	UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OCAÑA			
Indea	Documento	Código	Fecha	Revisión
	FORMATO HOJA DE RESUMEN	F-AC-DBL-007	10-04-2012	Α
ADMINETON.	PARA TRABAJO DE GRADO			
OCANA	Dependencia		<u>Aprobado</u>	Pág.
	DIVISIÓN DE BIBLIOTECA	SUBDIRECTOR A	ACADEMICO	1(408)

RESUMEN - TESIS DE GRADO

AUTORES	YERALDIN LEON RUEDAS
FACULTAD	DE INGENIERIAS
PLAN DE ESTUDIOS	INGENIERIA CIVIL
DIRECTOR	ROMEL JESÚS GALLARDO AMAYA
TÍTULO DE LA TESIS	DETERMINACIÓN DE ESFUERZOS VERTICALES,
	GRAFICAS DE CIRCULO DE MOHR Y ASENTAMIENTOS
	INMEDIATOS PRODUCIDOS EN CIMENTACIONES
	SUPERFICIALES EMPLEANDO LA TEORIA ELASTICA Y
	COMPARACIÓN CON LOS CALCULOS DEL SOFTWARE
	SIGMA/W
<u>KESUMEN</u>	
	(70 nalabras aproximadamente)

EN LA DETERMINACIÓN DE ESFUERZOS VERTICALES, GRÁFICAS DE CÍRCULO DE MOHR Y ASENTAMIENTOS INMEDIATOS PRODUCIDOS EN CIMENTACIONES SUPERFICIALES, SE REALIZAN LOS CÁLCULOS MANUALES EMPLEANDO LA TEORÍA ELÁSTICA Y DEBIDO AL DESCONOCIMIENTO EN EL USO DEL SOFTWARE SIGMA/W SE LLEVAN A CABO COMPARACIONES DE ESTOS CÁLCULOS CON LOS ARROJADOS POR EL SOFTWARE SIGMA/W DEL PAQUETE GEOSTUDIO® QUE EMPLEA EL MÉTODO DE LOS ELEMENTOS FINITOS PARA LA OBTENCIÓN DE RESULTADOS, DE ESTA FORMA SE REALIZA UNA GUÍA METODOLÓGICA DE USO PARA ESTUDIANTES Y DOCENTES DEL ÁREA DE INGENIERÍA CIVIL.

	CA	RACTERÍSTICAS	
PÁGINAS: 408	PLANOS:	ILUSTRACIONES: 139	CD-ROM: 1

ЭB

VÍA ACOLSURE, SEDE EL ALGODONAL. OCAÑA N. DE S. Línea Gratuita Nacional 018000 121022 / PBX: 097-5690088 www.ufpso.edu.co

DETERMINACIÓN DE ESFUERZOS VERTICALES, GRAFICAS DE CIRCULO DE MOHR Y ASENTAMIENTOS INMEDIATOS PRODUCIDOS EN CIMENTACIONES SUPERFICIALES EMPLEANDO LA TEORIA ELASTICA Y COMPARACIÓN CON LOS CALCULOS DEL SOFTWARE SIGMA/W

YERALDIN LEON RUEDAS

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIAS INGENIERIA CIVIL OCAÑA 2015

DETERMINACIÓN DE ESFUERZOS VERTICALES, GRAFICAS DE CIRCULO DE MOHR Y ASENTAMIENTOS INMEDIATOS PRODUCIDOS EN CIMENTACIONES SUPERFICIALES EMPLEANDO LA TEORIA ELASTICA Y COMPARACIÓN CON LOS CALCULOS DEL SOFTWARE SIGMA/W

YERALDIN LEON RUEDAS

Trabajo de grado presentado como requisito para optar por el Título de Ingeniero Civil

DIRECTOR

Msc. ROMEL JESUS GALLARDO AMAYA

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIAS INGENIERIA CIVIL OCAÑA 2015

DEDICATORIA

Dedicar este triunfo de manera primordial a Papito Dios y Mamita María, que son nuestro centro y motor de vida, a través de su gracia celestial hoy puedo subir este gratificante escalón para mi vida y la de mi familia, bajo la protección del manto de Mamita María y tomada de la mano celestial y regocijante de nuestro padre celestial.

A mi mamita, mi papito, mi hermanita y mi madrina, quienes son la bendición más grande y las piezas terrenales fundamentales en mi vida.

A todos mis familiares, quienes son luz de vida y acompañantes de este caminar por la vida terrenal.

A mis mejores amigos: Yolima Contreras Navarro y Luis Eduardo Daza Gonzalez.

A todos los docentes que han hecho parte de esta formación académica desde la educación primaria, secundaria y universitaria, gracias a sus enseñanzas que son granito de arena, hoy puedo decir que soy Ingeniera Civil.

A todas aquellas personas, amigos y compañeros que han formado parte de este trayecto de vida.

Yeraldin Leon Ruedas

AGRADECIMIENTOS

Agradecer este logro de manera principal a Papito Dios y Mamita María, porque sin ellos nuestra vida no tendría sentido, rumbo, ni dirección.

A toda mi familia, mi mamita, mi papito, mi hermana y mi madrina por siempre estar ahí.

A mi director de tesis, el Ingeniero Romel Jesús Gallardo Amaya, por sus orientaciones.

A los ingenieros que estuvieron dispuestos a brindar su conocimiento en el uso del software.

A mis amigos, compañeros y docentes que han hecho parte de este trayecto de vida.

