventualidades periódicas y puntuales que se presentan en los equipos NO MARA a los que la empresa les corresponde el mantenimiento.	Teniendo en cuenta los resultados que arrojen los indicadores Se tendrá una propuesta establecida en el departamento de mantenimiento que sirvan para mitigar o reducir los malos actores al momento de una avería, Evitando gastos en pates de los equipos y el porcentaje de DT (downtime).
AMENAZAS	FA	DA
Se genera un alto índice de fallas en los equipos ocasionando un alto indicador de DT(down time) en la flota NO MARA.	Teniendo un análisis mensual de los indicadores de rendimiento en los equipos se plantearan propuestas para mitigar estas averías.	Con esta técnica se busca analizar y crear estrategias para mitigar malos actores en las fallas periódicas que presentan los equipos NO MARA de la compañía.

Fuente: Pasante del Proyecto

1.2.1. Planteamiento del problema. El departamento de mantenimiento de la empresa Prodeco Mina La Jagua es el encargado de mantener los EQUIPEMENT NO MARA (Maintenance And Repair According) por ende es su responsabilidad garantizar los equipos en buen estado y confiables para la operación. Debido a esto dicho departamento se divide en dos:

planeación y ejecución, que trabajando en conjunto realizan tareas de mantenimiento que van acorde a las eventualidades que presentan los equipos y teniendo en cuenta los procedimientos y recomendaciones de los distintos fabricantes de los mismos, también se realizan análisis globales de fallas de toda la flota, pero no existe un análisis puntual que emplea técnicas como la implementación del RIM(reliability information management) administración de la información de confiabilidad cuyo objetivo es administrar la información de eventos tales como:

Averías no planeadas y clasificarla de manera puntual, en flota, equipo sistemas, subsistemas componentes, fecha y hora de inicio de intervención del equipo y finalización del mismo, modo en que se presentó la falla, causa de la misma y el cálculo de indicadores rendimiento. cuya función es mitigar los eventos catalogados como malos actores que se presentan de forma consecutiva y que por ende arrojan altos porcentajes en el indicador, tiempo promedio entre fallas(MTBF) generando un alto índice de tiempo promedio de reparación (MTTR) los cuales son causantes de pérdidas en la producción.

1.3 Objetivos.

- 1.3.1. General. Estudiar la confiabilidad y mantenibilidad en los equipos de operación minera de la empresa Prodeco mina la jagua basado en las técnicas RIM (Reliability Information Management).
- **1.3.2. Objetivos Específicos.** Identificar los diferentes equipos a los cuales se les realiza mantenimiento bajo el contrato NO MARA, y la técnica encargada de administrar la información de confiablidad (RIM).

Describir las fallas más comunes presentadas en cada uno de los equipos y como mitigar o reducir las mismas a través de las técnicas RIM

Calcular porcentaje y viabilidad de costos de mantenibilidad de un equipo o componente luego de un evento no planeado o crítico.

1.4 Descripción de las actividades

Cuadro de actividades a desarrollar en la Empresa Prodeco Mina la Jagua.

Tabla 2. Descripción de las actividades a desarrollar por cada objetivo especifico

iota 2. Descripción de las actividades a desarrollar por cada objetivo específico			
	Objetivos específicos	Actividades a desarrollar en la empresa para cumplir los objetivos específicos	
Objetivo general	Identificar los diferentes equipos a los cuales se les realiza mantenimiento bajo el contrato NO MARA, y la técnica encargada de administrar la información de confiablidad (RIM).	 identificar los diferentes equipos de la flota a los cuales le realiza mantenimiento la mina la jagua. conocer la función que cumple cada e quipo en la empresa. investigar la distribución de cada uno de ellos en la empresa. investigar sobre la técnica RIM, los indicadores de rendimiento que permite controlar como: MTTF, MTBF, MTTR. Que significan y como se calculan. 	
Estudiar la confiabilidad y la mantenibilidad en los equipos de operación minera de la empresa procedo mina la jagua basado en las técnicas RIM (reliability information management)	Describir las fallas más comunes presentadas en cada uno de los equipos y como mitigar o reducir las mismas a través de las técnicas RIM	 descripción de los ítems para la clasificación de la información de cada uno de los equipos. organizar la información de acuerdo a la flota, y clasificarla en sistema, subsistema componente, modo de falla causa de la falla y la fecha en que se reportó realizó la intervención del equipo Atreves de técnicas RIM. calcular cada uno de los indicadores de rendimiento para cada equipo identificar la flota y los equipos que presentan más porcentaje de fallas en determinado tiempo. describir los sistemas, subsistemas y componentes que presentaron fallas con mayor frecuencia. 	
	Calcular porcentaje y viabilidad de costos de mantenibilidad de un equipo o componente luego de un evento no planeado o crítico.	 estudiar las pasibilidades que tiene un componente de volver a ser restaurado y si es viable o no. -plantear planes de contingencia con anticipación en caso que los componentes no puedan ser reparados. 	

Fuente: Pasante del Proyecto

Capítulo 2. Enfoques Referenciales

2.1. Enfoque conceptual.

2.1.1. Mantenimiento. Desde el punto de vista de la ingeniería, existen dos elementos para el manejo de cualquier bien físico. Este debe ser mantenido y cada tanto ser modificado.

Los principales diccionarios definen Mantener, como causa de continuidad (Oxford) o conservar en el estado actual (Webster). Esto sugiere que mantener significa preservar algo, por otro lado, concuerdan en que modificar algo significa cambiar en algún aspecto.

Esta distinción entre mantener y modificar tiene profundas implicancias que son discutidas ampliamente en capítulos siguientes. Sin embargo, nos concentramos en mantenimiento, cuando nos referimos a mantener algo, que es lo que pretendemos que continúe? Cuál es el estado actual existente que queremos preservar?

La respuesta a este planteo puede encontrarse en el hecho de que todo bien físico se pone en servicio porque alguien desea que cumpla realice una tarea. En otras palabras, esperan que este cumpla una o más funciones. Entonces sucede que cuando nosotros mantenemos un bien,

Lo que remos preservar es un estado en el que este siga cumpliendo con las funciones deseadas por el usuario.

Mantenimiento: Asegurar que los bienes físicos continúen cumpliendo las funciones que sus usuarios esperan.

Lo que los usuarios quieren dependerá en exactamente dónde y cómo el bien está siendo usado (el contexto operativo). Esto lleva a la siguiente definición formal de mantenimiento basado en la Garantía de Funcionamiento. (MOUBRAY).

2.1.2. Confiabilidad. La gente siempre ha entendido a su manera la confiabilidad, esto se ve reflejado en como hablamos sobre la confiabilidad en la familia, en los amigos, en productos que compramos, es decir se habla sobre la confiabilidad de lo que nos rodea y con qué interactuamos. El concepto así expresado hace una comparación subjetiva, entre el pasado y presente de la confiabilidad. Por ejemplo, cuando decimos que alguien es confiable, nos referimos a que la persona se puede encargar para completar una tarea de manera satisfactoria en el tiempo, ya que ha demostrado con anterioridad que se ha encargado de tareas como esta o similares. Estas descripciones de la confiabilidad son cualitativas, y no implican medidas numéricas. Por otro lado, la importancia de obtener sistemas y componentes de alta confiabilidad ha sido reconocida desde el punto de vista económico y social. Los arreglos funcionales de los equipos pueden ser de mayor o menor costo según la confiabilidad requerida, pero de igual forma las consecuencias de una baja confiabilidad en algunos elementos o equipos puede ser catastrófico dependiendo del contexto en el que se encuentre el elemento y su función. En este sentido puede interpretarse que los elementos que tienen bajo su "responsabilidad" vidas humanas o efectos medioambientales han de ser indiscutiblemente de alta confiabilidad. La confiabilidad es la PROBABILIDAD de que un activo opere sin falla por un determinado

período de tiempo especificado (tiempo de misión) y bajo condiciones previamente establecidas (nivel esperado de rendimiento). La definición incluye el término de probabilidad, que indica el uso de una medida cuantitativa. Siendo la Probabilidad la posibilidad de ocurrencia de forma particular de un evento. Para el profesional de mantenimiento y el área de gestión de activos físicos es un factor importante, debido a que a menor confiabilidad implica una mayor atención y planeación del mantenimiento, además si el elemento bajo análisis requiere para su proceso una alta confiabilidad implica una alta necesidad de mantenimiento para poder llevar este a los niveles requeridos. Algunas razones de estudio de la confiabilidad son las siguientes:

- Determinar el tiempo hasta el cual se espera que falle (no falle) un sistema, equipo o componente para determinar tiempos de duración o producción.
- Encontrar el tiempo al cual se espera que sobreviva una cantidad determinada de elementos puestos en operación.
- Determinar la propensión a fallar que tiene un elemento en un tiempo futuro.
- Dado que un elemento ha sobrevivido un tiempo estimado, conocer la probabilidad de que sobreviva un tiempo adicional cumpliendo su función.
- Determinar la un grado de seguridad del sistema
- Tener argumentos para una decisión racional en el diseño o el funcionamiento de un sistema. Algunos de los problemas de confiabilidad se encuentran en áreas y procesos como se ilustra en la siguiente figura. (ver Figura 1).

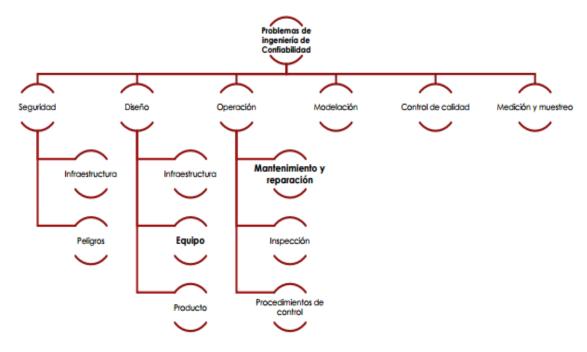


Figura 3. Problemas de confiablidad en los diferentes procesos. Fuente (Aciem, 2014).

Por tratarse de un valor probabilístico esta varía entre 0 y 100%, tomando un valor de 0 (cero) al presentar la falla. De igual forma la confiabilidad es importante no solo para efectos de mantenimiento sino que también es de utilidad revisar:

La Confiabilidad de Diseño: Medidas adoptadas para asegurar la confiabilidad de procesos, sistemas, productos y servicios durante la etapa de diseño de elementos, equipos, plantas, etc.

La Confiabilidad de Proceso Productivo: Aseguramiento para que las entradas, salidas, equipos y personal trabajen de manera confiable durante la transformación.

La Confiabilidad Humana: La probabilidad de desempeño eficaz y eficiente de las personas sin cometer errores durante el desarrollo de una actividad en el entorno que se mueve y la actividad que realiza.

Matemáticamente la confiabilidad se denota como:

$$R(t) = P(T \ge \frac{t}{c1, c2 \dots})$$

T: tiempo de operación o número de ciclos antes de fallar

t: tiempo especificado o número de ciclos de diseño

c1, c2,...: condiciones de diseño.

$$R(t) = P(T \ge t)$$

Y que en su forma más simple se expresa como:

$$R(t) = e^{-t} = e^{-\frac{1}{MTT}F^t}$$

Dónde:

t = tiempo de la misión (hrs, días, semanas, meses, años, etc.)

