

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OCAÑA					
Documento Código Fecha					
FORMATO HOJA DE RESUMEN PARA TRABAJO DE GRADO	F-AC-DBL-007	10-04-2012	A		
Dependencia		Aprobado	Pág.		
DIVISIÓN DE BIBLIOTECA	SUBDIRECTOR A	ACADEMICO	i(60)		

RESUMEN - TRABAJO DE GRADO

AUTORES	CAMILO ANDRÉS MAESTRE CUETO	
FACULTAD	INGENIERÍAS	
PLAN DE ESTUDIOS	INGENIERÍA MECÁNICA	
DIRECTOR	ALFREDO EMILIO TRIGOS QUINTERO	
TÍTULO DE LA TESIS	ESTUDIO DE LA CONFIABLIDAD EN EQUIPOS DE OPERACIÓN MINERA DE LA FLOTA DE CAMIONES DE LA EMPRESA PRODECO MINA LA JAGUA BASADO EN LAS TÉCNICAS RIM (RELIABILITY INFORMATION MANAGEMENT)	
RESUMEN		
(70 palabras aproximadamente)		

EL DEPARTAMENTO DE MANTENIMIENTO JUEGA UN PAPEL IMPORTANTE DENTRO DE LA COMPAÑÍA, DEBIDO QUE ES EL ENCARGADO DE LLEVAR UN SEGUIMIENTO DE LOS ACTIVOS FÍSICOS, SU PROPÓSITO ES MANTENER LOS EQUIPOS EN LAS MEJORES CONDICIONES. ESTE DEPARTAMENTO ANALIZA LAS MÉTRICAS DE RENDIMIENTO DE CADA FLOTA Y PROPORCIONAN UNA PROYECCIÓN EN CUANTO A LO QUE SE PUEDE ESPERAR A LARGO Y/O CORTO PLAZO TENIENDO EN CUENTA LAS PRETENSIONES DE LA COMPAÑÍA.

CARACTERÍSTICAS			
PÁGINAS: 59	PLANOS:	ILUSTRACIONES:	CD-ROM: 1

ESTUDIO DE LA CONFIABILIDAD EN EQUIPOS DE OPERACIÓN MINERA DE LA FLOTA DE CAMIONES DE LA EMPRESA PRODECO MINA LA JAGUA BASADO EN LAS TÉCNICAS RIM (RELIABILITY INFORMATION MANAGEMENT)

Autor:

CAMILO ANDRÉS MAESTRE CUETO

Trabajo presentado como requisito para obtener el título de Ingeniero Mecánico bajo la modalidad de pasantías

Director

ALFREDO EMILIO TRIGOS QUINTERO

Ingeniero Mecánico

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍAS INGENIERÍA MECÁNICA

OCAÑA, COLOMBIA

FEBRERO 2019

DEDICATORIA

Dedico principalmente este logro a Dios por ser mi ayuda incondicional y mi guía a lo largo de mi vida, a mis padres por su motivación, a familiares y amigos por creer en mis capacidades y sueños, a mis profesores por sus enseñanzas y a la universidad por haberme acogido durante estos años de aprendizaje y muchas experiencias enriquecedoras.

A todos muchas gracias.

AGRADECIMIENTO

Mis agradecimientos son para Dios primordialmente por ser mi guía y mi amigo en toda esta carrera y por hoy permitirme alcanzar este logro tan importante en mi vida.

A mi madre Osmelia Cueto por todo su apoyo y a mi padre Dulis Maestre por haber creído en mí. A mis hermanos Dulis José Maestre, Diana Maestre, Yulis Ponton y Gustavo Ponton por el apoyo a lo largo de mi carrera y ser ese plus en esta lucha ardua y muy satisfactoria.

A mi prima Irene Alcendra por su apoyo y motivación para salir adelante y por creer en mis metas. A mis amigos Kevin Genes, Lina Theran, que estuvieron allí cuando necesité de ellos.

A mis amigos de universidad Ivan Villalobos, Jhorman Barrero, Andrés Martinez, Jeyson Barrios, Melvin Oviedo, Luis Rincon, Maria Alonso y Wilmer Bedoya con quienes compartí buenos y malos momentos.

A mi director Alfredo Emilio Trigos Quintero por su ayuda fundamental en la elaboración de este trabajo, y mis profesores Jaider Vergel, Jhon Arévalo, Eder Flórez, Leonardo navarro, Gustavo guerrero, Edwin espinel. Por sus enseñanzas y su ayuda incansable en esta meta.

A mi director de pasantía en la empresa Rafael Pinedo por brindarme la oportunidad en la empresa PLJ y creer en mis capacidades para este trabajo.

A mis compañeros de trabajo Carlos Gómez, Kevin Marquez, José Tortello, Leidy González, Diana Maury, Omar Polo, Jeison Niño, Keiner Romano, Juan Blanco, Humberto Manotas. Personas incondicionales a lo largo de todas mis prácticas. A la Universidad Francisco de Paula Santander Ocaña por bríndame los conocimientos adquiridos y por poner a mi disposición todo su conocimiento y materiales de trabajo para este satisfactorio proceso que hoy ya deja de ser un sueño, para convertirse en una realidad.

Índice

Capitulo 1. Estudio de la confiabilidad en equipos de operación minera de la flota de camion	ies
de la empresa Prodeco mina la Jagua basado en las técnicas RIM (reliability information	
management)	
1.1 Descripción de la empresa	
1.1.1 Misión.	2
1.1.2 Visión	2
1.1.3 Objetivos de la empresa.	3
1.1.4 Descripción de la dependencia asignada	3
1.1.5 Descripción de la estructura organizacional grupo PRODECO S.A	4
1.2 Diagnóstico Inicial De La Dependencia Asignada.	5
1.2.1. Planteamiento del problema	
1.3 Objetivos	
1.3.1 Objetivo general.	
1.3.2 Objetivos Específicos	
1.4 Descripción de las actividades	
Capítulo 2. Marco Referencial	
2.1 Marco conceptual	9
2.1.1. Mantenimiento	9
2.1.2. Confiabilidad	9
2.1.2.1 La Confiabilidad de diseño.	11
2.1.2.2 La Confiabilidad de proceso productivo A	11
2.1.2.3 La Confiabilidad humana	
Capítulo 3. Informe de Cumplimiento de Trabajo	12
3.1Presentación de resultados	12
3.1.1 Objetivo específico 1	12
3.1.1.1 Actividad 1.	12
3.1.1.2 Actividad 2	15
3.1.1.3 Actividad 3	15
3.1.2. Objetivo específico 2:	19
3.1.2.1. Actividad 1	19
3.1.2.1. Actividad 2	2!
3.1.2.1. Actividad 3	23
3.1.2.2. Actividad 4	39
3.1.3. Objetivo específico 3	41
3.1.3.1. Actividad 1	41
3.1.3.2 Actividad 2	41
Capítulo 4. Conclusiones	43
Capítulo 5. Recomendaciones	
Referencias	
Anéndices	16

Lista de tablas

Tabla 2 :Descripción de las actividades a desarrollar por cada objetivo planteado8Tabla 3:Volúmenes de la tolva de los camiones de las 3 flotas15Tabla 4 : Equipos NO MARA por flota de camiones de la mina LA JAGUA15Tabla 5: Tiempo promedio entre fallas por sistema (MTBF)25Tabla 6 Tiempo Promedio de reparación (MTTR)27Tabla 7 Tiempo promedio entre paradas (MTBS)28Tabla 8 Tiempo promedio entre fallas por sistema (MTBF)30Tabla 9 Tiempo promedio de reparación (MTTR)32Tabla 10 Tiempo Promedio Entre Paradas (MTBS)33Tabla 11: Tiempo promedio entre fallas por sistema (MTBF)35Tabla 12 Tiempo promedio de reparación (MTTR)35	Tabla 1 : Matriz DOFA	5
Tabla 4 : Equipos NO MARA por flota de camiones de la mina LA JAGUA15Tabla 5: Tiempo promedio entre fallas por sistema (MTBF)25Tabla 6 Tiempo Promedio de reparación (MTTR)27Tabla 7 Tiempo promedio entre paradas (MTBS)28Tabla 8 Tiempo promedio entre fallas por sistema (MTBF)30Tabla 9 Tiempo promedio de reparación (MTTR)32Tabla 10 Tiempo Promedio Entre Paradas (MTBS)33Tabla 11: Tiempo promedio entre fallas por sistema (MTBF)35	Tabla 2 :Descripción de las actividades a desarrollar por cada objetivo planteado	8
Tabla 5: Tiempo promedio entre fallas por sistema (MTBF)25Tabla 6 Tiempo Promedio de reparación (MTTR)27Tabla 7 Tiempo promedio entre paradas (MTBS)28Tabla 8 Tiempo promedio entre fallas por sistema (MTBF)30Tabla 9 Tiempo promedio de reparación (MTTR)32Tabla 10 Tiempo Promedio Entre Paradas (MTBS)33Tabla 11: Tiempo promedio entre fallas por sistema (MTBF)35	Tabla 3:Volúmenes de la tolva de los camiones de las 3 flotas	15
Tabla 6 Tiempo Promedio de reparación (MTTR)27Tabla 7 Tiempo promedio entre paradas (MTBS)28Tabla 8 Tiempo promedio entre fallas por sistema (MTBF)30Tabla 9 Tiempo promedio de reparación (MTTR)32Tabla 10 Tiempo Promedio Entre Paradas (MTBS)33Tabla 11: Tiempo promedio entre fallas por sistema (MTBF)35	Tabla 4 : Equipos NO MARA por flota de camiones de la mina LA JAGUA	15
Tabla 7 Tiempo promedio entre paradas (MTBS)28Tabla 8 Tiempo promedio entre fallas por sistema (MTBF)30Tabla 9 Tiempo promedio de reparación (MTTR)32Tabla 10 Tiempo Promedio Entre Paradas (MTBS)33Tabla 11: Tiempo promedio entre fallas por sistema (MTBF)35	Tabla 5: Tiempo promedio entre fallas por sistema (MTBF)	25
Tabla 8 Tiempo promedio entre fallas por sistema (MTBF)30Tabla 9 Tiempo promedio de reparación (MTTR)32Tabla 10 Tiempo Promedio Entre Paradas (MTBS)33Tabla 11: Tiempo promedio entre fallas por sistema (MTBF)35	Tabla 6 Tiempo Promedio de reparación (MTTR)	27
Tabla 9 Tiempo promedio de reparación (MTTR)32Tabla 10 Tiempo Promedio Entre Paradas (MTBS)33Tabla 11: Tiempo promedio entre fallas por sistema (MTBF)35	Tabla 7 Tiempo promedio entre paradas (MTBS)	28
Tabla 10 Tiempo Promedio Entre Paradas (MTBS)	Tabla 8 Tiempo promedio entre fallas por sistema (MTBF)	30
Tabla 11: Tiempo promedio entre fallas por sistema (MTBF)	Tabla 9 Tiempo promedio de reparación (MTTR)	32
Tabla 11: Tiempo promedio entre fallas por sistema (MTBF)	Tabla 10 Tiempo Promedio Entre Paradas (MTBS)	33