Yeraldin Leon Ruedas

CONTENIDO

INTRO	ODUCCION	44
1.	DETERMINACIÓN DE ESFUERZOS VERTICALES, GRAFICAS DE CIRCU	JLO
DE	MOHR Y ASENTAMIENTOS INMEDIATOS PRODUCIDOS	EN
CIME	NTACIONES SUPERFICIALES EMPLEANDO LA TEORIA ELASTICA	Y
COMI	PARACIÓN CON LOS CALCULOS DEL SOFTWARE SIGMA/W	
1.1	PLANTEAMIENTO DEL PROBLEMA	_ 45
1.2	FORMULACIÒN DEL PROBLEMA	_ 45
1.3	<u>OBJETIVOS</u>	45
1.3.1	Objetivo General	45
1.3.2	Objetivos Específicos	45
1.4	JUSTIFICACION	46
1.5	DELIMITACIONES	46
1.5.1	Geográficas	46
1.5.2	Temporales	46
1.5.3	Conceptuales	46
1.5.4	Operativas	46
2	MARCOREFERENCIAL	47
2.1	MARCO HISTORICO	47
2.1.1	Evolución a largo plazo de la Geotecnia	47
2.1.2	El vértice de la modelación numérica en la Geotecnia	49
2.1.3	Antecedentes de los elementos finitos	49
2.1.4	Origen, formación y constitución del suelo	50
2.2	MARCO CONCEPTUAL	51
2.3	MARCO TEORICO	52
2.3.1	Generalidades de asentamientos inmediatos	52
2.3.2	Ley generalizada de Hooke	52
2.3.3	Hipótesis de la teoría elástica aplicada en suelos	54
2.3.4	Parámetros elásticos	54
2.3.4.1	Módulo de elasticidad	54
2.3.4.2	2 Módulo de Poisson	55
2.3.5 U	Uso de la teoría elástica para el cálculo de asentamientos	56
2.3.5.1	Asentamiento elástico bajo una carga concentrada	56
2.3.5.2	2 Asentamiento elástico bajo cargas distribuidas en un área circular	58
2.3.5.3	3 Asentamientos elásticos bajo cargas distribuidas en una superficie rectangular	58
2.3.6 H	Principio de esfuerzo efectivo	59
2.3.7 I	Distribución de esfuerzos en el suelo debido a una carga puntual	60
2.3.8 I	Distribución de esfuerzos en el terreno debido a una carga circular	62
2.3.9 I	Distribución de esfuerzos en el terreno debido a una carga rectangular	64
2.3.10	Elementos finitos	67

Pág.

2.3.	11 Software SIGMA/W	68
2.3.	11.1 Procedimiento de utilización	68
2.4	MARCO LEGAL	69
3.	DISEÑO METODOLOGICO	
3.1	Tipo de investigación	70
3.2	Población y muestra	70
3.3	Técnicas de recolección de información	70
4.	PRESENTACION DE RESULTADOS	
4.1	CALCULAR ESFUERZOS VERTICALES, GRAFICAS DE CÍRCULO DE N	MOHR
Y	ASENTAMIENTOS INMEDIATOS, PRODUCIDOS EN CIMENTACI	ONES

SUPERFICIALES MEDIANTE EL USO DE LA TEORÍA ELÁSTICA, REALIZANDOCOMPARACIONES CON LOS CÁLCULOS DEL SOFTWARE SIGMA/W71

4.1.1 Cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 72

4.1.2 Cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 75

4.1.3 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)79

4.1.4 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 82

4.1.5 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 85

4.1.6 Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 86

4.1.7 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 87

4.1.8 Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 87

4.1.9 Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 88

4.1.10 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 89

4.1.11 Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 89

4.1.12 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 90

4.1.13 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático) 91

4.1.14 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático) 91

4.1.15 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático) 92

4.1.16 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático) 93

4.2 DETERMINAR ESFUERZOS VERTICALES, GRÁFICAS DE CIRCULO DE MOHR Y ASENTAMIENTOS INMEDIATOS EN SUELOS COHESIVOS Y GRANULARES MEDIANTE EL SOFTWARE SIGMA/W 93

4.2.1 Cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 94

4.2.2 Cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 98

4.2.3 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 103

4.2.4 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 107

4.2.5 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 112

4.2.6 Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 116

4.2.7 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 121

4.2.8 Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 125

4.2.9 Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 130

4.2.10 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 134

4.2.11 Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 139

4.2.12 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 143

4.2.13 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático) 148

4.2.14 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático) 152

4.2.15 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático) 157

4.2.16 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático) 161

4.3 <u>COMPARAR RESULTADOS DE ASENTAMIENTOS INMEDIATOS, GRÁFICAS</u> <u>DE CÍRCULO DE MOHR Y ESFUERZOS VERTICALES, CALCULADOS POR LA</u> <u>TEORÍA ELÁSTICA Y POR EL SOFTWARE SIGMA/W</u>166

4.3.1 Cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 166

4.3.2 Cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 169

4.3.3 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 176

4.3.4 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 179

4.3.5 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 184

4.3.6 Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 187

4.3.7 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 192

4.3.8 Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 195

4.3.9 Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 200

4.3.10 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 203

4.3.11 Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático) 209

4.3.12 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático) 213

4.3.13 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático) 219

4.3.14 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático) 222

4.3.15 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático) 228

4.3.16 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático) 230

4.4 <u>ELABORAR UNA GUÍA METODOLÓGICA PARA EL USO DEL SOFTWARE</u> SIGMA/W, EN EL ANÁLISIS DE ESFUERZOS VERTICALES, GRÁFICAS DE CÍRCULO DE MOHR Y ASENTAMIENTOS INMEDIATOS EN CIMENTACIONES SUPERFICIALES 237