 λ = tasa de falla.

MTTF= $1/\lambda$ = tiempo promedio para fallar.

Esta ecuación es válida para tiempos de falla que sigan la distribución exponencial y es frecuentemente usada en Sistemas eléctricos complejos. (Aciem, 2014)

2.1.3. Mantenibilidad. La mantenibilidad se puede definir como la expectativa que se tiene de que un equipo o sistema pueda ser colocado en condiciones de operación dentro de un periodo de tiempo establecido, cuando la acción de mantenimiento es ejecutada de acuerdo con

procedimientos prescritos. En términos probabilísticas, Francois Monchy [8], define la mantenibilidad como "la probabilidad de reestablecer las condiciones específicas de funcionamiento de un sistema, en límites de tiempo deseados, cuando el mantenimiento es realizado en las condiciones y medios predefinidos". O simplemente "la probabilidad de que un equipo que presenta una falla sea reparado en un determinado tiempo t.

De manera análoga a la confiabilidad, la mantenibilidad puede ser estimada con ayuda de la expresión: t M(t) 1 e $-\mu$. = - (4) Donde: M(t): es la función mantenibilidad, que representa la probabilidad de que la reparación comience en el tiempo t=0 y sea concluida satisfactoriamente en el tiempo t (probabilidad de duración de la reparación). e: constante Neperiana (e=2.303..) μ: Tasa de reparaciones o número total de reparaciones efectuadas con relación al total de horas de reparación del equipo. t: tiempo previsto de reparación TMPR Además de la relación que tiene la mantenibilidad con el tiempo medio de reparación, TMPR, es posible encontrar en la literatura [9], otro tipo de consideraciones, entre las que se cuentan: - El TMPR está asociado al tiempo de duración efectiva de la reparación. - Todo el tiempo restante, empleado por ejemplo en la espera de herramientas, repuestos y tiempos muertos, es retirado generalmente del TMPR. - La suma del TMPR con los demás tiempos, constituye lo que normalmente es denominado como down-time por algunos autores [10, 11], otros denominan ese tiempo como MFOT (Mean Forced Outage Time). - Sin embargo, al calcular la disponibilidad, la mayoría de autores indican que el tiempo a ser considerado, es el tiempo de reparación más los tiempos de espera, que es lógico. (Aciem, 2014).

Capítulo 3. Informe de cumplimiento de trabajo

3.1. Presentación de resultados

El siguiente trabajo presenta un informe de las actividades desempeñadas en la Empresa PRODECO como requisito para obtener el título de ingeniera mecánico.

Todas las actividades que a continuación presento son parte del plan de trabajo modalidad de pasantías el cual corresponde el nombre de "Estudio de confiabilidad y mantenibilidad en equipos de operación minera de la empresa Prodeco mina la jagua basado en las técnicas RIM (reliability information management)".

3.1.1 objetivo específico 1. Estudiar la confiabilidad y la mantenibilidad en los equipos de operación minera de la empresa Prodeco Mina la Jagua basado en las Tecnicas RIM (Realiability Information Management).

Actividad 1. Identificar los diferentes equipos de la flota a los cuales le realiza mantenimiento la mina la Jagua.

Tabla 3 Equipos flota NO MARA mina LA JAGUA

EQUIPO	CODIGO	SERIAL	MODELO
	INTERNO		
CAMION ACARREO	DT007	JRP00310	777F
CAMION ACARREO	DT009	JRP00312	777F
CAMION ACARREO	DT010	JRP00313	777F
CAMION ACARREO	DT026	JRP01083	777F
CAMION ACARREO	DT027	JRP01084	777F
CAMION ACARREO	DT028	JRP01096	777F

CAMION ACARREO	DT029	JRP01101	777F
CAMION ACARREO	DT039	JRP01110	777F
CAMION ACARREO	DT040	JRP01111	777F
CAMION ACARREO	DT041	JRP01112	777F
CAMION ACARREO	DT042	JRP01113	777F
CAMION ACARREO	DT043	JRP01114	777F
CAMION ACARREO	DT044	JRP01149	777F
CAMION ACARREO	DT045	JRP01115	777F
CAMION ACARREO	DT046	JRP01159	777F
CAMION ACARREO	DT040	JRP01148	777F
CAMION ACARREO	DT047	JRP01158	777F
CAMION ACARREO	DT020	ATY00811	793C
CAMION ACARREO	DT021	ATY00812	793C
CAMION ACARREO	DT022	ATY00813	793C
CAMION ACARREO	DT023	ATY00814	793C
CAMION ACARREO	DT024	ATY00899	793C
CAMION ACARREO	DT025	ATY00900	793C
CAMION ACARREO	DT120	ATY00190	793C
CAMION ACARREO	DT122	ATY00188	793C
CAMION ACARREO	DT126	ATY00417	793C
CAMION ACARREO	DT129	ATY00751	793C
CAMION ACARREO	DT130	ATY00926	793C
CAMION ACARREO	DT131	ATY00927	793C
CAMION ACARREO	DT132	ATY00952	793C
CAMION ACARREO	DT133	ATY00953	793C
CAMION ACARREO	DT134	ATY01076	793C
PALAS	EH061	120078	RH120E
PALAS	EH062	120087	RH120E
PALAS	EH066	120119	RH120E
PALAS	EH067	120120	RH120E
PALAS	EH065	15024	PC5500
PALAS	EH407	HCM18D00K00000184	
PERFORADORAS	UP104	8515	DM45E
PERFORADORAS	UP105	8516	DM45E
PERFORADORAS	UP384	8500	DM45E
PERFORADORAS	UP107	7695	DML
PERFORADORAS	UP108	8400	DML
PERFORADORAS	UP109	8585	DML

Fuente: Pasante del Proyecto

Actividad 2 Y 3. Conocer la función que cumple cada equipo en la empresa y si distribución dentro de la misma.

Tabla 4 Equipos NO MARA por flota de mina LA JAGUA

EQUIPOS		CANTIDA D	FUNCIÓN	UBICACIÓ N
NOMBRE	MODELO			
CAMIONES ACARREO	777F	17	TRANSPORTE DE CARBÓN	PIC
CAMIONES ACARREO	793C	15	TRANSPORTE MATERIAL ESTÉRIL	PIC
PALAS	PC5500	1	EXTRAER MATERIAL ESTÉRIL	PIC
PALAS	EX3600-5	1	EXTRAER MATERIAL ESTÉRIL	PIC
PALAS	RH120E	4	EXTRAER MATERIAL ESTÉRIL	PIC
PERFORADORAS	DM45E	3	PERFORACIÓN DEL SUELO	PIC
PERFORADORAS	DML	3	PERFORACIÓN DE SUELO	PIC
TOTAL		44		

Fuente: Pasante del Proyecto

Actividad 4. Investigar sobre la técnica RIM, los indicadores de rendimiento que permiten controlar como MTBS, MTBF, MTTR. Que significan y como se calculan.

Técnicas Rim (Reliability Information Management).

Gestión de información sobre confiabilidad, su objetivo es identificar las tendencias, con el seguimiento de los activos permite a las compañías aumentar la eficiencia operacional y proporcionar las herramientas para reducir costos.

Localización y uso de los activos. Iniciar la formación de un banco de datos, para la identificación de los ítems que serán objeto de control, indicando su localización, finalidad, áreas de competencia, función, referencias, fechas, costos, materiales asociados y variables medibles.

Conformidad de las auditorias. Con recursos cada vez más escasos y exigencias de mejor nivel de calidad y plazo, los métodos de planeamiento y control están siendo perfeccionados y automatizados, garantizando el resultado de los requisitos exigidos durante el proceso.

Garantía de información histórica. Implementar mecanismos simples y estandarizados de recolección y registro de intervención de los equipos, tanto de eventos, como de tiempos, recursos y costos.

Gestión. Se pierde parte de la utilidad del capital cuando no se obtiene el nivel más alto posible, del uso del producto o del activo.

Mantenimiento Preventivo y predictivo. Está comprobado que el mantenimiento sistemático preventivo, es antieconómico y debe ser sustituido por el mantenimiento por condición, particularmente el predictivo. Por otro lado, las inspecciones y mediciones deben ser cumplidas rigurosa y eficientemente, y sus resultados registrados y procesados para definir el momento más adecuado para efectuar el predictivo.

Productividad Humana. La productividad está definida como el tiempo en que el profesional esta desarrollando las actividades para las cuales fue contratado. En mantenimiento es común encontrar estos valores inferiores al 50% es una identificación de improductividad asociada a un análisis de tiempos y movimientos para mejorar estos valores.

Repuestos y suministros. La evaluación de los stocks innecesarios, como el de repuestos y de equipos que serán reemplazados, puede ser un factor de generación de gran ahorro. Mientras tanto, los repuestos estratégicos, deben tener mayor cobertura para evitar pérdida de productividad. TPM/RCM/BCM (Mantenimiento productivo total/Mantenimiento centrado en confiabilidad/Mantenimiento centrado en el negocio) La elección de la mejor metodología, tanto en el aspecto de oportunidad, como de adaptabilidad a las condiciones de la empresa, puede ser la diferencia de éxito o fracaso del proceso de gestión.

Venta (Valor residual). La información exacta y confiable sobre un activo tiene un impacto significativo en su valor de reventa. Vender, no descartar El conocimiento del valor residual de un equipo y su conservación puede definir el mejor momento para su cambio o reforma.

Valores Residuales. Este también puede ser un parámetro de definición en el momento adecuado de reposición de un activo. Una evaluación del valor residual puede ser efectuada tanto para venta como para costeo al salir de servicio.

Retorno del dinero para operación. Un equipo bien mantenido apoya con su venta el costo de reposición o el desarrollo de nuevas tecnologías para el proceso. Dentro de los recursos utilizados para lograr los resultados arriba, se puede indicar:

Utilización adecuada de los índices de mantenimiento. Definir, implementar, evaluar y reaccionar sobre una cantidad de indicadores que sean útiles para la toma de decisiones en función de la situación de la empresa en el mercado, definiendo las siguientes condiciones:

- Equipos fundamentales en una empresa competitiva.
- Equipos secundarios en una empresa competitiva.
- Equipos fundamentales en una empresa que posee un monopolio.
- Equipos secundarios en una empresa que posee un monopolio.