Lista de Figuras

Figura 1:Estructura organizacional grupo PRODECO S.A	4
Figura 2:Problemas de confiablidad en los diferentes procesos.	10
Figura 3:Equipos flota de camiones 777F NO MARA mina LA JAGUA	13
Figura 4: Equipos flota de camiones 793C NO MARA mina LA JAGUA	13
Figura 5:Equipos flota de camiones 789D NO MARA mina LA JAGUA	14
Figura 6:Base de Datos Paradas Equipo Minero - Malos Actores Informe Mensual	19
Figura 7:Base de datos análisis de las fallas de los equipos minero	20
Figura 8:Comentario directamente del software dispatch.	21
Figura 9:Eventos Downtime en la flota.	
Figura 10:Indicadores de los camiones 793C.	24
Figura 11:Tiempo promedio entre fallas por sistema (MTBF)	26
Figura 12:Tiempo promedio de reparación (MTTR)	27
Figura 13.Tiempo promedio entre paradas (MTBS)	29
Figura 14:Eventos downtime en la flota.	
Figura 15: Indicadores de los camiones 777F	
Figura 16:Tiempo promedio entre fallas por sistema (MTBF)	31
Figura 17:Tiempo promedio de reparación (MTTR)	32
Figura 18:Tiempo promedio entre paradas (MTBS)	34
Figura 19 Eventos downtime en la flota.	
Figura 20 Indicadores de los camiones 789D.	35
Figura 21:Tiempo promedio entre fallas por sistema (MTBF)	36
Figura 22:Tiempo promedio de reparación (MTTR)	37
Figura 23:Tiempo promedio entre paradas (MTBS) 789D	39
Figura 24:Cantidad de eventos de paradas en todas las flota	40
Figura 25:Indicadores de todos los camiones	40

Lista de Apéndice

Apéndice A:Camión CATERPILLAR 793C Mina LA JAGUA	46
Apéndice B:Camiones CATERPILLAR 777 F mina LA JAGUA	47
Apéndice C:Camión CATERPILLAR 789D mina LA JAGUA	48

Introducción

El departamento de mantenimiento juega un papel importante dentro de la compañía, debido que es el encargado de llevar un seguimiento de los activos físicos de la compañía, Su propósito es mantener los equipos en las mejores condiciones teniendo en cuenta las fallas de la operación. Este departamento analiza las métricas de rendimiento de cada flota y proporcionan una predicción o proyección en cuanto a lo que se puede esperar a largo y/o corto plazo teniendo en cuenta las pretensiones de la compañía. Las métricas de rendimiento permiten evaluar los factores que son cruciales para el éxito de la compañía y brindan oportunidades de mejoras.

La recolección, organización y el estudio de los datos planteados en este documento permitirá identificación y el análisis de los problemas de rendimiento relacionados con la operación de los equipos en mina la Jagua.

Un factor importante en la producción minera es el tiempo, puesto que es el factor que más afecta la producción de las compañías y la disponibilidad de los equipos, para esto CATERPILLAR ha invertido gran cantidad de tiempo y recursos en una plataforma de ayuda para realizar los procesos de mantenimiento para sus equipos y así realizar las tareas de manera segura y en el menor tiempo posible.

Capítulo 1. Estudio de la confiabilidad en equipos de operación minera de la flota de camiones de la empresa Prodeco mina la Jagua basado en las técnicas RIM (reliability information management)

1.1 Descripción de la empresa

Mina La Jagua, ubicada en el municipio de La Jagua de Ibirico, en el departamento del Cesar, es una mina de carbón a cielo abierto que se compone de cinco títulos mineros, en poder de tres compañías: Carbones de La Jagua S.A., Consorcio Minero Unido S.A. y Carbones El Tesoro S.A. Después de comprar la totalidad de estas operaciones, Glencore procedió a integrarlas en una sola, con la aprobación de las autoridades competentes.

Además de producir carbón térmico bajo en azufre y de alto contenido energético, en mina La Jagua, también se extrae carbón metalúrgico de alta volatilidad. El carbón triturado es transportado en camiones hasta las instalaciones de manejo de carbón en mina Calenturitas, donde es cargado en vagones de trenes y transportado al puerto en Ciénaga, Magdalena.

Actualmente la empresa alcanzó una producción de 7 millones de toneladas al año de carbón con un alto contenido energético, lo que lo hace apetecido en los mercados internacionales.

Estamos comprometidos en prevenir, mitigar y compensar los impactos ambientales propios de la actividad de minería a gran escala, por eso nuestro compromiso y esfuerzo están dirigidos a la preservación de los recursos naturales y a la restauración de los habitantes que de una u otra forma han sido intervenidos con nuestras actividades.

Nuestras acciones se enfocan en apoyar y respetar los derechos humanos de acuerdo con la declaración universal de derechos humanos; así mismo, defendemos la dignidad, las libertades fundamentales y los derechos humanos de nuestros empleados, contratistas, comunidades donde operamos y personas afectadas por nuestras actividades, es por esto, que nos aseguramos que la concientización en materia de derechos humanos esté incorporada en nuestros procesos internos de evaluación de riesgos. (Prodeco, 2016)

1.1.1 Misión. Nos encargamos de la exploración, producción, transporte y embarcación de nuestro carbón con destino a mercados internacionales.

Nos esforzamos por la mejora continua de nuestro negocio a través de una gestión de personal de primer nivel, el desarrollo de una infraestructura operativa eficiente de bajo costo, la aplicación de sistemas de gestión adecuados y el diseño de políticas que nos permitan ejecutar una operación segura y responsable con la sociedad y el medioambiente. (Prodeco, 2016)

1.1.2 Visión. Ser el productor y exportador de carbón más importante de Colombia, mediante la ejecución segura de nuestras operaciones mineras y de toda la cadena de manejo de carbón hasta su exportación, la promoción de nuestro talento humano, el cuidado de

nuestras comunidades vecinas y siendo responsables con el medioambiente en donde operamos, como un esfuerzo integral para alcanzar nuestras metas de producción y exportación. (Prodeco, 2016)

1.1.3 Objetivos de la empresa. Tenemos como objetivo construir relaciones duraderas con nuestros vecinos al identificar y abordar sus preocupaciones y contribuyendo a las actividades y programas destinados a mejorar su calidad de vida. Nuestro enfoque de sostenibilidad se basa en el principio de valor compartido y en la conexión entre progreso económico y social en las regiones donde operamos. Con este enfoque buscamos evaluar nuestras decisiones y oportunidades desde la lógica de la creación de valor, la maximización de beneficios y la minimización de impactos en nuestras operaciones.

Nuestros Valores y Código de Conducta son la base de nuestro enfoque de sostenibilidad y establecen nuestras expectativas sobre los empleados, contratistas y socios comerciales. (Prodeco, 2016)

1.1.4 Descripción de la dependencia asignada. Fui asignado fue al departamento de mantenimiento en el área de ejecución, esta dependencia es la encargada de velar por la funcionalidad de los equipos que hacen parte de la producción de la compañía, este departamento es el encargado de realizar tareas planeadas y no planeadas por medio de herramientas y personal capacitado; es un departamento importante para la empresa, debido que busca garantizar la máxima disponibilidad de todos sus equipos

durante el tiempo de su operación y cumplir con las condiciones de funcionamiento requeridas.

Fui asignado como apoyo de un proyecto basado en el análisis y administración de la información de mantenimiento, lo cual se pretende aplicar a la flota de equipos NO MARA (Maintenance And Repair According) acuerdo o contrato de mantenimiento y reparación por parte de la empresa PRODECO.