5.	CONCLUSIONES	238
6.	RECOMENDACIONES	240
BIBLIOGRAFIA		241
REFERENCIAS DOCUMENTALES ELECTRONICAS		242
ANE	EXOS	

LISTA DE FIGURAS

	Pág.
Figura 1. Triangulo geotécnico de Burland	47
Figura 2. Tetraedro geotécnico	48
Figura 3. Muestra de suelo sometida a carga triaxial	53
Figura 4. Cilindro de suelo sometido a esfuerzo uniaxial	55
Figura 5. Curva esfuerzo-deformación para un suelo bajo la acción de una carga	56
Figura 6. Masa de suelo saturado con una superficie horizontal	59
Figura 7. Modelo de Boussinesq, de carga puntual (P) sobre un medio elástico semi- y sistema de ejes utilizado	infinito 61
Figura 8. Distribución de esfuerzos en el terreno debido a una carga puntual	62
Figura 9. Modelo de carga circular (q) sobre un medio elástico semi-infinito, y siste ejes utilizado	tema de 63
Figura 10. Modelo de carga rectangular (q) sobre un medio elástico semi-infinito, y de ejes utilizado	sistema 64
Figura 11. Valor del factor de influencia para diferentes valores de m y n	66
Figura 12. Gráfica de círculo de Mohr calculado mediante el software SIC Profundidad de 1m para cimiento rectangular de dimensiones $3m \times 6m$	iMA/W 94
Figura 13. Gráfica de círculo de Mohr calculado mediante el software SIGN Profundidad de 2m para cimiento rectangular de dimensiones $3m \times 6m$	MA/W- 95
Figura 14. Gráfica de círculo de Mohr calculado mediante el software SIGM Profundidad de 3m para cimiento rectangular de dimensiones $3 \times 6m$	A/W – 95
Figura 15. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profe de 4m para cimiento rectangular de dimensiones $3m \ x \ 6m$	undidad 96
Figura 16. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profe de 5m para cimiento rectangular de dimensiones $3m \times 6m$	undidad 96
Figura 17. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profe de 6m para cimiento rectangular de dimensiones $3m \times 6m$	undidad 97

Figura 18. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 7m para cimiento rectangular de dimensiones $3m \times 6m$ 97 Figura 19. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 8,5m para cimiento rectangular de dimensiones $3m \times 6m$ 98 Figura 20. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento rectangular de dimensiones $3,5m \times 7m$ 99 Figura 21. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento rectangular de dimensiones $3,5m \times 7m$ 99 Figura 22. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento rectangular de dimensiones $3,5m \times 7m$ 100 Figura 23. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento rectangular de dimensiones $3,5m \times 7m$ 101 Figura 24. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento rectangular de dimensiones $3,5m \times 7m$ 101 Figura 25. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento rectangular de dimensiones $3,5m \times 7m$ 101 Figura 26. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento rectangular de dimensiones 3,5m x 7m 102 Figura 27. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento rectangular de dimensiones $3,5m \times 7m$ 102 Figura 28. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento cuadrado de dimensiones $3m \times 3m$ 103 Figura 29. Gráfica de círculo de Mohr calculado por el software SIGMA/W- Profundidad de 2m para cimiento cuadrado de dimensiones $3m \times 3m$ 104 Figura 30. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento cuadrado de dimensiones $3m \times 3m$ 104 Figura 31. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento cuadrado de dimensiones $3m \times 3m$ 105 Figura 32. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento cuadrado de dimensiones $3m \times 3m$ 105

Figura 33. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento cuadrado de dimensiones $3m \times 3m$ 106 Figura 34. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento cuadrado de dimensiones $3m \times 3m$ 106 Figura 35. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento cuadrado de dimensiones $3m \times 3m$ 107 Figura 36. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento cuadrado de dimensiones $4m \times 4m$ 108 Figura 37. Gráfica de círculo de Mohr calculado por el software SIGMA/W- Profundidad de 2m para cimiento cuadrado de dimensiones 4m x 4m 108 Figura 38. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento cuadrado de dimensiones $4m \times 4m$ 109 Figura 39. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento cuadrado de dimensiones $4m \times 4m$ 109 Figura 40. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento cuadrado de dimensiones $4m \times 4m$ 110 Figura 41. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento cuadrado de dimensiones 4m x 4m 110 Figura 42. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento cuadrado de dimensiones $4m \times 4m$ 111 Figura 43. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento cuadrado de dimensiones $4m \times 4m$ 111 Figura 44. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento circular de diámetro 3m112 Figura 45. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento circular de diámetro 3m113 Figura 46. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento circular de diámetro 3m113 Figura 47. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento circular de diámetro 3m114

Figura 48. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento circular de diámetro 3m 114

Figura 49. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento circular de diámetro 3*m* 115

Figura 50. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento circular de diámetro 3m 115

Figura 51. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidadde 8,5m para cimiento circular de diámetro 3m116

Figura 52. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento circular de diámetro 3,5m 117

Figura 53. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento circular de diámetro 3,5*m* 117

Figura 54. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidadde 3m para cimiento circular de diámetro 3,5m118

Figura 55. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento circular de diámetro 3,5*m* 118

Figura 56. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento circular de diámetro 3,5m 119

Figura 57. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento circular de diámetro 3,5*m* 119

Figura 58. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidadde 7m para cimiento circular de diámetro 3,5m120

Figura 59. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento circular de diámetro 3,5m 120

Figura 60. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento circular de diámetro 4m 121

Figura 61. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento circular de diámetro 4m 122

Figura 62. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidadde 3m para cimiento circular de diámetro 4m122

Figura 63. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento circular de diámetro 4m 123

Figura 64. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento circular de diámetro 4m 123

Figura 65. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento circular de diámetro 4m 124