Dentro de más de cincuenta índices utilizados en mantenimiento, algunos se destacan por la posibilidad de aplicación de sus resultados en la mejora del proceso, en la reducción de costos, en la mejora de calidad, en la preservación del medio ambiente y en la optimización de servicios Destacamos a continuación algunos de estos índices

Tiempo Promedio Entre Fallas. Relación entre el producto del número de ítems por sus tiempos de operación y el número total de fallas detectadas, en el período observado.

$$TMEF = \frac{NOIT.HROP}{NTMC}$$

Tiempo Promedio Para Reparación. Relación entre el tiempo total de las intervenciones correctivas en un conjunto de ítems con falla y el número de fallas detectadas en el período observado.

$$TMPR = \frac{HTMC}{NTMC}$$

Disponibilidad de equipos. Relación entre el tiempo total de operación de cada ítem controlado y la suma de esos tiempos con los tiempos de mantenimiento de los mismos ítems.

$$DISP = \frac{\sum HROP}{\sum (HROP - HTMN)} X100$$

Confiabilidad. Una de las formas de cuantificar la confiabilidad es la relación entre el tiempo promedio entre fallas (TMEF) y la suma de estos ítems con el tiempo promedio entre reparaciones.

$$CONF = \frac{TMEF}{TMPR + TMEF} X100$$

Confiabilidad. Otra forma es a través de la relación entre el tiempo total de reparación de cada ítem controlado y la suma de esos tiempos con los tiempos de mantenimiento correctivo.

$$COMF = \frac{\sum HROP}{\sum (HROP - HTMC)} X100$$

Aplicación técnica de decisiones consensuadas e integradas para obtener el compromiso entre las áreas, para alcanzar la excelencia operacional (calidad, costos competitivos y capacidad de entrega de los productos en los plazos estipulados), y disminuir las pérdidas que se presentan en toda la operación y paralelamente, mejorar la capacidad de gestión de todo el personal

involucrado en la producción (sea operación o mantenimiento) se debe buscar la completa integración de todo el equipo.

Esta propuesta establece la necesidad de definir los objetivos de mantenimiento (evitar que los equipos fallen) y de todos y cada una de las personas que laboran en el departamento de mantenimiento.

Una buena realización de una compañía, se debe en gran parte a una buena cooperación entre clientes y proveedores.

Una gestión dinámica de mantenimiento, involucra una integración con otras divisiones corporativas. Una coordinación entre los subsistemas de producción, estrategias de mantenimiento, adquisición de repuestos, programación de servicios y de flujo de información, permiten la obtención de metas organizacionales.

Alta confiabilidad y bajo costo de producción son metas que pueden ser alcanzadas, solamente cuando toda la corporación trabaja integrada.

Aplicación de técnicas de tiempos y movimientos para optimizar la productividad humana. El TPM nos presenta un concepto de "eficiencia operacional", obtenida por el producto de tres indicadores: disponibilidad de equipos, rendimiento de los profesionales de operación y mantenimiento y la calidad de los servicios y productos.

Este concepto es muy útil y utilizado para comparar las técnicas de mantenimiento entre empresas y sectores.

De los tres índices que componen la eficiencia normalmente el de menor valor es el rendimiento que está influenciado directamente por la productividad.

Productividad es el tiempo en que un profesional se ocupa efectivamente de las actividades para las cuales fue contratado, para evaluar la productividad del mantenedor se debe disminuir el tiempo en que el profesional que está en la empresa esté desarrollando funciones que no sean de mantenimiento.

De acuerdo con Peter Drucker, la productividad en las actividades de servicio que requieren gestión está disminuyendo, los motivos por los cuales la productividad está bajando, se debe a la interpretación errada de la actividad como productividad.

La expectativa de productividad de un profesional de mantenimiento esta entre el 30 y el 40%. Sin embargo este valor parece bajo, y está por encima del de los valores medios encontrados en las actividades de gestión.

Para evaluar y controlar la improductividad es necesario conocer sus valores, siendo el método más común el medir por muestreo; Con este método se efectúan diferentes observaciones de un mismo profesional en momentos diferentes de trabajo, así como de diferentes profesionales realizando el mismo tipo de trabajo. El conocimiento de los orígenes y valores pueden generar

23

acciones para reducir la improductividad y como consecuencia, mejorar la efectividad del

proceso o servicio.

Métricas De Rendimiento De Flota

Tiempo Promedio Entre Paradas (MTBS)

Definición: Es el tiempo promedio operativo entre paradas de las máquina o bien la

frecuencia promedio de eventos de tiempo down expresada en horas.

Descripción. Las operaciones mineras más exitosas son aquellas que administran y

mantienen equipos de tal forma que estos se encuentren disponibles por periodos extendidos de

servicio ininterrumpido. El MTBS es una medida que combina los efectos de la confiabilidad

inherente a la máquina y la efectividad de la organización de mantenimiento para lograr

resultados a través de la eliminación de problemas, esto es, la detección de defectos, la

planeación, programación y ejecución de reparaciones.

Metodología de Cálculo:

 $MTBS(horas) = \frac{horas\ operativas + horas\ de\ retraso\ de\ produccion}{numero\ de\ paradas}$

Tiempo Promedio Para Reparar (MTTR)

24

Definición. Es el tiempo promedio de parada de la máquina o bien la duración promedio

de eventos de tiempo down expresada en horas.

Descripción. La planeación, administración y ejecución de reparaciones son factores que

contribuyen a la duración de las paradas de las maquinas. El MTTR es una medida que cuantifica

el TAT de la reparación, esto es, que tan rápido o lento un equipo es retornado a servicio cuando

un incidente de tiempo down ocurre. El MTTR combina el efecto de la facilidad para dar

servicio / mantenimiento a la máquina y la eficiencia de la organización de mantenimiento para

dar rápidas acciones correctivas en la ejecución de las reparaciones requeridas.

Metodología de Cálculo

 $MTTR(horas) = \frac{horas\ totales\ de\ tiempo\ down}{numero\ de\ paradas}$

Tiempo Promedio entre Fallas. (MTBF)

Definición. El tiempo medio para paradas de la máquina, la duración promedio eventos de

tiempo muerto del equipo, expresado en horas. Metodología de cálculo:

Descripción:

25

El MTBF es una medida que combina la eficiencia de los Procesos de Mantenimiento y Reparación (Falta de Efectividad en la Administración de los Equipos relacionado a evitar fallas o problemas) y los problemas de producto (Equipos no confiables).

Metodología de Cálculo

$$MTBF(horas) = \frac{horas de operación}{numero de paradas no programadas}$$

3.1.2 objetivo específico 2. Describir las fallas más comunes presentadas en cada uno de los equipos y como mitigar o reducir las mismas a través de las técnicas RIM.

Actividad 1. Descripción de los ítems para la clasificación de la información de cada uno de los equipos.

Base de Datos Paradas Equipo Minero - Malos Actores Informe Mensual

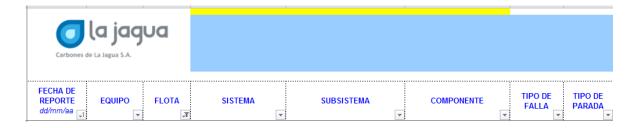


Figura 4 Base de datos características principales de la falla

Fuente: Pasante del proyecto

Ítems de clasificación de eventos Down.

Fecha de reporte. Fecha de en el que se originó el reporte al dispash esta fecha se toma como referencia para clasificar los eventos por mes día y año.

Equipo. Código interno o de identificación que se le asigna al equipo teniendo en cuenta la clase, el modelo y la función que cumple dentro de la empresa.

Flota. Modelo o modificación que se le hace al equipo

Sistema. Conjunto de piezas principales que componen a cada equipo

Subsistema. Piezas serialisables que forman parte del sistema involucrado de forma directa en la avería

Componente. Pieza principal o fundamental del subsistema que fallo.

Tipo de falla

Se clasifican de acuerdo el reporte que suministra el dispash

Se clasifican en:

Mecánica, eléctrica, operación, accidenté.

Tipo de parada. Causa principal del evento down se clasifica en:

Planeada, no planeada y sin información

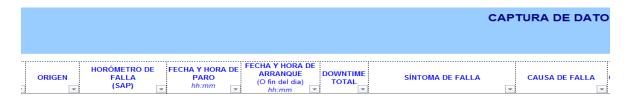


Figura 5. Base de datos análisis de las fallas

El origen: característica principal por la cual se dio la parada del equipo se puede clasificar en las siguientes:

Mantenimiento, desconocido, operacional, externo

Horometro de falla del equipo. En este ítem se relaciona el hórometro que presentaba el equipo en el momento que ocurre la falla, este horometro nos permite calcular el tiempo de operación que lleva el equipo, los sistemas y componentes principales.

Fecha y hora de paro /fecha y hora de arranque. La información de estos ítems es suministrado por un software DISPASH (envió o despacho) que es alimentado por información que recopila BASE UNO que son los encargados de llevar el control de la operación de cada uno de los equipo donde relacionan la hora exacta del evento y la recopilan en una base de datos que se descarga diariamente por planeación.

Down time total. En este ítems calculamos el tiempo total que el equipo demoro down Con la siguiente formula:

Fórmulas para el cálculo del tiempo de parada de los equipos

DOWN TIME = $(FHS - FHD) \times 24 \text{ hrs}$

CAPTURA DE DATOS	DE PARADA EQUIPO MINERO - SUPERINTENDENCIA DE PLANEACIÓN Reliability Information Management - RIM
MODO DE FALLA CAUSA DE FALLA	COMENTARIOS RELACIONADOS A LA FALLA/PARADA

6. comentario directamente del software dispash

Fuente: Pasante del proyecto.

Modo de falla. Es el primer síntoma que puede persuadir el operador al momento que se presentó la falla el equipo.

Causa de la falla. Causa principal en el sistema, subsistema o componente que ocasiono la parada de la maquina cuando ya se a inspeccionado el equipo por mecánicos.

Comentario relacionado a la falla. Es un comentario que se copia directamente del dispash relacionado al evento down al cual se le realizo la captura y análisis.

 							
Mes del Año ▼	Año	Ti	Fecha Inicio Falla	Fecha Fin Falla	TBF horas	TTR dias	TTR horas
septiembre	2017	septiembre 2017	7			0.0	0.5
septiembre	2017	septiembre 2017				0.2	4,8
septiembre	2017	septiembre 2017				0,1	1,5
septiembre	2017	septiembre 2017				0.4	9,0
septiembre	2017	septiembre 2017				0.0	0.1
septiembre	2017	septiembre 2017				0,0	0.3
septiembre	2017	septiembre 2017				2,7	63,9
septiembre	2017	septiembre 2017				0.0	0.5
septiembre	2017	septiembre 2017				0.2	5,6
septiembre	2017	septiembre 2017				0,1	1,7
septiembre	2017	septiembre 2017				0.3	8,1
septiembre	2017	septiembre 2017				2,4	57,8
septiembre	2017	septiembre 2017				0.0	0.3
septiembre	2017	septiembre 2017				0.0	0.8
septiembre	2017	septiembre 2017	7			0,0	0,3
septiembre	2017	septiembre 2017	7			0,0	8,0
septiembre	2017	septiembre 2017	7			0,0	0,2
septiembre	2017	septiembre 2017	7			0,0	0,1
septiembre	2017	septiembre 2017	7			0,1	1,6
septiembre	2017	septiembre 2017	7			0,1	2,6
septiembre	2017	septiembre 2017	7			0,0	0,3
septiembre	2017	septiembre 2017	7			0,2	6,0
septiembre	2017	septiembre 2017	7			0,2	4,7

Figura 7. Base de Datos Paradas Equipo Minero - Malos Actores Informe Mensual Fuente: Pasante del proyecto.

Mes y año en el que se reportó la avería

Tiempo promedio entre fallas horas (TBF)

Se calcula dividiendo la sumatoria de las horas totales de operación en el día de entre el número de pardas no planeadas que tuvo el equipo.

Actividad 2. Organizar la información de acuerdo a la flota, y clasificarla en sistema, subsistemas componente, modo de falla cauda de la falla y la fecha en que se reportó la intervención del equipo a través de técnicas RIM.