El trabajo se estará desarrollando en coordinación del ingeniero Rafael Pinedo Durango, superintendente de mantenimiento de la flota de camiones en mina la Jagua.

1.1.5 Descripción de la estructura organizacional grupo PRODECO S.A

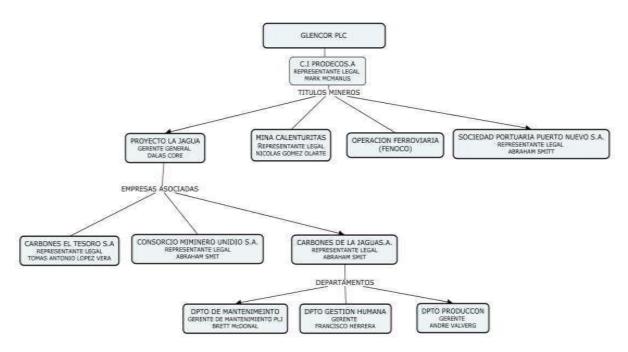


Figura 1:Estructura organizacional grupo PRODECO S.A

Fuente: Prodeco S.A

1.2 Diagnóstico Inicial De La Dependencia Asignada.

Tabla 1 : Matriz DOFA.

EMPRESA	FORTALEZAS	DEBILIDADES
C.I PRODECO S.A. MINA LA JAGUA	El departamento de mantenimiento se encuentra bien organizado y estructurado, Se divide en dos partes: planeación y ejecución.	No se realiza un análisis de confiabilidad puntual que sirva para mitigar los índices de MTBF (Time between failure), MTTR (average time for repairs). En cada uno de los equipos NO MARA en la flota de camiones de la empresa prodeco mina la jagua.
OPORTUNIDADES	FO	DO
El gerente del área de mantenimiento brinda toda la información requerida y sus conocimientos para realizar planes de mantenimientos. Se tiene la oportunidad de estructurar un grupo de mantenimiento que se basa en estrategias que van acorde a las eventualidades que se presentan en los equipos, teniendo en cuenta las recomendaciones de los fabricantes y la experiencia de ingeniería del staff de mantenimiento.	Con el análisis de confiablidad se pretende crear indicadores que muestren eventualidades periódicas que se presentan en los equipos NO MARA a los que a la empresa le corresponde el mantenimiento.	Teniendo en cuenta los resultados que arrojen los indicadores, se tendrá una propuesta establecida en el departamento de mantenimiento que sirva para reducir los malos actores al momento de una avería, Evitando gastos en pates de los equipos y el porcentaje de down time.
AMENAZAS	$\mathbf{F}\mathbf{A}$	DA
Se genera un alto índice de fallas en los equipos ocasionando un alto indicador de DT (Down time) en la flota NO MARA, esto debido a que no se planifican bien los PM.	Teniendo un análisis mensual de los indicadores de rendimiento en los equipos de la flota de camiones, se plantearan propuestas para mitigar estas averías.	Con esta técnica se busca analizar y crear estrategias para mitigar malos actores en las fallas periódicas que presentan los equipos NO MARA de la empresa.

Fuente: Autor del proyecto

1.2.1. Planteamiento del problema. El área de mantenimiento de mina la Jagua, es la encargada de mantener los equipos NO MARA, por ende; es su responsabilidad garantizar que los equipos se encuentren confiables para la operación. Debido a lo anterior, se realizan tareas que van acorde con las eventualidades que presentan los equipos y teniendo en cuenta los procedimientos y recomendaciones de los fabricantes de los equipos, también se realizan análisis globales de fallas de toda la flota, pero no existe un análisis puntual que emplee técnicas como la implementación de la gestión de la información de confiabilidad, cuyo propósito es administrar la información de eventos tales como:

Averías no planeadas y clasificarla de manera puntual, en equipo, flota, sistemas, componente, tipo de falla, tipo de parada, origen, horómetro, fecha y hora de paro, fecha y hora de arranque, down time total, síntoma de la falla, causa de la falla, comentarios relacionados a la falla/parada y el cálculo de indicadores rendimiento.

1.3 Objetivos

1.3.1 Objetivo general. Estudiar la confiabilidad en los equipos de operación minera de la flota de camiones de la empresa PRODECO mina la jagua basada en las técnicas RIM (reliability information management).

1.3.2 Objetivos Específicos. Identificar el listado de los camiones a los cuales se les realiza mantenimiento bajo el contrato NO MARA, y la técnica encargada de administrar la información de confiablidad (RIM).

Analizar las fallas más recurrentes teniendo en cuenta el rendimiento de cada camión NO MARA y como mitigar o reducir las mismas a través de las técnicas RIM.

Conectar planes de acción para la obtención de mejores resultados de confiabilidad y desempeño en la flota de camiones.

1.4 Descripción de las actividades

 Tabla 2 :Descripción de las actividades a desarrollar por cada objetivo planteado

Objetivo general	Objetivos específicos	Actividades a desarrollar en la empresa para cumplir los objetivos específicos
Estudiar la confiabilidad en los equipos de operación minera de la flota de camiones de la empresa prodeco mina la jagua basado en las técnicas RIM (reliability information	Identificar el listado de los camiones a los cuales se les realiza mantenimiento bajo el contrato NO MARA, y la técnica encargada de administrar la información de confiablidad (RIM).	 Actualizar el listado de los equipos de la flota de camiones a los cuales le realiza mantenimiento la mina la jagua. Conocer la función que cumple cada equipo en la empresa. Investigar sobre la técnica RIM, los indicadores de rendimiento que permite controlar como: MTTF, MTBF, MTTR. Que significan y como se calculan.
management).	Analizar las fallas más recurrentes teniendo en cuenta el rendimiento de cada camión NO MARA y como mitigar o reducir las mismas a través de las técnicas RIM.	 Organizar la información de la flota de camiones NO MARA, y clasificarla en equipo, flota, sistema, componente, tipo de falla, tipo de parada, origen, fecha y hora de para, fecha y hora de arranque, down time total, síntoma de la falla, causa de la falla, comentarios relacionados a la falla/parada Descripción de los ítems para la clasificación de la información de cada uno de los equipos. Calcular cada uno de los indicadores de rendimiento para cada flota de camiones NO MARA. Identificar los equipos que presentan más porcentaje de fallas en determinado tiempo.
	 Conectar planes de acción para la obtención de mejores resultados de confiabilidad y desempeño en la flota de camiones. 	 Proponer soluciones de mejoras para reducir o mitigar las causas de fallas analizadas. Plantear planes de contingencia con anticipación en caso que la falla sea inevitable y esta continúe

Fuente: Autor del proyecto

Capítulo 2. Marco Referencial

2.1 Marco conceptual

- **2.1.1. Mantenimiento.** Desde el punto de vista de la ingeniería, el mantenimiento es la combinación de todas las acciones técnicas, administrativas y de gestión, durante el ciclo de vida de un elemento, destinada a conservarlo o devolverlo a un estado en el que pueda desarrollar la función requerida. (ACIEM, 2014)
- 2.1.2. Confiabilidad. Es la probabilidad de que un activo opere sin falla por un determinado período de tiempo especificado (tiempo de misión) y bajo condiciones previamente establecidas (nivel esperado de rendimiento). La definición incluye el término de probabilidad, que indica el uso de una medida cuantitativa. Siendo la probabilidad la posibilidad de ocurrencia de forma particular de un evento. Para el profesional de mantenimiento y el área de gestión de activos físicos es un factor importante, debido a que a menor confiabilidad implica una mayor atención y planeación del mantenimiento, además si el elemento bajo análisis requiere para su proceso una alta confiabilidad implica una alta necesidad de mantenimiento para poder llevar este a los niveles requeridos. Algunas razones de estudio de la confiabilidad son las siguientes:
 - Determinar el tiempo hasta el cual se espera que falle (no falle) un sistema, equipo
 o componente para determinar tiempos de duración o producción.
 - Encontrar el tiempo al cual se espera que sobreviva una cantidad determinada de elementos puestos en operación.

- Determinar la propensión a fallar que tiene un elemento en un tiempo futuro.
- Dado que un elemento ha sobrevivido un tiempo estimado, conocer la probabilidad de que sobreviva un tiempo adicional cumpliendo su función.
- Tener argumentos para una decisión racional en el diseño o el funcionamiento de un sistema.

Algunos de los problemas de confiabilidad se encuentran en áreas y procesos como se ilustra en la figura 2.

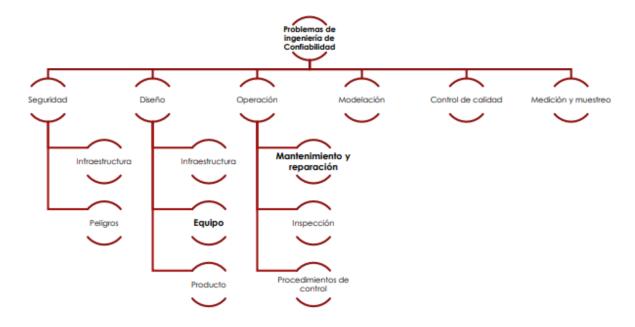


Figura 2:Problemas de confiablidad en los diferentes procesos.