Figura 66. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento circular de diámetro 4m 124

Figura 67. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento circular de diámetro 4m 125

Figura 68. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento circular de diámetro 4,5m 126

Figura 69. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento circular de diámetro 4,5*m* 126

Figura 70. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento circular de diámetro 4,5m 127

Figura 71. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidadde 4m para cimiento circular de diámetro 4,5m127

Figura 72. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento circular de diámetro 4,5m 128

Figura 73. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento circular de diámetro 4,5m 128

Figura 74. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento circular de diámetro 4,5*m* 129

Figura 75. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento circular de diámetro 4,5m 129

Figura 76. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento continúo de dimensiones $2m \times 20m$ 130

Figura 77. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento continúo de dimensiones $2m \times 20m$ 131

Figura 78. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento continúo de dimensiones $2m \times 20m$ 131

Figura 79. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento continúo de dimensiones $2m \times 20m$ 132

Figura 80. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento continúo de dimensiones $2m \times 20m$ 132

Figura 81. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento continúo de dimensiones $2m \times 20m$ 133

Figura 82. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento continúo de dimensiones $2m \times 20m$ 133

Figura 83. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento continúo de dimensiones $2m \times 20m$ 134

Figura 84. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento continúo de dimensiones $3m \times 30m$ 135

Figura 85. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento continúo de dimensiones $3m \times 30m$ 135

Figura 86. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento continúo de dimensiones $3m \times 30m$ 136

Figura 87. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento continúo de dimensiones $3m \times 30m$ 136

Figura 88. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento continúo de dimensiones $3m \times 30m$ 137

Figura 89. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento continúo de dimensiones $3m \times 30m$ 137

Figura 90. Gráfica de círculo de Mohrcalculado por el software SIGMA/W – Profundidadde 7m para cimiento continúo de dimensiones $3m x \ 30m$ 138

Figura 91. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento continúo de dimensiones $3m \times 30m$ 138

Figura 92. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento continúo de dimensiones $5m \times 50m$ 139

Figura 93. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento continúo de dimensiones $5m \times 50m$ 140

Figura 94. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento continúo de dimensiones $5m \times 50m$ 140

Figura 95. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento continúo de dimensiones $5m \times 50m$ 141

Figura 96. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento continúo de dimensiones $5m \times 50m$ 141

Figura 97. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento continúo de dimensiones $5m \times 50m$ 142

Figura 98. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento continúo de dimensiones $5m \times 50m$ 142

Figura 99. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento continúo de dimensiones $5m \times 50m$ 143

Figura 100. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento continúo de dimensiones $4m \times 40m$ 144

Figura 101. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento continúo de dimensiones $4m \times 40m$ 144

Figura 102. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento continúo de dimensiones $4m \times 40m$ 145

Figura 103. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento continúo de dimensiones $4m \times 40m$ 145

Figura 104. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento continúo de dimensiones $4m \times 40m$ 146

Figura 105. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento continúo de dimensiones $4m \times 40m$ 146

Figura 106. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento continúo de dimensiones $4m \times 40m$ 147

Figura 107. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento continúo de dimensiones $4m \times 40m$ 147

Figura 108. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para losa superficial de dimensiones $15m \times 30m$ 148

Figura 109. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para losa superficial de dimensiones $15m \times 30m$ 149

Figura 110. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para losa superficial de dimensiones $15m \times 30m$ 149

Figura 111. Gráfica de círculo de Mohr calculado por el software SIGMA/W-Profundidadde 4m para losa superficial de dimensiones 15 m x 30m150

Figura 112. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidadde 5m para losa superficial de dimensiones 15 m x 30m150

Figura 113. Gráfica de círculo de Mohr calculado por el software SIGMA/W-Profundidadde 6m para losa superficial de dimensiones $15m \ x \ 30m$ 151

Figura 114. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para losa superficial de dimensiones $15m \times 30m$ 151

Figura 115. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidadde 8,5m para losa superficial de dimensiones $15m \times 30m$ 152

Figura 116. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para losa superficial de dimensiones 19mx 19m 153

Figura 117. Gráfica de círculo de Mohr calculado por el software SIGMA/W-Profundidadde 2m para losa superficial de dimensiones $19m x \ 19m$ 153

Figura 118. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para losa superficial de dimensiones $19m \times 19m$ 154

Figura 119. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para losa superficial de dimensiones $19m \times 19m$ 154

Figura 120. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para losa superficial de dimensiones $19m \times 19m$ 155

Figura 121. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para losa superficial de dimensiones $19m \times 19m$ 155

Figura 122. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidadde 7m para losa superficial de dimensiones $19m x \ 19m$ 156

Figura 124. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para losa superficial de dimensiones $26m \times 26m$ 157 Figura 125. Gráfica de círculo de Mohr calculado por el software SIGMA/W-Profundidad de 2m para losa superficial de dimensiones $26m \times 26m$ 158 Figura 126. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para losa superficial de dimensiones $26m \times 26m$ 158 Figura 127. Gráfica de círculo de Mohr calculado por el software SIGMA/W-Profundidad de 4m para losa superficial de dimensiones $26m \times 26m$ 159 **Figura 128.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para losa superficial de dimensiones $26m \times 26m$ 159 Figura 129. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para losa superficial de dimensiones $26m \times 26m$ 160 Figura 130. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para losa superficial de dimensiones $26m \times 26m$ 160 Figura 131. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para losa superficial de dimensiones 26m x 26m 161 Figura 132. Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para losa superficial de dimensiones $18m \times 36m$ 162 Figura 133. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para losa superficial de dimensiones $18m \times 36m$ 162 Figura 134. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para losa superficial de dimensiones $18m \times 36m$ 163 Figura 135. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para losa superficial de dimensiones $18m \times 36m$ 163 Figura 136. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para losa superficial de dimensiones $18m \times 36m$ 164