В	С	D	E	F	G	Н	1	J	K
	la jad	pup							
	')	,							
Carbones	de La Jagua S.A.								
		···			7		7		
FECHA DE	FOUIDO	FLOTA	CICTEMA	CHRCICTEMA	COMPONENTE	TIPO DE	TIPO DE	OBICEN	HORÓMETRO
REPORTE	EQUIPO	FLOTA	SISTEMA	SUBSISTEMA	COMPONENTE	FALLA	PARADA	ORIGEN	(SAP)
dd/mm/aa		-		I		-	· ·		(SAP)
26/06/2017	DT021		08 LUBRICACION		Sin información	Mecánica	No Planeada	Mantenimiento	
26/06/2017	DT023		06 MOTOR	06 ENFRIAMIENTO MOTOR	Motor Diesel	Mecánica	No Planeada	Mantenimiento	
26/06/2017	DT025		10 NEUMATICO	10 ARRANQUE	Motor de arranque	Mecánica	No Planeada	Mantenimiento	67391
26/06/2017	DT027		01 ELECTRICO	01 CONTROL	Sensores	Eléctrica	No Planeada	Mantenimiento	51143
26/06/2017	DT042		11 SSI		Sin información	Mecánica	No Planeada	Mantenimiento	47570
26/06/2017	DT120		06 MOTOR	06 ENFRIAMIENTO MOTOR	Radiador	Mecánica	No Planeada	Mantenimiento	1038
26/06/2017	DT135		04 FRENO		Filtros	Mecánica	No Planeada	Mantenimiento	630
26/06/2017	EH065		02 HIDRAULICO	02 IMPLEMENTOS HIDRAULICOS	Mangueras	Mecánica	No Planeada	Mantenimiento	2262
26/06/2017	EH065		01 ELECTRICO	01 ARRANQUE Y CARGA	Sin información	Eléctrica	No Planeada	Mantenimiento	2264
26/06/2017	EH065		01 ELECTRICO	01 LUCES	Lamparas	Eléctrica	No Planeada	Mantenimiento	2270
26/06/2017	EH075		06 MOTOR	06 ELECTRICO	Cableado	Eléctrica	No Planeada	Mantenimiento	36344
26/06/2017	EH084		06 MOTOR	06 ENFRIAMIENTO MOTOR	Radiador	Mecánica	No Planeada	Mantenimiento	36398
26/06/2017	EH087		02 HIDRAULICO		Mangueras	Mecánica	No Planeada	Mantenimiento	32763
26/06/2017	EH087		02 HIDRAULICO	02 IMPLEMENTOS HIDRAULICOS	Cilindro Stick	Mecánica	No Planeada	Mantenimiento	32792
26/06/2017	EH407						Planeada	Mantenimiento	32075
26/06/2017	UP105						Planeada	Mantenimiento	6439
26/06/2017	UP108		02 HIDRAULICO	02 PERFORACION	Rotaria	Mecánica	No Planeada	Mantenimiento	
26/06/2017	UP108		07 CHASIS	07 CARRUSEL/PORTATUBOS	Llave mordaza	Mecánica	No Planeada	Mantenimiento	9157
26/06/2017	UP384		01 ELECTRICO	01 CONTROL	Interruptores	Eléctrica	No Planeada	Mantenimiento	20164
27/06/2017	DT020		10 NEUMATICO	10 ARRANQUE	Motor de arranque	Mecánica	No Planeada	Mantenimiento	66926
27/06/2017	DT021		01 ELECTRICO	01 ARRANQUE Y CARGA	Baterias	Mecánica	No Planeada	Mantenimiento	10998
27/06/2017	DT021		01 ELECTRICO	01 PESAJE	Payload	Eléctrica	No Planeada	Mantenimiento	11001
27/06/2017	DT023		10 NEUMATICO	10 ARRANQUE	Motor de arranque	Mecánica	No Planeada	Mantenimiento	14663
27/06/2017	DT025		04 FRENO		Frenos	Mecánica	No Planeada	Mantenimiento	67401
27/06/2017	DT041		08 LUBRICACION		Sin información	Mecánica	No Planeada	Mantenimiento	
27/06/2017	DT120								
27/06/2017	DT129		05 TREN DE POTENCIA		Sensores	Eléctrica	No Planeada	Mantenimiento	149
27/06/2017	EH065		01 ELECTRICO	01 ARRANQUE Y CARGA	Alternador	Eléctrica	No Planeada	Mantenimiento	2274
27/06/2017	EH083		13 AIRE ACONDICIONADO		Ventilador	Eléctrica	No Planeada	Mantenimiento	33223
27/06/2017	EH084		SIN INFORMACIÓN	SIN INFORMACIÓN	Sin información	Mecánica	No Planeada	Mantenimiento	
27/06/2017	EH084		08 LUBRICACION	SIN INFORMACIÓN	Sin información	Mecánica	No Planeada	Mantenimiento	
27/06/2017	EH084		06 MOTOR	06 ENFRIAMIENTO MOTOR	Motor Diesel	Mecánica	No Planeada	Mantenimiento	36408
27/06/2017	EH086		02 HIDRAULICO	02 IMPLEMENTOS HIDRAULICOS	Sin información	Mecánica	No Planeada	Mantenimiento	33703

Figura 8. Eventos Dowm para cada equipo NO MARA Mina la Jagua Fuente: Pasante del proyecto.

Figura 9. Captura de datos de parada equipo minero

Actividad 3 y 4. Calcular cada uno de los indicadores de rendimiento por cada flota y describir los sistemas, subsistemas y componentes que presentaron fallas con mayor frecuencia.

FLOTA DE CAMIONES 793C

TOP TEN CANTIDAD DE EVENTOS / FLOTA

ORIGEN	Mantenimiento 🖅
TIPO DE PARADA	No Planeada 🗊
TIPO DE FALLA	(Varios elemento: 🔻
Año	2017 -▼
Mes del Año	(Varios elemento: 🖅
FLOTA	793C - ▼

	Valores	
EQUIPO		Downtime
DT025	84	365
DT022	73	363
DT024	111	353
DT023	69	238
DT120	52	228
DT021	52	185
DT020	64	155
DT121	25	118
DT129	7	17
Total general	537	2022

Figura 10. Cantidad de Eventos Downtime

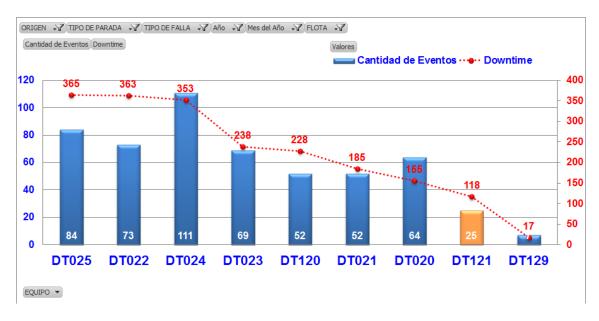


Figura 11. Cantidad de eventos y downtime desde enero hasta junio del 2017 Fuente: Pasante del proyecto.

En el grafico se puede observar la cantidad de eventos y el downtime o tiempo de parada de los equipos en marcha de la flota 793C durante los 6 primeros meses del año.

ORIGEN	Mantenimiento 🕶
TIPO DE PARADA	No Planeada 🖵
FLOTA	793C ₹
EQUIPO	(Todas)
Año	2017
Promedio de TTR	
Mes&Año	, ▼ Total
enero 2017	5,61
febrero 2017	4,13
marzo 2017	2,93
abril 2017	3,93
mayo 2017	4,00
junio 2017	2,57

Figura 12. Tiempo promedio para reparar Horas (MTTR) Fuente. Pasante del proyecto

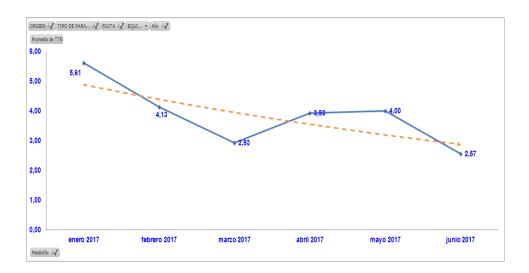


Figura 13. Tiempo promedio para reparar Horas (MTTR)

En el grafico podemos deducir que en los camiones 793C el MTTR se mantuvo a lo largo de la primera mitad del año 2017 con una tendencia decreciente alcanzando su pico más alto en enero con un promedio de horas por reparación por equipo de 5,61 y se mantuvo en un promedio de 3.77 horas por reparación

FLOTA	793C 🚚
TIPO DE PARADA	No Planeada
ORIGEN	Mantenimiento 🗊
Año	2017 -
Mes del Año	(Varios elementos) 💵
Promedio de TTR	
SISTEMA J	otal
SIN INFORMACIÓN	19,4
03 DIRECCION	10,2
05 TREN DE POTENCIA	7,1
13 AIRE ACONDICIONADO	6,5
04 FRENO	6,3
06 MOTOR	5,9
02 HIDRAULICO	4,5
07 CHASIS	3,7
01 ELECTRICO	2,6
10 NEUMATICO	1,1
11 SSI	0,8
08 LUBRICACION	0,4
Total general	4,2

Figura 14. Tiempo promedio para Reparar horas (MTTR) por sistemas.

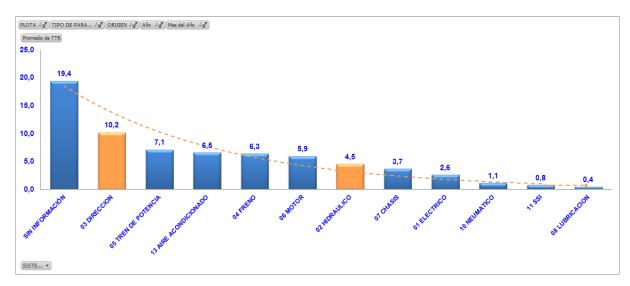


Figura 15. Tiempo promedio para Reparar horas (MTTR) por sistemas Fuente. Pasante del proyecto

En la gráfica de MTTR por sistema de la flota 793C se puede observar que el sistema que más tubo problema a lo largo de la primera mitad del año 2017 se registró sin información y el sistema que menos presento problema fue el de lubricación con un promedio de 0,4 horas.

Flota De Camiones 777F

TOP TEN CANTIDAD DE EVENTOS / FLOTA				
ORIGEN	Mantenimiento 🚚			
TIPO DE PARADA	No Planeada 🚚			
TIPO DE FALLA	(Varios elementos) →	1		
Año	2017 ⊸T			
Mes del Año	(Varios elementos) →	1		
FLOTA	777F → T	1		
	Valores			
EQUIPO -		Downtime		
DT027	79	474		
DT026	62	339		
DT040	65	338		
DT009	69	325		
DT045	66	317		
DT043	53	290		
DT041	34	225		
DT007	55	209		
DT028	45	183		
DT048	24	178		
DT046	37	136		
DT042	39	128		
DT010	22	119		
DT039	55	116		
DT029	30	85		
DT044	15	69		
DT047	19	65		
Total general	769	3598		

Figura 16Cantidad de Eventos y Downtime

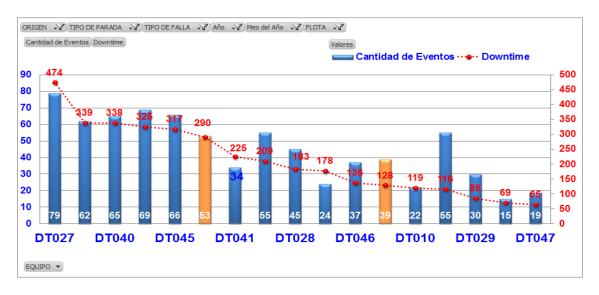


Figura 17. Cantidad de Eventos y Downtime desde enero hasta junio del 2017 Fuente: Pasante del proyecto.