Fuente: (ACIEM, 2014)

Por tratarse de un valor probabilístico esta varía entre 0 y 100%, tomando un valor de 0 (cero) al presentar la falla. De igual forma la confiabilidad es importante no solo para efectos de mantenimiento sino que también es de utilidad revisar:

- 2.1.2.1 La Confiabilidad de diseño. Medidas adoptadas para asegurar la confiabilidad de procesos, sistemas, productos y servicios durante la etapa de diseño de elementos, equipos, plantas, etc.
- 2.1.2.2 La Confiabilidad de proceso productivo Aseguramiento para que las entradas, salidas, equipos y personal trabajen de manera confiable durante la transformación.
- 2.1.2.3 La Confiabilidad humana. La probabilidad de desempeño eficaz y eficiente de las personas sin cometer errores durante el desarrollo de una actividad en el entorno que se mueve y la actividad que realiza. (ACIEM, 2014)

Capítulo 3. Informe de Cumplimiento de Trabajo

3.1Presentación de resultados

El presente trabajo cuenta con las actividades realizadas en mina la Jagua para obtener el título de ingeniero mecánico bajo la modalidad de pasantías.

- **3.1.1 Objetivo específico 1.** Identificar los tipos de camiones a los cuales se les realiza mantenimiento bajo el contrato NO MARA, y la técnica encargada de administrar la información de confiablidad (RIM).
- 3.1.1.1 Actividad 1. Actualizar el listado de los equipos de la flota de camiones a los cuales le realiza mantenimiento la mina la jagua.

	777 F		10
Equipment	Serial Number	Owner	SMU
DT010	0JRP00313	CDJ	53781
DT026	0JRP01083	CDJ	50254
DT027	0JRP01084	CDJ	54704
DT029	0JRP01101	CDJ	45951
DT039	0JRP01110	CDJ	54858
DT044	0JRP01149	CDJ	48684
DT045	0JRP01115	CDJ	53545
DT046	0JRP01159	CDJ	49505
DT047	0JRP01148	CDJ	48727
DT048	0JRP01158	CDJ	50791

Figura 3:Equipos flota de camiones 777F NO MARA mina LA JAGUA **Fuente:** (POPULATION OF EQUIPMENT PLJ, JANUERY 2019)

	793C		19
Equipment	Serial Number	Owner	SMU
DT020	0ATY00811	CMU	74478
DT021	0ATY00812	CMU	77320
D1021	0ATY78003	CMU	19229
DT022	0ATY00813	CMU	73847
D1022	0ATY78004	CMU	16614
DT023	0ATY00814	CMU	74810
D1023	0ATY78002	CMU	22172
DT024	0ATY00899	CMU	71860
D1024	0ATY18001	CMU	23429
DT025	0ATY00900	CMU	75173
DT120	ATY00190	CMU	90400
DT121	ATY00188	CMU	8720
DT122	ATY00417	CMU	7832
DT125	ATY00750	CMU	61615
DT126	ATY00751	CMU	61481
DT127	ATY00754	CMU	60137
DT128	ATY00757	CMU	58946
DT129	ATY00926	CMU	56116
DT130	ATY00927	CMU	54387
DT131	ATY00928	CMU	52884
DT132	ATY00952	CMU	52266
DT133	ATY00953	CMU	52288
DT134	ATY01076	CMU	48826

Figura 4:Equipos flota de camiones 793C NO MARA mina LA JAGUA **Fuente:** (POPULATION OF EQUIPMENT PLJ, JANUARY 2019)

	789D		24
Equipment	Serial Number	Owner	SMU
DT106	SPD00253	CMU	11440
DT107	SPD00255	CMU	11431
DT108	SPD00316	CMU	10927
DT109	SPD00318	CMU	11421
DT110	SPD00320	CMU	11123
DT111	SPD00321	CMU	11240
DT112	SPD00357	CMU	10883
DT113	SPD00362	CMU	11414
DT114	SPD00462	CMU	11044
DT115	SPD00463	CMU	10639
DT116	SPD00523	CMU	11785
DT117	SPD00524	CMU	11388
DT118	SPD00538	CMU	11037
DT119	SPD00542	CMU	11283
DT124	SPD00543	CMU	11532
DT526	SPD00564	CMU	9087
DT527	SPD00562	CMU	8895
DT528	SPD00560	CMU	8542
DT529	SPD00241	CMU	6705
DT530	SPD00239	CMU	8650
DT531	SPD00731	CMU	3949
DT532	SPD00732	CMU	3955
DT533	SPD00733	CMU	4035
DT534	SPD00734	CMU	3910

Figura 5:Equipos flota de camiones 789D NO MARA mina LA JAGUA

Fuente: (POPULATION OF EQUIPMENT PLJ, JANUARY 2019)

Tabla 3:Volúmenes de la tolva de los camiones de las 3 flotas

Volúmenes de la tolva de los camiones 12 x 793C - 176 m³ - 240 Ton. 15 x 789D - 124 m³ - 200 Ton. 17 x 777F - 81 m³ - 100 Ton.

Nota: La tabla muestra los volumes correspondientes de las tolvas. **Fuente**: (POPULATION OF EQUIPMENT PLJ, JANUARY 2019)

3.1.1.2 Actividad 2. Conocer la función que cumple cada equipo en la empresa

Tabla 4 : Equipos NO MARA por flota de camiones de la mina LA JAGUA.

		EQUIPOS		
NOMBRE	MODELO	CANTIDAD	FUNCIÓN	UBICACIÓN
CAMIONES DE	777F	10	TRANSPORTE DE	PIT
ACARREO			CARBON	
CAMIONES DE	793	19	TRANSPORTE DE	PIT
ACARREO			MATERIAL ESTERIL	
CAMIONES DE	789D	24	TRANSPORTE DE	PIT
ACARREO			MATERIAL ESTERIL	

Nota: En la tabla se muestra la relación de los equipos No Mara, según el modelo, cantidad, función y ubicación de cada uno de ellos. **Fuente:** Autor del Proyecto.

3.1.1.3 Actividad 3. Investigar sobre la técnica RIM, los indicadores de rendimiento que permite controlar como: MTBS, MTBF, MTTR. Que significan y como se calculan.

Técnicas RIM (Reliability information management): Es la gestión de información sobre confiabilidad, su propósito es identificar las tendencias, realizar un seguimiento de los activos, que permite a las compañías aumentar la eficiencia operacional y proporcionar las herramientas para reducir costos.

Localización y uso de los activos: Iniciar la formación de un banco de datos, para la identificación de los ítems que serán objeto de control, indicando su localización, finalidad, áreas de competencia, función, referencias, fechas, costos, materiales asociados y variables medibles. (Tavares, 2001)

Gestión: Se pierde parte de la utilidad del capital cuando no se obtiene el nivel más alto posible del uso del producto o del activo. (Tavares, 2001)

Mantenimiento preventivo y predictivo: Está comprobado que el mantenimiento sistemático preventivo es antieconómico y debe ser sustituido por el mantenimiento por condición, particularmente el predictivo. Por otro lado, las inspecciones y mediciones deben ser cumplidas rigurosa y eficientemente, y sus resultados deben ser registrados y procesados para definir el momento adecuado para efectuar el predictivo. (Tavares, 2001).

Productividad humana: Está definida como el tiempo en que el profesional estará desarrollando las actividades para las cuales fue contratado. En mantenimiento es común encontrar estos valores inferiores al 50% es una identificación de improductividad asociada a un análisis de tiempos y movimientos para mejorar estos valores. (Tavares, 2001)

Repuestos y suministros: La evaluación de los stocks innecesarios, como el de repuestos y de equipos que serán reemplazados, puede ser un factor de generación de gran ahorro. Mientras tanto, los repuestos estratégicos, deben tener mayor cobertura para evitar pérdida de productividad. TPM/RCM/BCM (Mantenimiento productivo total/Mantenimiento centrado en confiabilidad/Mantenimiento centrado en el negocio) La elección de la mejor metodología, tanto en el aspecto de oportunidad, como de adaptabilidad a las condiciones de la empresa, puede ser la diferencia de éxito o fracaso del proceso de gestión. (Tavares, 2001)

Venta: La información exacta y confiable sobre un activo tiene un impacto significativo en su valor de reventa. Vender, no descartar el conocimiento del valor residual de un equipo y

su conservación puede definir el mejor momento para su cambio o reforma. (Tavares, 2001)

Retorno del dinero para operación: Un equipo bien mantenido apoya con su venta el costo de reposición o el desarrollo de nuevas tecnologías para el proceso. (Tavares, 2001)

Utilización adecuada de los índices de mantenimiento: Definir, implementar, evaluar y reaccionar sobre una cantidad de indicadores que sean útiles para la toma de decisiones en función de la situación de la empresa en el mercado, definiendo las siguientes condiciones

- Equipos fundamentales en una empresa competitiva
- Equipos secundarios en una empresa competitiva
- Equipos fundamentales en una empresa que posee un monopolio

Dentro de más de cincuenta índices utilizados en mantenimiento, algunos se destacan por la posibilidad de aplicación de sus resultados en la mejora del proceso, en la reducción de costos, en la mejora de calidad y en la optimización de servicios; destacamos a continuación algunos de estos índices. (Tavares, 2001)

Tiempo promedio entre paradas (MTBS): Es el tiempo promedio operativo entre paradas de las máquina o bien la frecuencia promedio de eventos de tiempo Down expresada en horas