Figura 123. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad

157

de 8,5m para losa superficial de dimensiones $19m \times 19m$

Figura 137. Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para losa superficial de dimensiones $18m \times 36m$ 164

Figura 138. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para losa superficial de dimensiones $18m \times 36m$ 165

Figura 139. Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidadde 8,5m para losa superficial de dimensiones 18m x 36m165

LISTA DE GRAFICAS

Grafica 1. Gráfica de Circulo de Mohr mediante cálculos basados en la teoría elástica -Profundidad de 1m para cimiento rectangular de dimensiones $3m \ x \ 6m$ 72
Grafica 2. Gráfica de Circulo de Mohr mediante cálculos basados en la teoría elástica -Profundidad de 2m para cimiento rectangular de dimensiones $3m \ x \ 6m$ 72
Gráfica 3. Gráfica de círculo de Mohr – Profundidad de 3m para cimiento rectangular de dimensiones $3m \ x \ 6m$
Gráfica 4. Gráfica de círculo de Mohr – Profundidad de 4m para cimiento rectangular de dimensiones $3m \ x \ 6m$
Gráfica 5. Gráfica de círculo de Mohr – Profundidad de 5m para cimiento rectangular de dimensiones $3m \ x \ 6m$
Gráfica 6. Gráfica de círculo de Mohr – Profundidad de 6m para cimiento rectangular de dimensiones $3m \ x \ 6m$
Gráfica 7. Gráfica de círculo de Mohr – Profundidad de 7m para cimiento rectangular de dimensiones $3m \ x \ 6m$
Gráfica 8. Gráfica de círculo de Mohr – Profundidad de 8,5m para cimiento rectangular de dimensiones $3m \ x \ 6m$
Gráfica 9. Gráfica de círculo de Mohr – Profundidad de 1m para cimiento rectangular de dimensiones $3,5m \times 7m$ 75
Gráfica 10. Gráfica de círculo de Mohr – Profundidad de 2m para cimiento rectangular de dimensiones $3,5m \times 7m$
Gráfica 11. Gráfica de círculo de Mohr – Profundidad de 3m para cimiento rectangular de dimensiones $3,5m \times 7m$
Gráfica 12. Gráfica de círculo de Mohr – Profundidad de 4m para cimiento rectangular de dimensiones $3,5m \times 7m$
Gráfica 13. Gráfica de círculo de Mohr – Profundidad de 5m para cimiento rectangular de dimensiones $3,5m \times 7m$
Gráfica 14. Gráfica de círculo de Mohr – Profundidad de 6m para cimiento rectangular de dimensiones $3,5m \times 7m$ 77

Gráfica 15. Gráfica de círculo de Mohr – Profundidad de 7m para cimiento rectangular de dimensiones $3,5m \times 7m$ 78

Gráfica 16. Gráfica de círculo de Mohr – Profundidad de 8,5m para cimiento rectangular de dimensiones $3,5m \times 7m$ 78

Gráfica 17. Gráfica de círculo de Mohr – Profundidad de 1m para cimiento cuadrado de dimensiones $3m \ x \ 3m$ 79

Gráfica 18. Gráfica de círculo de Mohr – Profundidad de 2m para cimiento cuadrado de dimensiones $3m \times 3m$ 79

Gráfica 19. Gráfica de círculo de Mohr – Profundidad de 3m para cimiento cuadrado de dimensiones $3m \times 3m$ 80

Gráfica 20. Gráfica de círculo de Mohr – Profundidad de 4m para cimiento cuadrado de dimensiones $3m \times 3m$ 80

Gráfica 21. Gráfica de círculo de Mohr – Profundidad de 5m para cimiento cuadrado de dimensiones $3m \times 3m$ 80

Gráfica 22. Gráfica de círculo de Mohr – Profundidad de 6m para cimiento cuadrado de dimensiones $3m \times 3m$ 81

Gráfica 23. Gráfica de círculo de Mohr – Profundidad de 7m para cimiento cuadrado de dimensiones $3m \times 3m$ 81

Gráfica 24. Gráfica de círculo de Mohr – Profundidad de 8,5m para cimiento cuadrado de dimensiones $3m \times 3m$ 81

Gráfica 25. Gráfica de círculo de Mohr – Profundidad de 1m para cimiento cuadrado de dimensiones $4m \times 4m$ 82

Gráfica 26. Gráfica de círculo de Mohr – Profundidad de 2m para cimiento cuadrado de dimensiones $4m \times 4m$ 83

Gráfica 27. Gráfica de círculo de Mohr – Profundidad de 3m para cimiento cuadrado de dimensiones $4m \ x \ 4m$ 83

Gráfica 28. Gráfica de círculo de Mohr – Profundidad de 4m para cimiento cuadrado de dimensiones $4m \times 4m$ 83

Gráfica 29. Gráfica de círculo de Mohr – Profundidad de 5m para cimiento cuadrado de dimensiones $4m \ x \ 4m$ 84 **Gráfica 30.** Gráfica de círculo de Mohr – Profundidad de 6m para cimiento cuadrado de

84

dimensiones $4m \times 4m$

Gráfica 31. Gráfica de círculo de Mohr – Profundidad de 7m para cimiento cuadrado de dimensiones $4m \times 4m$ 84

Gráfica 32. Gráfica de círculo de Mohr – Profundidad de 8,5m para cimiento cuadrado de dimensiones $4m \times 4m$ 85