En el grafico se puede observar la cantidad de eventos y el downtime o tiempo de parada de los equipos en marcha de la flota 777F durante los 6 primeros meses del año.

Se puede apreciar que el camión que presento mayor cantidad de eventos y downtime fue el DT027, más adelante observaremos cual fue el sistema que más presento fallas.

ORIGEN TIPO DE PARADA FLOTA EQUIPO Año	Mantenimiento 🔻 No Planeada 🔻 777F 🟋 (Todas) 💌
71110	2017
Promedio de TTR	
Mes&Año	Total
enero 2017	4,13
febrero 2017	4,89
marzo 2017	4,78
abril 2017	5,77
mayo 2017	4,33
junio 2017	4,05
Total general	4,68

Figura 18. Tiempo Promedio Para Reparar horas (MTTR) Fuente. Pasante del Proyecto

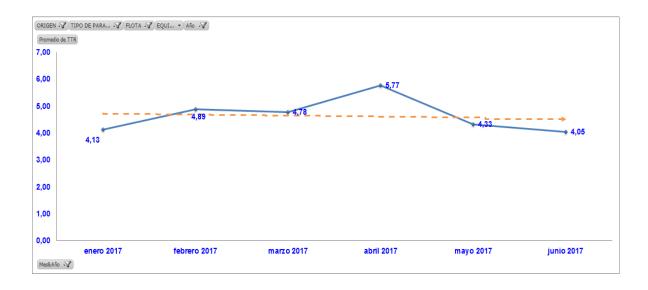


Figura 19Tiempo Promedio Para Reparar horas (MTTR) Fuente Pasante del proyecto.

En el grafico podemos deducir que en los camiones 777f el MTTR largo de la primera mitad del año 2017, presenta el puto más alto en el mes de abril con un promedio de horas por reparación por equipo de 5,77 y se mantuvo en un promedio de 4,68 horas por reparación.

FLOTA	777F	ŢŢ
TIPO DE PARADA	No Planeada	Ţ,T
ORIGEN	Mantenimiento	,T
Año	2017	Ţ,T
Mes del Año	(Varios elementos)	T.
Promedio de TTR		
SISTEMA -1	Total	
SIN INFORMACIÓN	18,7	
02 HIDRAULICO	9,7	
05 TREN DE POTENCIA	8,3	
06 MOTOR	6,2	
03 DIRECCION	6,2	
13 AIRE ACONDICIONADO	5,7	
04 FRENO	5,6	
09 RODAJE / LLANTA	4,3	
07 CHASIS	4,3	
01 ELECTRICO	3,4	
11 SSI	1,5	
08 LUBRICACION	0,6	
Total general	4,8	

Figura 20. Tiempo Promedio Para Reparar horas (MTTR) por sistemas Fuente. Pasante del Proyecto

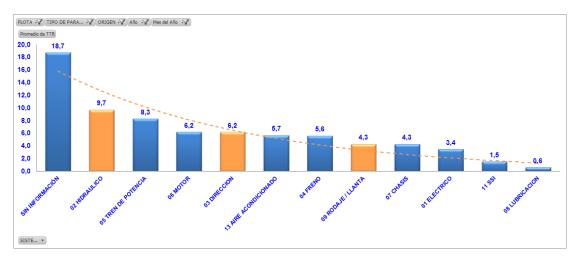


Figura 21. Tiempo Promedio Para Reparar horas (MTTR) por sistemas Fuente Pasante del proyecto.

En la gráfica de MTTR por sistema de la flota 777F se puede observar que al igual que en la flota 793C el sistema que más tubo problema a lo largo de la primera mitad del año 2017 se registró sin información, estas paradas que se presentan sin información se deben a que el reporte que se presenta a los administradores de esta base de datos no especifica directamente el sistema que fue afectado.

Flota Palas Rh120e

ORIGEN Mantenimiento TIPO DE PARADA Ţ. No Planeada TIPO DE FALLA (Varios elementos) 🗐 2017 Ţ Mes del Año -1 (Varios elementos) FLOTA RH120E Valores **EQUIPO** Cantidad de Eventos Downtime EH066 166 EH062 151 446 EH067 139 420 EH061 138 399 **Total general** 594 1733

TOP TEN CANTIDAD DE EVENTOS / FLOTA

Figura 22. Cantidad de eventos y Downtime desde enero hasta junio del 2017 Fuente Pasante del proyecto.

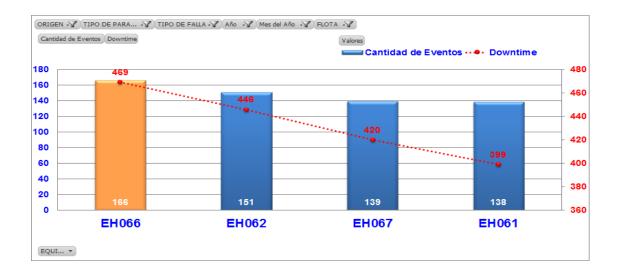


Figura 23Cantidad de eventos y downtime desde enero hasta junio del 2017 Fuente Pasante del proyecto.

En el grafico se puede observar la cantidad de eventos y el downtime o tiempo de parada de los equipos en marcha de la flota RH120E durante los 6 primeros meses del año.

Se puede apreciar que la pala que presento mayor cantidad de eventos y downtime fue la EH066, por lo que podríamos decir que esta pala es la más crítica de la flota en mención.

ORIGEN	Mantenimiento 🗐
TIPO DE PARADA	No Planeada 🗐
FLOTA	RH120E →
EQUIPO	(Todas) ▼
Año	2017 -▼
Promedio de TTR	
Mes&Año	Total
enero 2017	2,58
febrero 2017	2,95
marzo 2017	2,49
abril 2017	3,33
mayo 2017	3,85
junio 2017	2,70
Total general	2,92

Figura 24. Tiempo Promedio Para Reparar horas (MTTR) Fuente Pasante del proyecto.

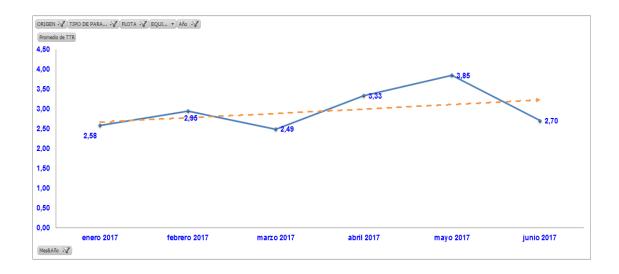


Figura 25. Tiempo Promedio Para Reparar horas (MTTR) Fuente Pasante del proyecto.

En el grafico podemos deducir que en las Palas RH120E el MTTR a lo largo de la primera mitad del año 2017, presenta un incremento de tiempo promedio de reparación entre los meses de marzo a mayo alejándose de esta manera del punto de promedio neto 2,92. Se toman controles previos en estas paradas para lograr disminuir el tiempo de paradas y por tanto así disminuir los tiempos de reparación.

FLOTA	RH120E →
TIPO DE PARADA	No Planeada
ORIGEN	Mantenimiento 🗐
Año	2017
Mes del Año	(Varios elementos) 🗐
Promedio de TTR	
SISTEMA 🚚 T	otal
06 MOTOR	4,6
09 RODAJE / LLANTA	3,5
13 AIRE ACONDICIONADO	3,3
02 HIDRAULICO	3,2
01 ELECTRICO	3,1
05 TREN DE POTENCIA	2,8
08 LUBRICACION	2,4
07 CHASIS	2,0
11 SSI	1,0
SIN INFORMACIÓN	0,7
Total general	2,9

Figura 26. Tiempo Promedio Para Reparar horas (MTTR) por sistemas Fuente Pasante del proyecto.

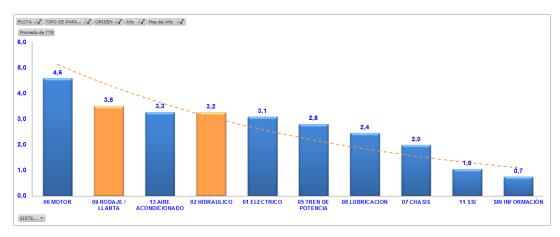


Figura 27. . Tiempo Promedio Para Reparar horas (MTTR) por sistemas Fuente Pasante del proyecto.

ORIGEN

En la gráfica de MTTR por sistema de la flota RH120E se puede observar que sistema que más presento problema a lo largo de la primera mitad del año 2017 fue el sistema de motor, cabe resaltar que este tipos de palas trabajan con dos motores diésel y estos a su vez se relacionan con sistema de lubricación y enfriamiento que son los subsistemas que más presentan fallas en estos equipos. Se aplica como tarea al grupo de ejecución de mantenimiento una inspección diaria a cada una de las palas para así disminuir el número de paradas imprevistas o críticas.

TIPO DE PARAI	DA No Planeada	T.
TIPO DE FALLA	(Varios elementos)	"T
Año	2017	T.
Mes del Año	(Varios elementos)	T.
FLOTA	(Varios elementos)	T.
	Valores	
EQUIPO	→ Cantidad de Eventos	Downtime
EQUIPO UP108	Cantidad de Eventos	Downtime 632
UP108	170	632
UP108 UP384	170 105	632 589
UP108 UP384 UP107	170 105 135	632 589 551
UP108 UP384 UP107 UP105	170 105 135 103	632 589 551 532

Mantenimiento T

Figura 28.Cantidad de eventos y tiempo de parada de los equipos en marcha de las flotas DML y DM45E Fuente Pasante del proyecto.

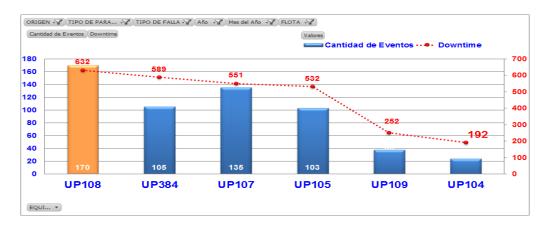


Figura 29. Cantidad de eventos y tiempo de parada de los equipos en marcha de las flotas DML y DM45E Fuente Pasante del proyecto.

En el grafico se puede observar la cantidad de eventos y el downtime o tiempo de parada de los equipos en marcha de las flotas DML Y DM45E durante los 6 primeros meses del año. Se puede apreciar que el perforador que presento mayor cantidad de eventos y downtime fue el up108, por lo que podríamos decir que este perforador fue el que presento mayor paradas no planeadas o imprevistas.