 $MTBS = \frac{Hrs \ operativas + Hrs \ de \ retraso \ de \ produccion}{N\'umero \ de \ paradas}$

Tiempo promedio entre fallas (MTBF): Es el tiempo medio entre fallas de la máquina, la duración promedio eventos de tiempo muerto del equipo, expresado en horas (GEO, 2015)

$$MTBF = \frac{Número de fallas}{Tiempo de operación}$$

Tiempo promedio para reparar (MTTR): Es el tiempo promedio que toma reparar un equipo después de una falla

$$MTTR = \frac{Hrs \text{ totales de tiempos down}}{N \text{úmeros de paradas}}$$

Disponibilidad de equipos: Es la relación entre el tiempo total de operación de cada ítem controlado y la suma de esos tiempos con los tiempos de mantenimiento de los mismos ítems.

$$DISP = \frac{MTBF}{MTBF + TMPR} * 100$$

Confiabilidad. Una forma es a través de la relación entre el tiempo total de reparación de cada ítem controlado y la suma de esos tiempos con los tiempos de mantenimiento correctivo (Tavares, 2001).

$$CONF = \frac{\sum HROP}{\sum (HROP - HTMC)} * 100$$

Alta confiabilidad y bajo costo de producción son metas que pueden ser alcanzadas, solamente cuando toda la corporación trabaja integrada. (Tavares, 2001)

3.1.2. Objetivo específico 2 : Analizar las fallas más recurrentes teniendo en cuenta el rendimiento de cada camión NO MARA y como mitigar o reducir las mismas a través de las técnicas RIM.

3.1.2.1. Actividad 1. Organizar la información de la flota de camiones NO MARA, y clasificarla en:

Equipo, flota, sistema, componente, tipo de falla, tipo de parada, origen, horómetro, fecha y hora de parada, fecha y hora de arranque, down time total, síntoma de la falla, causa de la falla, comentario relacionado a la falla/parada.

a la jo	agua R		E DATOS DE PARA ormation Manageme	DA EQUIPO MINER ent - RIM	O - SUPERINT	ENDENCIA DE
FECHA DE REPORTE dd/mm/aa 🗊	EQUIPO	FLOTA	SISTEMA ▼	COMPONENTE	TIPO DE FALLA	TIPO DE PARADA
03/08/2018	DT010	777F	17 CABINA	Cabina	Mecánica	No Planeada
12/08/2018	DT010	777F				Planeada
13/08/2018	DT010	777F	08 LUBRICACION	Inyector	Mecánica	No Planeada
15/08/2018	DT010	777F	01 ELECTRICO	Motor de Arranque	Eléctrica	No Planeada
16/08/2018	DT010	777F	01 ELECTRICO	Motor de Arranque	Eléctrica	No Planeada
16/08/2018	DT010	777F	01 ELECTRICO	Motor de Arranque	Eléctrica	No Planeada
18/08/2018	DT010	777F	SIN INFORMACIÓN	Filtros	Mecánica	No Planeada
21/08/2018	DT010	777F	17 CABINA	Timón	Mecánica	No Planeada
01/09/2018	DT010	777F	11 SSI	Cápsula SSI	Mecánica	No Planeada
09/09/2018	DT010	777F	-	-		Planeada
09/09/2018	DT010	777F	11 SSI	Cableado	Eléctrica	No Planeada
14/09/2018	DT010	777F	06 MOTOR	Motor Diesel	Mecánica	No Planeada
16/09/2018	DT010	777F	17 CABINA	Silla	Mecánica	No Planeada
16/09/2018	DT010	777F	01 ELECTRICO	Motor de Arranque	Eléctrica	No Planeada
02/08/2018	DT020	793C				Planeada
04/08/2018	DT020	793C	01 ELECTRICO	Luces reversa	Eléctrica	No Planeada
05/08/2018	DT020	793C				Planeada
06/08/2018	DT020	793C	07 CHASIS	Suspensiones	Mecánica	No Planeada
06/08/2018	DT020	793C	05 TREN DE POTENCIA	Convertidor	Mecánica	No Planeada
08/08/2018	DT020	793C	07 CHASIS	Escalera	Mecánica	No Planeada
08/08/2018	DT020	793C	07 CHASIS	Escalera	Mecánica	No Planeada
10/08/2018	DT020	793C				Planeada

Figura 6:Base de Datos Paradas Equipo Minero - Malos Actores Informe Mensual **Fuente:** Autor del proyecto.

a jagua		DATOS DE PARAD mation Managemer		MINERO - SUPERINTENDENCIA DE
ORIGEN DE FALLA (SAP)	FECHA Y HORA DE PARO hh:mm	FECHA Y HORA DE ARRANQUE hh:mm	DOWNTIME TOTAL	SÍNTOMA DE FALLA CAUSA DE FALLA
Mantenimiento	03/08/2018 09:49	03/08/2018 13:12	3,38	Alta polución
Mantenimiento	12/08/2018 10:28	12/08/2018 10:54	0,45	Servicio de Lubricación
Mantenimiento	13/08/2018 07:50	13/08/2018 11:39	3,82	Rotura/Fisura
Mantenimiento	15/08/2018 19:12	16/08/2018 02:12	6,98	No da encendido
Mantenimiento	16/08/2018 07:05	16/08/2018 09:13	2,12	No da encendido
Mantenimiento	16/08/2018 15:27	16/08/2018 19:43	4,25	No da encendido
Mantenimiento	18/08/2018 10:08	18/08/2018 16:57	6,82	Fuga de aceite hyd
Mantenimiento	21/08/2018 06:31	21/08/2018 08:51	2,32	Se bloquea
Mantenimiento	01/09/2018 07:12	01/09/2018 07:38	0,42	Ausencia de componente/subcomponente
Mantenimiento	09/09/2018 18:58	09/09/2018 19:18	0,33	Servicio de Lubricación
Mantenimiento	09/09/2018 19:45	09/09/2018 20:39	0,90	Alarma
Mantenimiento	14/09/2018 09:10	14/09/2018 10:06	0,95	Alarma
Mantenimiento	16/09/2018 07:18	16/09/2018 08:51	1,55	Ausencia de componente/subcomponente
Mantenimiento	16/09/2018 19:25	16/09/2018 20:25	0,98	No da encendido
Mantenimiento	02/08/2018 09:23	04/08/2018 05:30	44,13	PM
Mantenimiento	04/08/2018 18:34	04/08/2018 20:12	1,62	Sin luces
Mantenimiento	05/08/2018 22:15	05/08/2018 22:24	0,13	Servicio de Lubricación
Mantenimiento	06/08/2018 05:32	06/08/2018 09:20	3,80	Suspensión Rígida
Mantenimiento	06/08/2018 14:54	06/08/2018 15:26	0,53	Fuga de aceite transmisión
Mantenimiento	08/08/2018 03:23	08/08/2018 03:36	0,22	En mal estado
Mantenimiento	08/08/2018 10:31	08/08/2018 10:50	0,33	Ausencia de componente/subcomponente

Figura 7:Base de datos análisis de las fallas de los equipos minero.

Fuente: Autor del proyecto.

Figura 8: Comentario directamente del software dispatch.

Fuente: Autor del proyecto.

3.1.2.1. Actividad 2 Descripción de los ítems para la clasificación de la información de cada uno de los equipos.

Fecha de reporte: Fecha de en el que se originó el reporte al dispatch esta fecha se toma como referencia para clasificar los eventos por mes, día y año.

Equipo: Código interno o de identificación que se le asigna al equipo teniendo en cuenta la clase, modelo y la función que cumple dentro de la compañía.

Flota: Modelo o modificación que se le hace al equipo.

Sistema: Conjunto de piezas principales que componen a cada equipo.

Subsistema: Piezas con su serial que forman parte del sistema involucrado de forma directa en la avería.

Componente: Pieza principal o fundamental del subsistema que fallo.

Tipo de falla: Se clasifican de acuerdo el reporte que suministra el dispatch Se clasifican en: Mecánica, eléctrica, operación, accidente.

Tipo de parada: Causa principal del evento Down se clasifica en: Planeada, no planeada y sin información.

Origen: Característica principal por la cual se dio la parada del equipo se puede clasificar en las siguientes: Mantenimiento, desconocido, operacional, externo.

Horómetro de falla del equipo: En este ítem se relaciona el horómetro que presentaba el equipo en el momento que ocurre la falla, este horómetro nos permite calcular el tiempo de operación que lleva el equipo, los sistemas y componentes principales.

Fecha y hora de paro / fecha y hora de arranque: La información de estos ítems es suministrado por un software DISPATCH (envió o despacho) que es alimentado por

información que recopila BASE UNO que son los encargados de llevar el control de la operación de cada uno de los equipo donde relacionan la hora exacta del evento y la recopilan en una base de datos que se descarga diariamente por planeación.

Down time total: En este ítems calculamos el tiempo total que el equipo demoro Down.

DOWN TIME =
$$(FHS - FHD) \times 24 \text{ Hrs}$$

Modo de falla: Es el primer síntoma que puede persuadir el operador al momento que se presentó la falla en el equipo.

Causa de la falla: Causa principal en el sistema, subsistema o componente que ocasionó la parada de la maquina cuando ya se ha inspeccionado el equipo por mecánicos.

Comentario relacionado a la falla: Es un comentario que se copia directamente del dispatch relacionado al evento Down al cual se le realizó la captura y análisis.