Gráfica 33. Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para un cimiento rectangular de dimensiones $3m \times 6m$ 167

Gráfica 34. Análisis comparativo de incremento de esfuerzos verticales producidos en el centro calculado mediante la teoría elástica y el software para un cimiento rectangular de dimensiones $3m \ x \ 6m$ 168

Gráfica 35. Análisis comparativo de incremento de esfuerzos verticales producidos en el borde calculado mediante la teoría elástica y el software para un cimiento rectangular de dimensiones $3m \ x \ 6m$ 169

Gráfica 36. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para un cimiento rectangular de dimensiones $3,5m \times 7m$ 171

Gráfica 37. Análisis comparativo de esfuerzos efectivos mediante la teoría elástica y el software para un cimiento rectangular de dimensiones $3,5m \times 7m$ 172

Gráfica 38. Análisis comparativo de presión de poros mediante la teoría elástica y el software para un cimiento rectangular de dimensiones $3,5m \times 7m$ 173

Gráfica 39. Análisis comparativo de incremento de esfuerzos verticales en el centro mediante la teoría elástica y el software para un cimiento rectangular de dimensiones $3,5m \times 7m$ 174

Gráfica 40. Análisis comparativo de incremento de esfuerzos verticales en el borde mediante la teoría elástica y el software para un cimiento rectangular de dimensiones $3,5m \times 7m$ 175

Gráfica 41. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento cuadrado de dimensiones $3,0m \times 3,0m$ 176

Gráfica 42. Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento cuadrado de dimensiones $3,0m \times 3,0m$ 177

Gráfica 43. Análisis comparativo de incremento de esfuerzos en el borde calculado mediante la teoría elástica y el software para cimiento cuadrado de dimensiones $3,0 m \times 3,0m$ 178

Gráfica 44. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento cuadrado de dimensiones 4,0 m x 4,0 m 179

Gráfica 45. Análisis comparativo de esfuerzos efectivos calculados mediante la teoría elástica y el software para cimiento cuadrado de dimensiones $4,0 m \times 4,0 m$ 180

Gráfica 46. Análisis comparativo de presión de poros calculados mediante la teoría elástica y el software para cimiento cuadrado de dimensiones 4,0 m x 4,0 m 181

Gráfica 47. Análisis comparativo de incremento de esfuerzos verticales en el centro mediante la teoría elástica y el software para cimiento cuadrado de dimensiones $4,0 m \times 4,0 m$ 182

Gráfica 48. Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento cuadrado de dimensiones $4,0 m \times 4,0 m$ 183

Gráfica 49. Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,0 m 184

Gráfica 50. Análisis comparativo de incremento de esfuerzos verticales en el centro calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,0 m 185

Gráfica 51. Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,0 m 186

Gráfica 52. Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,5 m 187

Gráfica 53. Análisis comparativo de esfuerzos efectivos calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,5 m 188

Gráfica 54. Análisis comparativo de presión de poros calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,5 *m* 189

Gráfica 55. Análisis comparativo de incremento de esfuerzos verticales en el centro calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,5 m 190

Gráfica 56. Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,5 m 191

Gráfica 57. Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,0 m 192

Gráfica 58. Análisis comparativo de incremento de esfuerzos verticales en el centro calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,0 m 193

Gráfica 59. Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,0 m 194

Gráfica 60. Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5 m 195

Gráfica 61. Análisis comparativo de esfuerzos efectivos calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5 m 196

Gráfica 62. Análisis comparativo de presión de poros calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5 *m* 197

Gráfica 63. Análisis comparativo de incremento de esfuerzos verticales en el centro calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5 m 198

Gráfica 64. Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5 m 199

Gráfica 65. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $2m \times 20m$ 200

Gráfica 66. Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones 2m x 20m 201

Gráfica 67. Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones 2m x 20m 202

Gráfica 68. Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento continúo de dimensiones $3m \times 30m$ 204

Gráfica 69. Análisis comparativo de esfuerzos efectivos calculados mediante la teoría elástica y el software para cimiento continúo de dimensiones $3m \times 30m$ 205

Gráfica 70. Análisis comparativo de presión de poros calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $3m \times 30m$ 206

Gráfica 71. Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $3m \times 30m$ 207

Gráfica 72. Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $3m \times 30m$ 208

Gráfica 73. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $5m \times 50m$ 210

Gráfica 74. Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones 5m x 50m 211

Gráfica 75. Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones 5m x 50m 212

Gráfica 76. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $4m \times 40m$ 214

Gráfica 77. Análisis comparativo de esfuerzos efectivos calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $4m \times 40m$ 215

Gráfica 78. Análisis comparativo de presión de poros calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $4m \times 40m$ 216

Gráfica 79. Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $4m \times 40m$ 217

Gráfica 80. Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones $4m \times 40m$ 218

Gráfica 81. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para losa superficial de dimensiones $15m \times 30m$ 219

Gráfica 82. Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para losa superficial de dimensiones $15m \ x \ 30 \ m$ 220

Gráfica 83. Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para losa superficial de dimensiones $15m \ x \ 30 \ m$ 221

Gráfica 84. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para losa superficial de dimensiones 19m x 19m 223

Gráfica 85. Análisis comparativo de esfuerzos efectivos calculado mediante la teoría elástica y el software para losa superficial de dimensiones 19m x 19m 224

Gráfica 86. Análisis comparativo de presión de poros calculado mediante la teoría elástica y el software para losa superficial de dimensiones $19m x \ 19m$ 225

Gráfica 87. Análisis comparativo de incremento de esfuerzos verticales producidos en el centro calculado mediante la teoría elástica para losa superficial de dimensiones $19m \ x \ 19 \ m$