ORIGEN	Mantenimiento	Ţ,
TIPO DE PARADA	No Planeada	Ţ
FLOTA	(Varios elementos)	Ţ
EQUIPO	(Todas)	w
Año	2017	Ţ,
Promedio de TTR		
Mes&Año	otal	
enero 2017	5,63	
febrero 2017	4,38	
marzo 2017	4,35	
abril 2017	5,04	
mayo 2017	5,74	
junio 2017	3,29	
Total general	4,78	

Figura 30. MTTR a lo largo de la primera mitad del año 2017 Fuente Pasante del proyecto.

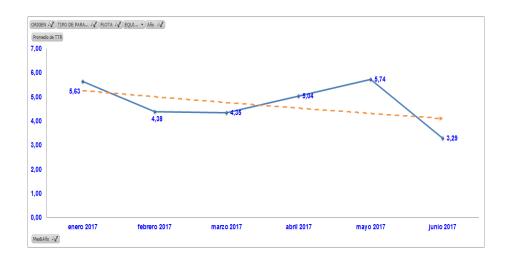


Figura 31.. MTTR a lo largo de la primera mitad del año 2017 Fuente Pasante del proyecto.

En el grafico podemos deducir que en los perforadores el MTTR a lo largo de la primera mitad del año 2017, los puntos más altos se presentan los meses de enero y mayo, en el intermedio de este periodo de tiempo presenta altibajos de paradas de reparación.

FLOTA	(Varios elementos) 🖵
TIPO DE PARADA	No Planeada
ORIGEN	Mantenimiento 🖵
Año	2017
Mes del Año	(Varios elementos) 🕶
Promedio de TTR	
SISTEMA J	otal
14 COLECTOR DE POLVOS	6,9
02 HIDRAULICO	6,4
06 MOTOR	5,9
09 RODAJE / LLANTA	5,5
10 NEUMATICO	5,2
13 AIRE ACONDICIONADO	5,1
SIN INFORMACIÓN	4,9
07 CHASIS	4,5
01 ELECTRICO	4,1
05 TREN DE POTENCIA	3,8
15 GPS	3,0
08 LUBRICACION	1,5
Total general	4,8

Figura 32. MTTR por sistemas de la flota por perforadores Fuente Pasante del proyecto.

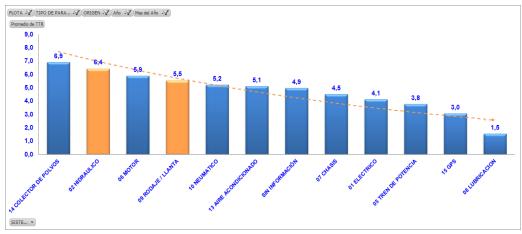


Figura 33. MTTR por sistemas de la flota por perforadores Fuente Pasante del proyecto.

En la gráfica de MTTR por sistema de la flota de perforadores se puede observar que sistema que más presento problema a lo largo de la primera mitad del año 2017 fue el sistema colector de polvos, aunque no presenta mucha diferencia con los otros sistemas ya que estos tienen intervenciones muy cercanas al sistema de mayor promedio.

Actividad 5. Describir los sistemas, subsistemas y componentes que presentaron fallas con mayor frecuencia.

FLOTA	(Varios elementos)
TIPO DE PARADA	No Planeada 💵
ORIGEN	Mantenimiento 🗐
Año	2017
Mes del Año	(Varios elementos) 💵
Promedio de TTR	
	Total
SIN INFORMACIÓN	10,5
03 DIRECCION	8,3
14 COLECTOR DE POLVOS	6,9
05 TREN DE POTENCIA	6,8
06 MOTOR	5,8
04 FRENO	5,7
13 AIRE ACONDICIONADO	5,5
02 HIDRAULICO	5,0
09 RODAJE / LLANTA	4,0
07 CHASIS	3,8
01 ELECTRICO	3,4
10 NEUMATICO	3,1
15 GPS	3,0
08 LUBRICACION	1,3
11 SSI	1,2
Total general	4.2

Figura 34. Flotas no mara y promedio de los sistemas que tienen mayor tiempo de reparación Fuente. Pasante del proyecto

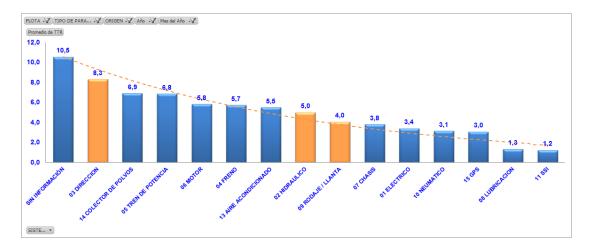


Figura 35. Flotas no mara y promedio de los sistemas que tienen mayor tiempo de reparación Fuente. Pasante del proyecto

En el grafico anterior relacionamos todas las flotas no mara y mostramos un promedio de los sistemas que tienen mayor tiempo de reparación, por lo tanto son los sistemas con mayor número de fallas, podemos observar el sistema de mayor paradas de reparación se registra sin información y el de menor parada es el sistema supresor de incendio.

3.1.3 objetivo específico 3. Calcular porcentaje y viabilidad de costos de mantenibilidad de un equipo o componente luego de un evento no planeado o crítico.

Actividad 1. Estudiar las posibilidades que tiene un componente de volver a ser restaurado y si es visible o no.

La empresa Prodeco maneja para la reparación o restauración de componentes diferentes proveedores a los que se les envían componentes a reparación. La decisión de toma dependiendo el tipo de componente.

Luego de enviar a reparación y evaluación cierta cantidad de componentes se pudo observar que los componentes menores como son bombas, motores de giro, motores de traslado entre otras, registraron que el 70% de estos componentes son no reparables debido a que el costo de reparación sobrepasa el 60% del valor como nuevo del componente.

Figura 36. Reparación o restauración de componentes

Fuente. Pasante del proyecto

Por otro lado los componentes mayores como son suspensiones, cilindros, tanques de combustible, tanques hidráulicos entre otras, en su gran mayoría amerita ser reparadas. Ya que el costo de reparación es inferior el 60% del valor como nuevo del componente.

Figura 37. Reparación cilindros, tanques de combustible, tanques hidráulicos entre otras, Fuente. Pasante del proyecto

Luego de saber que resulta viable enviar a reparación creamos un archivo donde registramos el cambio de los componentes.

En este archivo podremos observar el horometro del equipo en el que se cambia el componente logrando así calcular las horas de trabajo de cada uno de ellos. Y otras características como si son reparables o no y la vida útil de cambio.

UNA		a jaç						
N° Interi √	Mode +	SMU Actu	Denominacion Componente	Posicion	Estrategia 🕌	R - NF _₩	Parte Numero	Nueva Referencia 🕌
DT025	793C	68618	Suspension Frontal Izq	IZQ.	Horas + Condicion	R	9T8910	9T8910
DT025	793C	68618	Suspension Frontal Der	DER	Horas + Condicion	R	9T8910	9T8910
DT025	793C	68618	Silla Operador		Horas + Condicion	R	3623442	3623442
DT025	793C	68618	Rueda Frontal Izq	IZQ.	Horas + Condicion	R	8X0270	4708606
DT025	793C	68618	Rueda Frontal Der	DER	Horas + Condicion	R	8X0270	4708606
DT025	793C	68618	Radiador Enf Motor Diesel		Horas	R	1936287	1936287
DT025	793C	68618	Motor Diesel		Horas + Condicion	R	1470797	4888197
DT025	793C	68618	Mando Final Izq	IZQ.	Horas + Condicion	R	2088786	2088786
DT025	793C	68618	Mando Final Der	DER	Horas + Condicion	R	2088786	2088786
DT025	793C	68618	Engranaje Bombas PTO		Horas	R	1250814	1250814
DT025	793C	68618	Diferencial		Horas + Condicion	R	1246022	1246022
DT025	793C	68618	Convertidor		Horas + Condicion	R	1248506	1248506
DT025	793C	68618	Cilindro Levante Tolva Izq	IZQ.	Horas + Condicion	R	1212071	1212071
DT025	793C	68618	Cilindro Levante Tolva Der	DER	Horas + Condicion	R	1212071	1212071
DT025	793C	68618	Cilindro Direccion Izq	IZQ.	Horas + Condicion	R	9T8912	9T8912
DT025	793C	68618	Cilindro Direccion Der	DER	Horas + Condicion	R	9T8912	9T8912
DT025	793C	68618	Bomba y motor de Liberacion Frenos de parqueo - liberacion de frenos secundarios		Horas	NR	1503467	1503467
DT025	793C	68618	Bomba Levante-Enfriam Frenos Front		Horas	NR	2307133	2307133
DT025	793C	68618	Bomba Enfriamiento Frenos Trasero y liberacion de frenos traseros		Horas	NR	1249390	1249390
DT025	793C	68618	Bomba Dirreccion		Horas	NR	1254527	1254527
DT025	793C	68618	Bomba Convertidor - Transmision		Horas	NR	1415867	1415867
DT025	793C	68618	Articulacion Nose Cone		Condicion	R	2114924	2114924
DT120	793C	83205	Transmision		Horas + Condicion	R	9U9822	9U9822
DT120	793C	83205	Tolva		Condicion	R		1365135
DT120	793C	83205	Suspension Trasera Izq	IZQ	Horas + Condicion	R	1063722	1063722
DT120	793C	83205	Suspension Trasera Der	DER	Horas + Condicion	R	1063722	1063722
DT120	793C	83205	Suspension Frontal Izq	IZQ	Horas + Condicion	R	9T8910	9T8910
DT120	793C	83205	Suspension Frontal Der	DER	Horas + Condicion	R	9T8910	9T8910
DT120	793C	83205	Silla Operador		Horas + Condicion	R	3623442	3623442
DT120	793C	83205	Rueda Frontal Izq	IZQ	Horas + Condicion	R	8X0270	4708606
DT120	793C	83205	Rueda Frontal Der	DER	Horas + Condicion	R	8X0270	4708606
DT120	793C	83205	Radiador Enf Motor Diesel		Horas	R	1936287	1936287
DT120	793C	83205	Motor Diesel		Horas + Condicion	R	1470797	4888197