3.1.2.1. Actividad 3_ Calcular cada uno de los indicadores de rendimiento para cada flota de camiones NO MARA FLOTA DE CAMIONES 793C

TOP TEN CANT	OP TEN CANTIDAD DE EVENTOS / FLOTA		
ORIGEN TIPO DE PARADA	(Varios elementos)		
TIPO DE PARADA	No planeada (Varios elementos)		
Mes del Año	(Varios elementos)		
FLOTA	793C		
. 20		_	
	Valores		
EQUIPO	Cantidad de Eventos	DownTime	
DT122	28		
DT129	90		
DT025	5		
DT132	119		
DT130	8		
DT024	93		
DT134	80		
DT128	100		
DT133 DT023	7° 5:		
DT023	7		
DT126	41		
DT125	8:		
DT020	93		
DT127	5		
DT120	6	1 261	
DT121	73	3 243	
DT131	45	5 238	
DT021	50	177	
Total general	1379	8244	

Figura 9:Eventos Downtime en la flota.

Fuente: Autor del proyecto

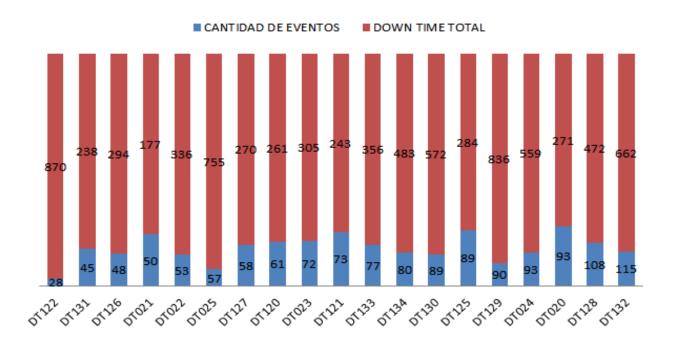


Figura 10:Indicadores de los camiones 793C.

Fuente: Autor del proyecto

De acuerdo con la figuras 9 y 10, se puede apreciar que los equipos de la flota 793C, tuvieron una cantidad considerable de tiempo down, estos tiempos son debido a la falta de

herramientas para los técnicos de campo, falta de repuestos en stock, demora en la entrega de los repuestos solicitados por los técnicos y falta de técnicos mecánicos en campo.

 Tabla 5: Tiempo promedio entre fallas por sistema (MTBF)

MTBF x SISTEMA 793C			
SISTEMA	MTBF / Sistema 793C	Cantidad de eventos	
01 ELÉCTRICO	141	61	
06 MOTOR	134	64	
07 CHASIS	60	143	
10 NEUMÁTICO	54	159	
17 CABINA	43	200	
1 SSI	37	232	
3 DIRECCIÓN	31	277	
02 HIDRAÚLICO	28	307	
04 FRENO	24	358	
05 TREN DE POTENCIA	21	409	
13 AIRE ACONDICIONADO	16	536	
08 LUBRICACIÓN	9	954	
SIN INFORMACIÓN	7	1226	

Nota: La tabla muestra el tiempo promedio entre fallas de los sistemas. Fuente: Autor del proyecto.

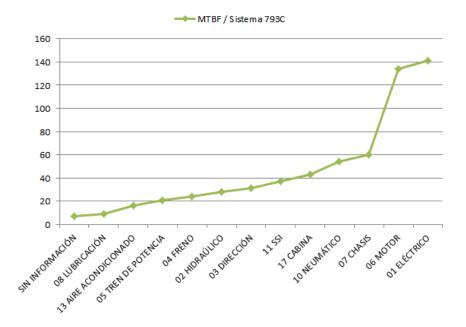


Figura 11: Tiempo promedio entre fallas por sistema (MTBF)

Fuente: Autor del proyecto

De acuerdo al tabla 5 y la figura 11, se puede observar el tiempo promedio entre fallas de los sistemas de la flota 793C, donde se aprecia que el sistema que tuvo menos problemas en estas fechas fue el sistema ELÉCTRICO con un tiempo promedio entre fallas de 141 horas; lo anterior es debido a que pocas veces los equipos tienen paradas por daños en el sistema eléctrico, en comparación con el sistema de LUBRICACIÓN, el cual tuvo un tiempo promedio entre fallas de 9 horas; esto se debe a que los equipos fallan repetitivamente por el anterior sistema, teniendo en cuenta que los daños más comunes en el sistema de lubricación son: Golpe en tolva, suspensiones rígidas, baja presión de lubricación, filtros de lubricación taponados, alta temperatura en lubricante de diferencial y fugas por líneas del sistema.

Tabla 6 Tiempo Promedio de reparación (MTTR)

TIEMPO PROMEDIO DE REPARACION (MTTR)

Mes del año	MTTR/793C
Agosto	5,1
Septiembre	5,0
Octubre	4,4
Noviembre	4,4
Diciembre	3,7
Enero	4,7

Nota: La tabla muestra el tiempo promedio de reparación según el mes del año. **Fuente** :Autor del proyecto.

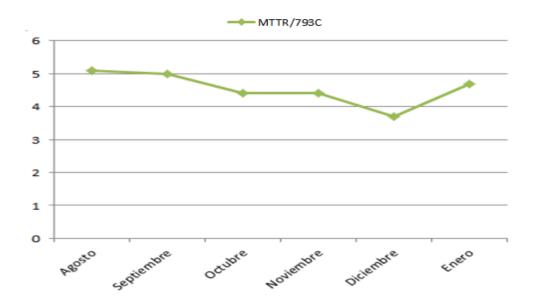


Figura 12: Tiempo promedio de reparación (MTTR)

Fuente: Autor del proyecto

Respecto a la tabla 6 y la figura 12 se observa el tiempo promedio para reparar en la flota de camiones 793C, el MTTR se mantuvo decreciente en el periodo de tiempo de Agosto a Diciembre, esto es de acorde a la temporada de lluvias del año 2018, debido a que los equipos mineros en temporada fluvial no están operativos las 24 horas del día por motivo de lluvias (cada vez que llueve

en la empresa, los equipos deben quedar Standby), por estas razones no se realiza cierta cantidad de reparaciones; por otra parte, en el mes de Diciembre los equipos solo operan 29 días. Correspondiente al mes de Enero el MTTR aumenta debido a un mayor número de fallas en los equipos y el personal de técnicos mecánicos en el campo no dan abasto a toda la flota, en este mes; aumenta la contaminación en las cabinas de los equipos (polución) y la temperatura del ambiente, lo que se ve reflejado en la deficiencia del sistema de aire acondicionado de los equipos; estas son las frecuentes causas de paradas de los equipos en el mes de Enero (polución en cabina y aire acondicionado deficiente)

Tabla 7 *Tiempo promedio entre paradas (MTBS)*

Mes del año	MTBS 793C
Agosto	37,5
Septiembre	26,3
Octubre	26,3
Noviembre	24,2
Diciembre	27,3
Enero	32,4

Nota: La tabla muestra el tiempo promedio entre paradas según el mes del año. **Fuente:** Autor del proyecto

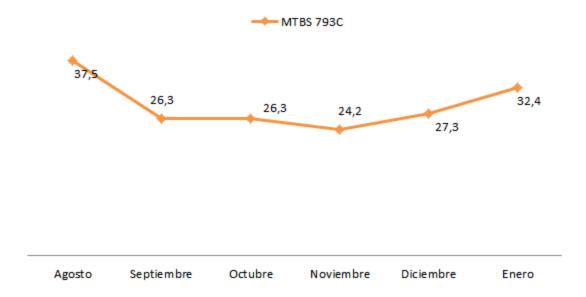
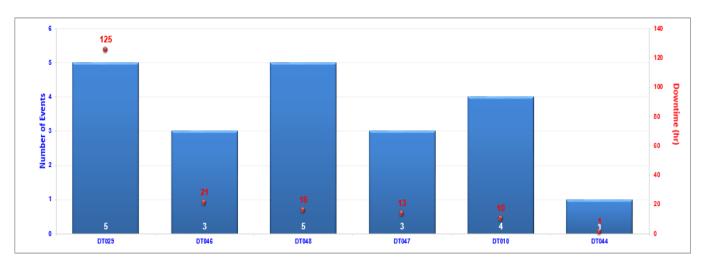


Figura 13. Tiempo promedio entre paradas (MTBS)

Fuente: Autor del proyecto

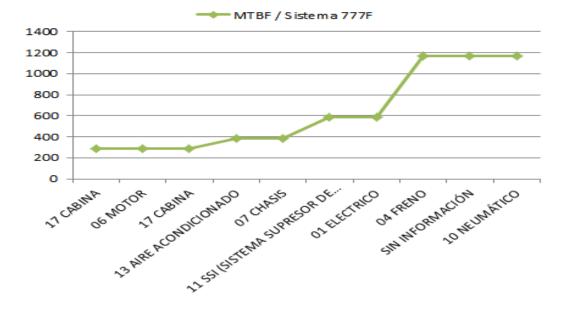

FLOTA DE CAMIONES 777F

TOP TEN CANTIDAD DE EVENTOS / FLOTA

ORIGEN	(Varios elementos)	-1	
TIPO DE PARADA	No planeada	AI.	
TIPO DE FALLA	(Varios elementos)	-I	
FLOTA	777F	J	
	Valores		
EQUIPO -4	Cantidad de Eve	ntos	DownTime
DT029		5	125
DT046		3	21
DT048		5	16
DT047		3	13
DT010		4	10
DT044		1	1
Total general		21	187

Figura 14:Eventos downtime en la flota.