Gráfica 88. Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para losa superficial de dimensiones $19m \ x \ 19 \ m$

Gráfica 89. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para losa superficial de dimensiones 26*m x* 26*m* 228

Gráfica 90. Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para losa superficial de dimensiones $26m \times 26 m$ 229

Gráfica 91. Análisis comparativo de incremento de esfuerzos verticales producidos en el borde calculado mediante la teoría elástica y el software para losa superficial de dimensiones $26m \ x \ 26 \ m$

Gráfica 92. Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para losa superficial de dimensiones 18m x 36 m 232

Gráfica 93. Análisis comparativo de esfuerzos efectivos calculado mediante la teoría elástica y el software para losa superficial de dimensiones 18*m x* 36 *m* 233

Gráfica 94. Análisis comparativo de presión de poros calculado mediante la teoría elástica y el software para losa superficial de dimensiones 18m x 36m 234

Gráfica 95. Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para losa superficial de dimensiones $18m \ x \ 36 \ m$

Gráfica 96. Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para losa superficial de dimensiones $18m \ x \ 36 \ m$

Gráfica 97. Gráfica de Smertchmann producida en el centro de una zapata rectangular de dimensiones $3m \ x \ 6m$ 246

Gráfica 98. Gráfica de Smertchmann producida en el borde de una zapata rectangular de dimensiones $3m \ x \ 6m$ 248

Gráfica 99. Gráfica de Smertchmann producida en el centro de una zapata rectangular de dimensiones $3,5m \times 7m$ 261

Gráfica 100. Gráfica de Smertchmann producida en el borde de una zapata rectangular de dimensiones $3,5m \times 7m$ 263

Gráfica 101. Gráfica de Smertchmann producida en el centro de una zapata cuadrada de dimensiones $3m \times 3m$ 277

Gráfica 102. Gráfica de Smertchmann producida en el centro de una zapata cuadrada de dimensiones $3m \times 3m$ 280

Gráfica 103. Gráfica de Smertchmann producida en el centro de una zapata cuadrada de dimensiones $4m \ x \ 4m$ 293

Gráfica 104. Gráfica de Smertchmann producida en el borde de una zapata cuadrada de dimensiones $4m \ x \ 4m$ 296

Gráfica 105. Gráfica de Smertchmann producida en el centro de una zapata circular de diámetro 3*m* 312

Gráfica 106. Gráfica de Smertchmann producida en el borde de una zapata circular de diámetro 3*m* 314

Gráfica 107. Gráfica de Smertchmann producida en el centro de una zapata circular de diámetro 3,5*m* 321

Gráfica 108. Gráfica de Smertchmann producida en el borde de una zapata circular de diámetro 3*m* 323

Gráfica 109. Gráfica de Smertchmann producida en el centro de una zapata circular de diámetro 4*m* 330

Gráfica 110. Gráfica de Smertchmann producida en el borde de una zapata circular de diámetro 4*m* 333

Gráfica 111. Gráfica de Smertchmann producida en el centro de una zapata circular de diámetro 4,5*m* 341

Gráfica 112. Gráfica de Smertchmann producida en el borde de una zapata circular de diámetro 4,5*m* 344

Gráfica 113. Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones 2m x 20m 353

Gráfica 114. Gráfica de Smertchmann producida en el borde de una zapata continúa de dimensiones $2m \times 20m$ 355

Gráfica 115. Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones $3m \times 30m$ 361

Gráfica 116. Gráfica de Smertchmann producida en el borde de una zapata continúa de dimensiones $3m \times 30m$ 363

Gráfica 117. Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones $5m \times 50m$ 368

Gráfica 118. Gráfica de Smertchmann producida en el borde de una zapata continúa de dimensiones $5m \times 50m$ 371

Gráfica 119. Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones $4m \times 40m$ 377

Gráfica 120. Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones $4m \times 40m$ 380

Gráfica 121. Grafica de medios empleados para el cálculo de asentamientos y esfuerzos verticales llevado a cabo por profesionales 404

Gráfica 122. Grafica de software implementado para el cálculo de asentamientos y esfuerzos verticales llevado a cabo por profesionales 404

Gráfica 123. Gráfica de grado de conocimiento acerca del paquete Geostudio® llevado a cabo por profesionales 405

Gráfica 124. Gráfica de conocimiento acerca de la existencia del software SIGMA/W llevado a cabo por profesionales 405

Gráfica 125. Gráfica de pertinencia de la creación de una guía metodológica para el uso del software SIGMA/W llevado a cabo por profesionales 406

Gráfica 126. Gráfica de medios empleados para el cálculo de asentamientos y esfuerzos verticales llevado a cabo por estudiantes del área de ingeniería civil 406

Gráfica 127. Gráfica de software implementado para el cálculo de asentamientos y esfuerzos verticales llevado a cabo por estudiantes del área de ingeniería civil 407

Gráfica 128. Gráfica de grado de conocimiento acerca del paquete Geostudio® llevado a cabo por estudiantes del área de ingeniería civil 407

Gráfica 129. Gráfica de conocimiento acerca de la existencia del software SIGMA/W llevado a cabo por estudiantes del área de ingeniería civil 408