		a jac			DE MANTI			RINTENDI Componen		
N° nteri √	Mode' _₩	SMU Actu	Denominacion Componente	Posicion	Horas Uso	Ciclo de Cambio *	% Uso 🕌	Fecha Cambio *	Condicio	OT Prox Ca
OT025	793C	68618	Suspension Frontal Izq	IZQ	12590	15000	84%	20-feb-18	Bueno	
T025	793C	68618	Suspension Frontal Der	DER	19068	15000	O 127%	23-ene-17	Bueno	
T025	793C	68618	Silla Operador	ETTE. 2	3970	6000	© 66%	28-ene-18	Regular	
T025	793C	68618	Rueda Frontal Izq	IZQ	12590	15000	O 84%	20-feb-18	Bueno	
T025	793C	68618	Rueda Frontal Der	DER	6568	15000	O 44%	20-feb-19	Bueno	
T025	793C	68618	Radiador Enf Motor Diesel		3693	15000	O 25%	13-ago-19		
T025	793C	68618	Motor Diesel		3693	15000	O 25%	13-ago-19		
OT025	793C	68618	Mando Final Izq	IZQ	9933	15000	© 66%	31-jul-18	Bueno	
T025	793C	68618	Mando Final Der	DER	9933	15000	O 66%	31-jul-18	Bueno	
T025	793C	68618	Engranaje Bombas PTO	2007	7165	18000	O 40%	15-jul-19	Bueno	
T025	793C	68618	Diferencial		12095	15000	81%	22-mar-18	Bueno	
T025	793C	68618	Convertidor	1000	3693	15000	O 25%	13-ago-19		
T025	793C	68618	Cilindro Levante Tolva Izq	IZQ	28783	18000	O 160%	13-dic-15	Bueno	
T025	793C	68618	Cilindro Levante Tolva Der	DER	23972	18000	O 133%	30-sep-16	Bueno	
DT025	793C	68618	Cilindro Direccion Izq	IZQ	9933	12000	9 83%	30-ene-18	Bueno	
DT025	793C	68618	Cilindro Direccion Der	DER	90	12000	0 1%	18-sep-19	Bueno	
DT025	793C	68618	Bomba y motor de Liberacion Frenos de parqueo - liberacion de frenos secundarios		10998	18000	O 61%	25-nov-18	Bueno	
OT025	793C	68618	Bomba Levante-Enfriam Frenos Front	9869	10998	18000	© 61%	25-nov-18	Bueno	
T025	793C	68618	Bomba Enfriamiento Frenos Trasero y liberacion de frenos traseros		10998	18000	Ø 61%	25-nov-18	Bueno	
DT025	793C	68618	Bomba Dirreccion		7165	18000	O 40%	15-jul-19	Bueno	
OT025	793C	68618	Bomba Convertidor - Transmision	55505	18966	15000	O 126%	29-ene-17	Bueno	
DT025	793C	68618	Articulacion Nose Cone		9733	14000	O 70%	12-jun-18	Malo	
T120	793C	83205	Transmision	<u></u> 3	2377	15000	0 16%	01-nov-19		
T120	793C	83205	Tolva		2377	21000	O 11%	29-oct-20		
OT120	793C	83205	Suspension Trasera Izq	IZQ	2377	12000	20%	03-may-19		
OT120	793C	83205	Suspension Trasera Der	DER	2377	12000	20%	03-may-19	12222	
T120	793C	83205	Suspension Frontal Izq	IZQ	2377	15000	0 16%	01-nov-19		
T120	793C	83205	Suspension Frontal Der	DER	2377	15000	0 16%	01-nov-19	(2000)	
T120	793C	83205	Silla Operador		2377	6000	O 40%	04-may-18		
T120	793C	83205	Rueda Frontal Izq	ΙΖQ	2377	1000000	0 16%	01-nov-19		
T120	793C	83205	Rueda Frontal Der	DER	2377	100000000000000000000000000000000000000	0 16%	01-nov-19	12000	
T120	793C	83205	Radiador Enf Motor Diesel		1334		9%	03-ene-20		
T120	793C	83205	Motor Diesel	2000	2377	15000	0 16%	01-nov-19	Bueno	

Figura 38. Horometro del equipo Fuente. Pasante del proyecto

Actividad 2. Plantear planes de contingencia con anticipación en caso que los componentes no puedan ser reparados

Como planes de contingencia trabajamos con el pool de componentes por cada flota donde tenemos que tener componentes disponibles para cambios programados e imprevistos.

En estos planes trabajamos con archivos donde registramos los componentes que tenemos disponibles en mina y los que están cedidos al proveedor para reparación.

				POOL I	DE CO	MPONEN	ITES	FLOT	'A MLJ							Act:	27/09/2017
	INFORMACIÓN DEL (CUMDONENTE										POOL					
	INI ORMACION DEL V	JOMPONLINIL				EN I	MINA			RI	EPAR	ACION - COMP	PRA				STOCK
MODELO	ITEM	P/N	COD. SAP	NHEVO	GTIA	REMAN	DED	DAÑ	Total en	EN		COMPRA	Total en	TOTAL	TO HAVE	TO GET	DEALER
MODELO	IILM	F/II	COD: JAF	HOLYO	UTIA	ILMAIT	IXLF	DAIT	Sitio	REPARACION	QTY	PEDIDO	tránsito				Proyecto
	Mando final	2088786	1042038	0	2	0	2	0	4	3	0	0	3	7	6	1	0
	Motor diésel	1470797	1035492	0	0	0	0	2	0	1	0	0	3	3	2	1	0
	Radiador enf motor diésel	1936287	1047142	0	0	0	0	0	0	3	0	0	3	3	3	0	0
	Rueda frontal	8X0270	1042180	0	1	0	3	0	4	4	0	0	4	8	6	2	0
	Suspensión frontal	9T8910	1093143	1	0	0	4	0	5	5	0	0	5	10	6	4	0
	Suspensión trasera	1063722	1042169	0	0	0	3	0	3	3	0	0	3	6	6	0	0
	Transmisión	9U9822	1042359	0	0	0	4	0	4	0	0	0	0	4	3	1	0
	Convertidor	1248506	1070756	0	0	0	1	0	1	2	1	4150006525	3	4	3	1	0
O	Diferencial	1246022	1070736	0	0	0	2	0	2	0	0	0	0	2	3	-1	0
	Cilindro dirección	9T8912	1043763	0	2	0	9	0	11	5	0	0	5	16	6	10	0
_	Cilindro levante tolva	1212071	1042170	0	0	0	3	0	3	3	0	0	3	6	6	0	0
Moto Rade Rue Sus Sus Sus Tra Con Dife Cilin Eng Cab Tan Sup Hou Con	Engranaje bombas pto	1250814	1043902	0	0	0	2	0	2	2	0	0	2	4	4	0	0
	Cabina	1370001	1098844	0	0	0	3	0	3	0	0	0	0	3	2	1	0
	Tank as-fuel	2451224	1079360	0	0	0	1	0	1	3	0	0	3	4	3	1	0
	Tank gp-hydraulic	1227997	1070579	0	0	0	1	1	1	1	0	0	2	3	3	0	0
	Support as-a-frame	1856377	1075312	0	0	0	5	0	5	0	0	0	0	5	4	1	0
	Housing Eje Trasero	1985954	1114146	1	0	0	3	0	4	0	0	0	0	4	3	1	0
	Control De Valvulas Principal	1470997	1072717	0	0	0	3	1	3	2	0	0	3	6	4	2	0
	Rod Control- Hueso De Perro	2114924	1077171	0	0	0	5	0	5	0	0	0	0	5	3	2	0

Figura 39, Pool componentes flota 793C

Figura 40. Grafica Pool componentes flota 793C

				POOL	DE C	OMPONE	NTES	S FLO	TA MLJ							Act:	27/09/2017
	INFORMACIÓN DEL	COMPONENTE									P()OL					
	INI ONNACION DEL	COMPONENTE				EN	MIN	4		RE	PARA	CION - C	OMPRA				STOCK
MODELO	ITEM	P/N	COD. SAP	NHEVO	GTIA	RFMAN	RFD	DΔÑ	Total en Sitio	EN	CO	MPRA	Total en tránsito	TOTAL	TO HAVE	TO GET	DEALER
MODELO	TEM	1711	CODI DAI	HOLTO	OTIA	KEMPAN	IXLI	DAIT	Total cir sicio	REPARACION	QTY	PEDIDO	Total en transito				Proyecto
	Motor diésel	3538645	1004471	0	0	0	1	0	1	0	0	0	0	1	3	-2	0
	Radiador enf motor diésel	2529246	1009110	0	0	0	2	0	2	0	0	0	0	2	3	-1	0
	Convertidor	2495539	1010512	0	0	0	3	0	3	1	0	0	1	4	3	1	0
	Transmisión	2462647	1004467	0	0	0	4	0	4	4	0	0	4	8	3	5	0
	Diferencial	2662091	1011458	0	0	0	1	0	1	1	0	0	1	2	3	-1	0
	Diferencial	6G7565	1006016	0	0	0	0	0	0	0	0	0	0	0	1	-1	0
77	Mando final	3077342	1004513	0	0	0	3	0	3	5	0	0	5	8	6	2	0
77	Cabina	3520586	1023119	0	0	0	1	0	1	0	0	0	0	1	1	0	0
	Suspensión frontal	3356352	1146523	0	0	0	4	0	4	2	0	0	2	6	8	-2	0
	Suspensión trasera	3356354	1011355	0	0	0	2	0	2	6	0	0	6	8	5	3	0
	Rueda frontal	2435552 dry	1016209	0	0	0	1	0	1	4	0	0	4	5	4	1	0
	Rueda frontal	2435549 wet	1016208	0	0	0	2	0	2	1	0	0	1	3	4	-1	0
	Cilindro levante tolva	2960608	1012087	0	0	0	4	0	4	1	0	0	1	5	6	-1	0
	Cilindro dirección	1052440	1001223	0	0	0	3	0	3	3	0	0	3	6	6	0	0

Figura 41. Pool componentes flota 777F

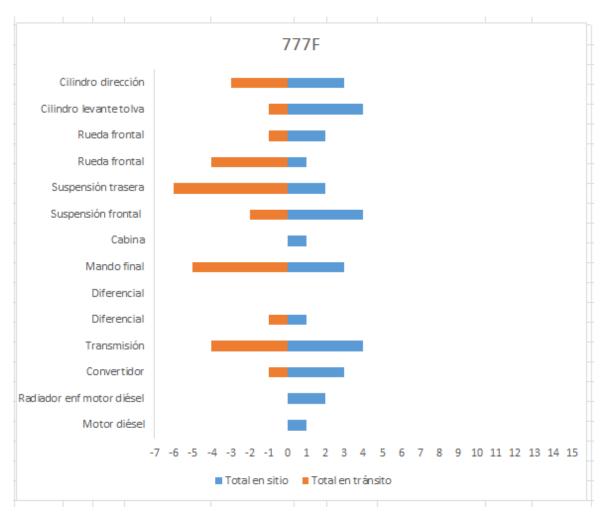


Figura 42. Grafica Pool componentes flota 777F

			PO	OL DE C	ОМРО	ONENT	ES FI	LOTA	N MLJ							Act:	2
	engine Ih 3899981 10245 engine rh 3554829 10245 radiator rh - Ih 3718004 10642 pump gearbox 3676805 10348 hydraulic oil cooler 2762894 10045 cylinder boom rh - Ih 3679006 10104 cylinder stick rh - Ih 3734838 10578 cylinder bucket rh - Ih 3734816 10049 enter joint 3683515 10123 slewing gear 4780706 11381 swing ring 2450905 10223		POOL														
	INFORMACION DEL	COMPONENTE				EI	IIM P	AP			REPAI	RACION - CO					ST
MODELO	ITEM	D/N	COD. SAP	NUEVO	GTIA	REMAN	RFP	DΔÑ	Total en Sitio	EM DEDADACION	•	COMPRA	Total en tránsito	TOTAL	TO HAVE	TO GET	311
MODELO	TIEM	1710	COD. SAI			TC Still			Total Cir Sicio	EII IIEI MIIMOIOII	QTY	PEDIDO	Total en cransito				
	engine Ih	3899981	1024535	0	1	0	0	0	1	0	0	0	0	1	1	0	
	engine rh	3554829	1024536	0	0	1	0	0	1	0	0	0	0	1	1	0	
	radiator rh - Ih	3718004	1064273	0	1	0	0	0	1	0	0	0	0	1	2	-1	
	pump gearbox	3676805	1034803	0	0	0	1	0	1	2	0	0	2	3	2	1	
	hydraulic oil cooler	2762894	1004555	0	0	0	0	0	0	0	0	0	0	0	2	-2	
	cylinder boom rh -lh	3679006	1010427	0	0	0	1	0	1	2	0	0	2	3	4	-1	
	cylinder stick rh - lh	3734838	1057854	0	2	0	0	1	2	3	0	0	4	6	4	2	
	cylinder bucket rh -lh	3734816	1004928	0	0	0	3	0	3	1	0	0	1	4	4	0	
120	center joint	3683515	1012334	0	0	0	0	0	0	0	0	0	0	0	2	-2	
표	slewing gear	4780706	1138188	1	0	1	0	0	2	0	0	0	0	2	2	0	
	swing ring	2450905	1022328	0	0	0	0	0	0	0	0	0	0	0	1	-1	
	final drive	2712182	1024555	2	0	0	0	0	2	1	0	0	1	3	2	1	
	side frame Ih	3712822	1111095	0	0	0	0	0	0	1	0	0	1	1	1	0	
	side frame rh	3709735	1111094	0	0	0	1	0	1	1	0	0	1	2	1	1	
	chain	3674036	1065210	0	0	0	0	0	0	2	0	0	2	2	2	0	
	Chain	EK120S1000-1-A47	1133270	0	0	0	0	0	0	0	0	0	0	0	2	-2	
	idler	2451815	1108116	0	0	0	1	1	1	1	0	0	2	3	4	-1	
	sprocket	2760154	1107979	0	0	0	0	0	0	0	0	0	0	0	4	-4	