Fuente Autor del proyecto.


Figura 15: Indicadores de los camiones 777F **Fuente** Autor del proyecto.

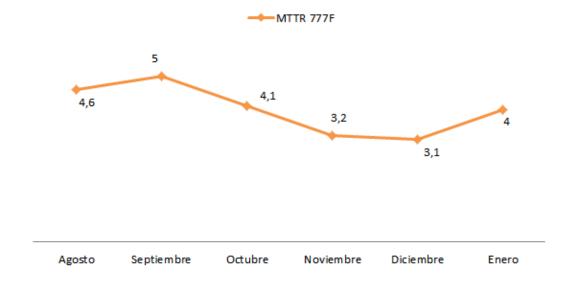
De acuerdo a las figuras 14 y 15, se pbfxssxzuede observar que el tiempo down de la flota 777F es menor en comparación con las flotas 793C y 789D, debido a que la flota 777F es la prioridad en la empresa por ser la encargada del transporte del carbón mineral

Tabla 8 *Tiempo promedio entre fallas por sistema (MTBF)*

Tiempo promedio entre fallas horas por sistema (MTBF) 777F		
SISTEMA MTBF / Sistema 777		
17 CABINA	291	
06 MOTOR	291	
13 AIRE ACONDICIONADO	388	
07 CHASIS	388	
11 SSI (SISTEMA SUPRESOR DE INCENDIOS)	583	
01 ELECTRICO	583	
04 FRENO	1165	
SIN INFORMACIÓN	1165	
10 NEUMÁTICO	1165	
17 CABINA	291	

Nota: La tabla muestra la relación el tiempo entre las fallas horas por sistema. **Fuente:** Autor del proyecto

Figura 16:Tiempo promedio entre fallas por sistema (MTBF)


Fuente: autor del proyecto.

De acuerdo a la tabla 8 y la figura 16, se puede decir que el sistema que tuvo menos problemas de la flota 777F fue el sistema neumático con un tiempo promedio entre fallas de 1165 horas, lo anterior es debido a que pocas veces los equipos de la flota 777F fallan por el sistema neumático, en comparación con los sistemas de cabina (estructural) y motor (tren de potencia) con un tiempo promedio entre fallas de 291 horas cada sistema, las fallas de estos sistemas son debidas a que estos equipos de la flota 777F tienen más tiempo de uso (son equipos más viejos en comparación con las otras flotas) siendo sus frecuentes causas vibración en cabina, baja potencia del motor, alarma de motor velocid, sobre revolución del motor y ruido estructural.

Tabla 9 *Tiempo promedio de reparación (MTTR)*

REPARACION (MTTR)		
Mes del año	Total	
Agosto	4,6	
Septiembre	5	
Octubre	4,1	
Noviembre	3,2	
Diciembre Enero	3,1 4	

Nota: La tabla muestra el tiempo promedio de reparación según los meses del año correspondientes. **Fuente**: autor del proyecto.

Figura 17:Tiempo promedio de reparación (MTTR) **Fuente** Autor del proyecto

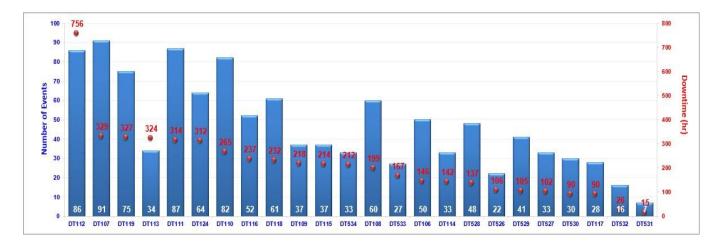
De acuerdo a la tabla 9 y la figura 17, se puede observar el tiempo promedio para reparar de la flota de camiones 777F, en la cual se ve reflejado su pico más alto en el mes de Septiembre con un MTTR de 5 horas, luego desciende hasta el mes de diciembre y vuelve a

ascender en el mes de Enero, debido a las fuertes brisas y alta temperatura del ambiente lo que produce deficiencia en el sistema de aire acondicionado y polución en cabina

 Tabla 10 Tiempo Promedio Entre Paradas (MTBS)

Mes del año	MTBS 777F
Agosto	40,5
Septiembre	29,3
Octubre	27,1
Noviembre	22,3
Diciembre	30,2
Enero	34,5

Nota: La table muestra el tiempo promedio entre paradas según corresponde el mes del año. **Fuente:** Autor del proyecto


Figura 18:Tiempo promedio entre paradas (MTBS) Fuente Autor del proyecto.

FLOTA DE CAMIONES 789D

ORIGEN TIPO DE PARADA TIPO DE FALLA Mes del Año	(Varios elementos) No planeada (Varios elementos) (Varios elementos)	
FLOTA	789D _T	
	Valores	
EQUIPO	Cantidad de Eventos	DownTime
DT112	86	756
DT107	91	329
DT119	75	327
DT113	34	324
DT111	87	314
DT124	64	312
DT110	82	265
DT116	52	237
DT118	61	232
DT109	37	218
DT115	37	214
DT534	33	212
DT108	60	199
DT533	27	167
DT106	50	146
DT114	33	142
DT528	48	137
DT526	22	106
DT529	41	105
DT527	33	102
DT530	30	90
DT117	28	90
DT532	16	26
DT531		15
Total general	1134	5065

Figura 19 Eventos downtime en la flota.

Fuente: Autor del proyecto.

Figura 20 Indicadores de los camiones 789D. **Fuente** Autor del proyecto.

De acuerdo con la figuras 19 y 20, se puede apreciar que los equipos de la flota 789D, tuvieron una cantidad considerable de tiempo down, estos tiempos son debido a la falta de herramientas para los técnicos de campo, falta de repuestos en stock, demora en la entrega de los repuestos solicitados por los técnicos y falta de técnicos mecánicos en campo.

Tabla 11: *Tiempo promedio entre fallas por sistema (MTBF)*

Tiempo promedio entre fallas por sistema (MTBF) MTBF x SISTEMA 789D SISTEMA MTBF / Sistema 789D		
10 NEUMÁTICO	145	
01 ELÉCTRICO	284	
07 CHASIS	416	
02 HIDRAÚLICO	612	
06 MOTOR	684	
17 CABINA	727	
04 FRENO	1058	
11 SSI	1164	
13 AIRE ACONDICIONADO	1662	
05 TREN DE POTENCIA	3878	
08 LUBRICACIÓN	5818	
09 LLANTA	11635	
03 DIRECCIÓN	11635	

Nota: La tabla muestra el tiempo promedio entre fallas. Fuente: autor del proyecto.

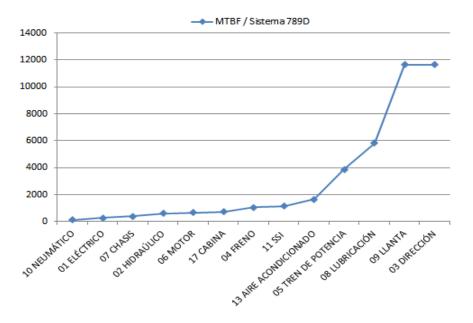


Figura 21: Tiempo promedio entre fallas por sistema (MTBF)

Fuente: autor del proyecto

De acuerdo a la tabla 11 y la figura 21, se puede observar el tiempo promedio entre fallas de la flota de camiones 789D, donde se aprecia que los sistemas que tuvieron menos cantidad de fallas, fueron los sistemas de LLANTAS y DIRECCIÓN, con un tiempo promedio entre fallas de 11635 horas, en comparación con el sistema neumático, el cual tuvo un tiempo promedio entre fallas de 145 horas, el MTBF del sistema neumático es debido a que 17 de 24 equipos no cuentan con un sistema antibloqueo de aire de servicio al momento del equipo estar standby y aparte de esto, algunos equipos tienen fugas de aire de servicio por las líneas, lo que hace que se descargue el sistema de aire de servicio al momento del equipo quedar standby.

Tabla 12 *Tiempo promedio de reparación (MTTR)*

TIEMPO PROMEDIO DE REPARACIÓN (MTTR)

Mes del año	Total
Agosto	4,1
Septiembre	4,0
Octubre	3,4
Noviembre	3,3
Diciembre	4
Enero	4,5

Nota: La tabla muestra el tiempo promedio de reparación. Fuente: autor del proyecto.

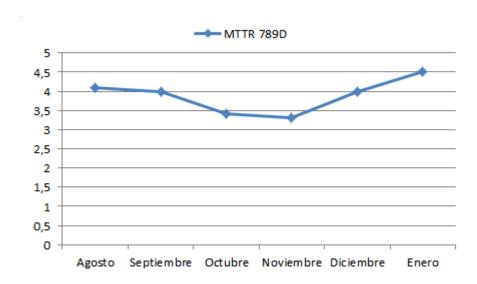
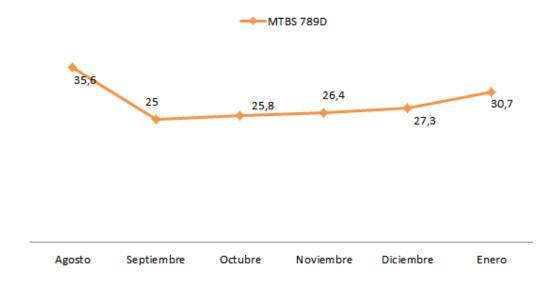


Figura 22: Tiempo promedio de reparación (MTTR)

Fuente: Autor del proyecto.

En la tabla 12 y la figura 22, se observa el promedio de tiempo promedio para reparar en la flota de camiones 789D, donde se puede apreciar que el MTTR se mantuvo decreciente en


los meses de Agosto a Noviembre, lo anterior es debido a que en estas fechas los equipos no operan las 24 horas del dia por motivos de lluvia, lo que hace decreciente este indicador.

En los meses de Diciembre y Enero el MTTR aumenta debido a un mayor número de fallas en los equipos y el personal de técnicos mecánicos en el campo no dan abasto a toda la flota, en estos meses; aumenta la contaminación en las cabinas de los equipos (polución) y la temperatura del ambiente, lo que se ve reflejado en la deficiencia del sistema de aire acondicionado de los equipos; estas son las frecuentes causas de paradas de los equipos en estos meses (polución en cabina y aire acondicionado deficiente)

Tabla 16. *Tiempo promedio entre paradas (MTBS)*

Mes del año	MTBS 789D
Agosto	35,6
Septiembre	25
Octubre	25,8
Noviembre	26,4
Diciembre	27,3
Enero	30,7

Nota: La tabla muestra el tiempo promedio entre paradas según el mes del año. **Fuente**: autor del proyecto.

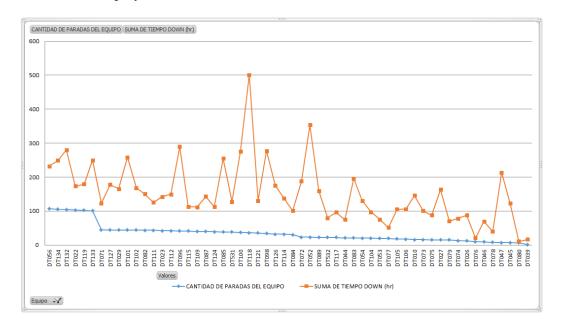


Figura 23:Tiempo promedio entre paradas (MTBS) 789D **Fuente:** autor del proyecto.

3.1.2.2.Actividad 4 _Identificar los equipos que presentan más porcentajes de fallas en determinado tiempo

Etiquetas de fila	CANTIDAD DE PARADAS DEL EQUIPO	SUMA DE TIEMPO DOWN (hr)
DT056	107	232,1027732
DT134	105	248,6355508
DT132	104	280,1658288
DT022	103	173,2152727
DT119	102	179,1977727
DT133	101	249,8841619
DT120	99	257,5797172
DT125	90	262,3319391
DT070	84	530,7972179
DT530	80	115,3136072
DT129	77	207,8988858
DT128	76	190,6336077
DT060	76	212,1491634
DT131	75	159,3822182
DT122	74	219,8124964
DT059	71	214,8652742
DT081	70	216,731108
DT068	69	189,7519408
DT103	67	268,1011082
DT067	66	367,3483307
DT069	66	148,3133299
DT108	63	156,7986085
DT528	63	100,4336078
DT061	63	291,4844413
DT110	62	160,2641637

Figura 24:Cantidad de eventos de paradas en todas las flota. **Fuente**: Autor del proyecto.

Figura 25:Indicadores de todos los camiones **Fuente** Autor del proyecto.

En la figura 25, se puede observar que los equipos que fallaron más de 100 veces fueron los equipos DT056, DT143, DT132, DT022, DT119 y DT133

- **3.1.3. Objetivo específico 3.** Conectar planes de acción para la obtención de mejores resultados de confiabilidad y desempeño en la flota de camiones.
- 3.1.3.1. Actividad 1. Proponer soluciones de mejoras para reducir o mitigar las causas de fallas analizadas.

Recomendaciones para mitigar o eliminar el mal actor

- Realizar trabajos de pre-pm más exhaustivos por parte de los técnicos encargados
- Los técnicos mecánicos deben realizar los trabajos con los manuales que manda el fabricante del equipo
- Antes de instalar algún componente, asegurarse de que estén en buen estado
- Proporcionar las herramientas necesarias a los técnicos de campo para que no pierdan tiempo buscándolas
- Agilizar el proceso de despacho de los componentes que se encuentran en almacén
- Tener más equipos de trabajo en campo para evitar el sobre esfuerzo de los técnicos
- Realizar inspecciones rigurosas a todos los componentes de los sistemas críticos de cada flota
- Seguir con la estandarización de los sistemas antibloqueo de aire de servicio en la flota
 789D
- 3.1.3.2 Actividad 2. Plantear planes de contingencia con anticipación en caso que la falla sea inevitable y esta continúe
- Crear grupos de apoyo a los técnicos mecánicos de campo cuando se presenten cierta

cantidad de eventos down y el personal no de abasto, con esto se evitaría el incremento del indicador MTTR en la flota

• Se debe tener una mayor reserva de los componentes críticos de cada flota, para evitar el incremento del tiempo down del equipo y no afecte la disponibilidad

Capítulo 4. Conclusiones

El desarrollo de las funciones como practicante de ingeniería mecánica en mina la Jagua, fue de mucha importancia en el rendimiento y avance de las tareas asignadas en el área de mantenimiento, así mismo se tuvo el conocimiento y la experiencia de las actividades rutinarias que se realizan en la mina

Se generó un afianzamiento de conocimientos sobre los procesos llevados a cabo en el área donde fui asignado, cumpliendo con los objetivos y metas planteadas

Durante el periodo de prácticas, se tuvo la oportunidad de adquirir el conocimiento necesario para identificar y conocer cada equipo de la flota de camiones y la función que cumple cada uno de estos equipos dentro de la compañía

Las técnicas RIM ayudaron a la identificación y al estudio de los sistemas presentes en cada equipo de la flota de camiones NO MARA en mina la Jagua

De acuerdo a los indicadores MTBS, MTBF y MTTR, se logró identificar cuáles son los sistemas con mayor número de fallas en cada flota de camiones NO MARA

Actualmente con la información organizada, se logró el estudio y la aprobación de un sistema antibloqueo del sistema de aire de servicio (neumático) para la flota 789D, este sistema antibloqueo evitará la descarga mientras el equipo se encuentre en standby.

Capítulo 5. Recomendaciones

Algunas recomendaciones para la continuidad de los cambios y procedimientos realizados en las funciones ejercidas son:

Analizar y colocar por prioridad los eventos ocurridos con mayor criticidad en los equipos de la flota de camiones

Llevar un control diario de análisis de los reportes de eventos down teniendo en cuenta que la empresa los analiza cada mes, lo cual se llevan a tomar decisiones muy tardes para solucionar problemas críticos que involucran la producción

Tener equipos de apoyo disponibles para los técnicos mecánicos en campo para cuando sean requeridos y controlar los indicadores

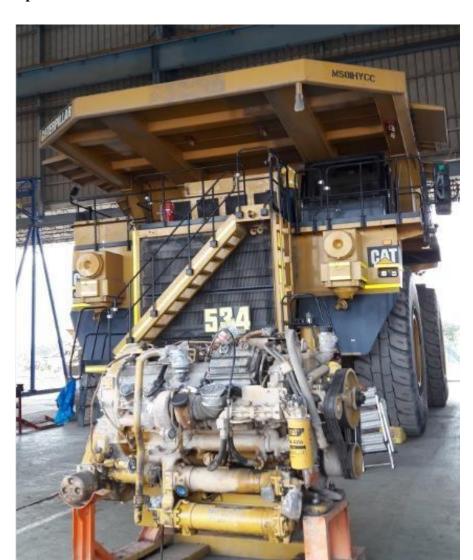
Referencias

- ACIEM. (2014). GUIA DE LOS FUNDAMENTOS DE MANTENIMIENTO Y CONFIABILIDAD.

 Obtenido de https://www.capacitacion.aciem.org/Certificacion/Guia_Fundamentos.pdf
- American Psychological Association. (2010). *Manual de Publicaciones de la American*Psychological Association (6 ed.). (M. G. Frías, Trad.) México, México: El Manual Moderno.
- GEO. (07 de 10 de 2015). *Tasa de Falla y Tiempo Medio entre Fallas (MTBF)*. Obtenido de https://www.gestiondeoperaciones.net/mantenimiento/tasa-de-falla-y-tiempo-medio-entre-fallas-mtbf/
- Prodeco. (2016). *Quienes Somos Operaciones*. Obtenido de http://www.prodeco.com.co/index.php/es/quienes-somos/nuestras-operaciones/mina-lajagua/
- Tavares, L. A. (2001). *GESTION DE ACTIVOS PARA EL MANTENIMIENTO*. Recuperado el 3 de Noviembre de 2018, de http://www.conexionmantenimiento.com/articulos/gestion.pdf

Apéndices

Apéndice A:Camión CATERPILLAR 793C Mina LA JAGUA



Fuente: Autor del proyecto.

Apéndice B:Camiones CATERPILLAR 777 F mina LA JAGUA

Fuente: Autor del proyecto.

Apéndice C:Camión CATERPILLAR 789D mina LA JAGUA

Fuente: Autor del proyecto