Figura 43. Pool componentes flota RH120E

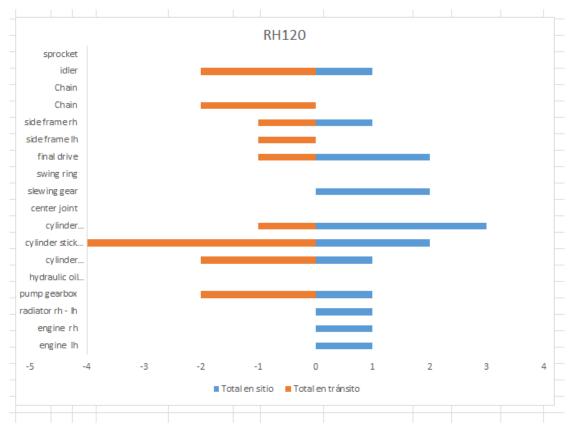


Figura 44. Grafica Pool componentes flota RH120E

										POO)L					Г
Motor Diesel Unidad Compresora Unidad Compresora Rotaria	P/N	COD. SAP		J 7	N MINA				PROVEEDOR	C	OMPRA		TOTAL	TO HAVE	TO CET	Ţ
			NUEVO	GTIA	REMAN	REPARADO	DAÑ	Total en sitio	PROVEEDUR	QTY	PEDIDO Total e	Total en tránsito	TOTAL	IU HAVE	TO GET	1
Motor Diesel	2371955	1034531	0	0	0	0	0	0	2	0	0	2	2	2	0	T
Unidad Compresora	42464768 - DM45	1009174	1	0	0	2	0	3	1	0	0	1	4	2	2	1
Unidad Compresora	35098052 - DML	1033150	0	0	0	0	0	0	2	0	0	2	2	2	0	1
Rotaria	58540237	1033177	0	0	0	0	0	0	0	0	0	0	0	3	-3	Ī
Cilindro Levante Torre	54578539	1047953	0	0	0	0	0	0	0	0	0	0	0	6	-6	1
Cilindro Pulldown Rotaria	57484263 - DM45	1005542	5	1	0	3	0	9	0	0	0	0	9	3	6	1
Cilindro Pulldown Rotaria	57488827 - DML	1107846	0	1	0	0	0	1	0	0	0	0	1	3	-2	
Cilindro Centarlizador Tubo	57423808	1107845	3	0	0	0	0	3	0	0	0	0	3	3	0	1
Cilindro Accionamiento Carrusel	57199093	1005481	1	0	0	0	0	1	0	0	0	0	1	3	-2	1
Cilindro Llava Mordaza	57768582	1005544	2	0	0	0	0	2	0	0	0	0	2	3	-1	1
Cilindro Compuerta	57389983	1005517	1	0	0	1	0	2	0	0	0	0	2	3	-1	
Cilindro Nivelacion	57755589	1032695	1	0	0	1	0	2	1	0	0	1	3	6	-3	
Mando Final	57725764 - DM45	1011157	0	0	0	0	0	0	0	0	0	0	0	4	-4	I
Mando Final	57457194 - DML	1124154	0	0	0	5	0	5	0	0	0	0	5	4	1	1
Radiador Enf Motor Diesel	57775538	1119026	1	0	0	0	0	1	0	0	0	0	1	2	-1	1
Engranaje Bomba (PTO)	57651234	1033123	0	0	0	0	0	0	2	0	0	2	2	2	0	Ī
Engranaje Bomba (PTO)	57352536	1005507	1	0	0	1	0	2	0	0	0	0	2	2	0	T
Enfriador Aceite Hdco	57775546	1112613	0	0	0	1	0	1	0	0	0	0	1	2	-1	1
Enfriador Aire	57775520	1124700	4	0	0	0	0	4	0	0	0	0	4	2	2	1
Enfriador Aceite Unidad Compresor	57775553	1118652	0	0	0	1	0	1	0	0	0	0	1	2	-1	1

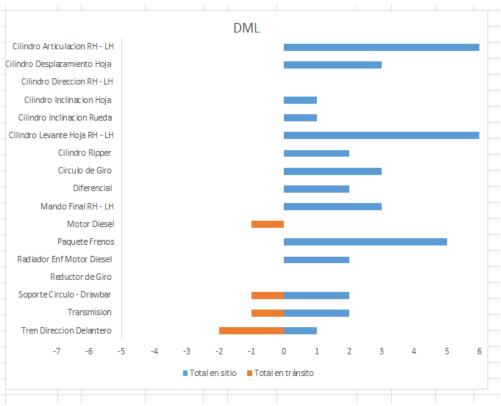


Figura 46. Grafica Pool componentes flota DML Y DM45E

Capítulo 4. Diagnostico final

Teniendo en cuenta los indicadores de confiabilidad que nos permiten saber cuál es el sistema que presenta más fallas en cada una de las flotas y con qué frecuencia se presentan las diferentes paradas y cambios de componentes, permitiendo así tomar medidas anticipadas para no tener una parada imprevista que genere costos adicionales o atrasos en la producción.

Los informes y estudios realizados sirven como soporte para tener actualizado el pull de componentes de cada flota, es decir, sabiendo cual es el sistema que presenta más falla en cada una de las flotas , se debe tener componentes preparados para cualquier tipo de falla ya sea planeada o imprevista.

5. Conclusiones

Las técnicas RIM (RELIABILITY INFORMATION MANAGEMENT) y el reconocimiento en taller de los diferentes equipos de la flota NO MARA de mina La Jagua, ayudaron al estudio y la identificación de los diferentes sistemas, subsistemas y componentes que están presentes en cada equipo. Su funcionamiento, código de identificación, nombre y su función dentro de la mina. Estas técnicas también permitieron clasificar los equipos de acurdo al nivel de criticidad de cada flota y su importancia para la producción en la misma.

6. Recomendaciones

Con la realización de este proyecto que consistió en el estudio y elaboración de procesos para la medición de los indicadores de confiabilidad a las diferentes flotas de equipos mineros de mina LA JAGUA, se plantean las siguientes recomendaciones.

Llevar un control diario de los reportes de eventos Down teniendo en cuenta que la empresa los analiza es cada mes, lo cual se llevan a tomar decisiones muy tardes para solucionar problemas críticos que involucran la producción y el costo de mantenibilidad.

Analizar y clasificar de manera correcta los reportes por parte del personal de base uno (DISPASH), ya que un gran porcentaje de estos son erróneos o sin información lo cual lleva al personal de planeación a no ser tan certeros en la medición de indicadores de confiablidad.

No se tienen en cuenta las demoras del personal de mantenimiento desde que se reporta la falla hasta el momento que se interviene un equipo ya se en campo o taller, teniendo en cuenta que este cálculo es un factor importante para la mediación del rendimiento de los mismos.

Se utilizan malas prácticas operacionales por parte de los operadores ignorando los manuales de funcionamiento del equipo.

No se lleva un seguimiento ni control adecuado con los formatos pre operacionales diarios que realizan los operadores antes de empezar los turnos evidenciando problemas y fallas en el equipo.

Los operadores deben Informar a los supervisores por alguna duda en el funcionamiento del equipo que se le asigne.

Referencias

- Aciem. (2014). GUIA DE LOS FUNDAMENTOS DE MANTENIMIENTO Y COMFIABILIDAD.

 Recuperado el 20 de 12 de 2016, de CGMC_ACIEM: http://www.aciem.org/home/images/CDN/CGMC_ACIEM/Guia_Fundamentos.pdf
- ATLAS COPCO. (2016). PARTS LIST MODEL DML. CALIFORNIA.
- Augusto, T. L. (2012). GESTION DE ACTIVOS PARA EL MANTENIMIENTO .

 CONEXIONMANTENIMIENTO.COM, 7.
- GECOLSA CAT. (30 de NOVIEMBRE de 2010). GUÍA DE INTERPRETACIÓN Y ACCIÓN

 DE MÉTRICAS DE PROCESOS DE MANTENIMIENTO Y REPARACION. En *GUIA*CATERPILLAR.
- Hernando, M. V. (2011). aplicacion de la metodologuia Analis Causa raiz para la eliminacion de un mal actor en equipos criticos de la som ecopetrol S.A. BUCARAMANGA COLOMBIA.
- L., O. (2016). PLJ MAINTENANCE ORG. MC-MTTO-01A/V4.
- LABORATORIO Mobilserv. (20 de enero de 2017). Bogotá COLOMBIA.
- MOUBRAY, J. (s.f.). MANTENIMIENTO CENTRADO EN LA CONFIABILIDAD Segunda Ediccion. Industrial Press Inc.
- PEREZ, J. A. (2016). REESTRUCTURACIÓN DEL SISTEMA DE INFORMACIÓN PARA LA GESTIÓN DEL MANTENIMIENTO EN SOLINOFF CORP. S.A. PARQUE INDUSTRIAL GALICIA, FUNZA, CUNDINAMARCA. OCAÑA N.S.

PRODECO, G. (2016). prodeco en pro de colombia. Obtenido de http://www.prodeco.com.co/index.php/es/quienes-somos/nuestras-operaciones/mina-la-jagua/

PRODECO, L. I. (2016). *CONECTADOS*. Obtenido de http://conectados/SitePages/Default.aspx S.A, G. P. (2017). *PASOS ARBOL LOGICO DE FALLAS*.

Apéndices

Apéndice A. Camión CATERPILLAR 793C Mina LA JAGUA

Apéndice B. Camiones CATERPILLAR 777 F mina LA JAGUA

Apéndice C. PALAS TEREX RH120E mina LA JAGUA

Apéndice D. Perforador ATLAS COPCO DML