LISTA DE CUADROS

I ag.
Cuadro 1. Ecuaciones de deformación unitaria y esfuerzo aplicado 54
Cuadro 2 . Valor del factor de influencia para diferentes valores de m y n 67
Cuadro 3. Esfuerzos verticales y Círculo de Mohr para cimiento rectangular de dimensiones 3 <i>m x</i> 6 <i>m</i> 72
Cuadro 4. Asentamiento inmediato en el centro y borde del cimiento rectangular de dimensiones $3m \ x \ 6m$ 75
Cuadro 5. Esfuerzos verticales y Círculo de Mohr para cimiento rectangular de dimensiones 3,5 <i>m x</i> 7 <i>m</i> 75
Cuadro 6.Asentamiento inmediato en el centro y borde del cimiento rectangular de dimensiones $3,5m \times 7m$ 78
Cuadro 7. Esfuerzos verticales y Círculo de Mohr para cimiento cuadrado de dimensiones 3 <i>m x</i> 3 <i>m</i> 79
Cuadro 8.Asentamiento inmediato en el centro y borde del cimiento cuadrado de dimensiones $3m x \ 3m$ 82
Cuadro 9. Esfuerzos verticales y Círculo de Mohr para cimiento cuadrado de dimensiones $4m \ x \ 4m$
Cuadro 10. As entamiento inmediato en el centro y borde del cimiento cuadrado de dimensiones $4m \ x \ 4m$
Cuadro 11. Esfuerzos verticales y Círculo de Mohr para cimiento circular de diámetro 3,0 m 85
Cuadro 12. Asentamiento inmediato en el centro y borde del cimiento circular de diámetro 3,0 <i>m</i>
Cuadro 13. Esfuerzos verticales y Círculo de Mohr para cimiento circular de diámetro 3,5 <i>m</i>
Cuadro 14. Asentamiento inmediato en el centro y borde del cimiento circular de diámetro 3,5 <i>m</i>
Cuadro 15. Esfuerzos verticales y Círculo de Mohr para cimiento circular de diámetro 4,0 <i>m</i>
Cuadro 16. Asentamiento inmediato en el centro y borde del cimiento circular de diámetro 4,0 <i>m</i>
Cuadro 17. Esfuerzos verticales y Círculo de Mohr para cimiento circular de diámetro 4,5 <i>m</i>

Pág.

Cuadro 18. Asentamiento inmediato en el centro y borde del cimiento circular de diámetro 4,5*m*

Cuadro 19. Esfuerzos verticales y Círculo de Mohr para cimiento continúo de dimensiones 2*m x* 20 *m* 88

Cuadro 20. Asentamiento inmediato en el centro y borde del cimiento continúo de dimensiones $2m \times 20m$ 88

Cuadro 21. Esfuerzos verticales y Círculo de Mohr para cimiento continúo de dimensiones 3*m x* 30 *m* 89

Cuadro 22. Asentamiento inmediato en el centro y borde del cimiento continúo de dimensiones $3m \times 30m$ 89

Cuadro 23. Esfuerzos verticales y Círculo de Mohr para cimiento continúo de dimensiones 5*m x* 50 *m* 89

Cuadro 24. Asentamiento inmediato en el centro y borde del cimiento continúo de dimensiones $5m \times 50m$ 90

Cuadro 25. Esfuerzos verticales y Círculo de Mohr para cimiento continúo de dimensiones $4m x \, 40 \, m$ 90

Cuadro 26. Asentamiento inmediato en el centro y borde del cimiento continúo de dimensiones $4m \times 40m$ 90

Cuadro 27. Esfuerzos verticales y Círculo de Mohr para losa superficial de dimensiones 15*m x* 30 *m* 91

Cuadro 28. Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones $15m \times 30m$ 91

Cuadro 29. Esfuerzos verticales y Círculo de Mohr para losa superficial de dimensiones 19m x 19 m 91

Cuadro 30. Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones $19m \times 19m$ 92

Cuadro 31. Esfuerzos verticales y Círculo de Mohr para losa superficial de dimensiones 26*m x* 26 *m* 92

Cuadro 32. Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones $26m \times 26m$ 92

Cuadro 33. Esfuerzos verticales y Círculo de Mohr para losa superficial de dimensiones 18*m x* 36 *m* 93

Cuadro 34. Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones $18m \times 36m$ 93

Cuadro 35. Esfuerzos verticales y cálculos de Círculo de Mohr, mediante el software SIGMA/W para cimiento rectangular de dimensiones $3m \times 6m$ 94

Cuadro 36. Asentamiento inmediato mediante el software SIGMA/W en el centro y borde del cimiento rectangular de dimensiones $3m \times 6m$ 98

Cuadro 37. Esfuerzos verticales y cálculos de Círculo de Mohr, mediante el software SIGMA/W para cimiento rectangular de dimensiones $3,5m \times 7m$ 98

Cuadro 38. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento rectangular de dimensiones $3,5m \times 7m$ 102

Cuadro 39. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento cuadrado de dimensiones $3m \times 3m$ 103

Cuadro 40. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento cuadrado de dimensiones $3m \times 3m$ 107

Cuadro 41. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el softwareSIGMA/W para cimiento cuadrado de dimensiones 4m x 4m107

Cuadro 42. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento cuadrado de dimensiones $4m \times 4m$ 111

Cuadro 43. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el softwareSIGMA/W para cimiento circular de diámetro 3m112

Cuadro 44. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento circular de diámetro 3m 116

Cuadro 45. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento circular de diámetro 3,5m 116

Cuadro 46. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento circular de diámetro 3,5*m* 120

Cuadro 47. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento circular de diámetro 4m 121

Cuadro 48. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento circular de diámetro 4m 125

Cuadro 49. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento circular de diámetro 4, 5m 129

Cuadro 50. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento circular de diámetro 4,5m 130

Cuadro 51. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el softwareSIGMA/W para cimiento continúo de dimensiones 2m x 20 m134

Cuadro 52. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento continúo de dimensiones $2m \times 20m$. 134

Cuadro 53. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento continúo de dimensiones $3m \times 30 m$ 134

Cuadro 54. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento continúo de dimensiones $3m \times 30m$ 138

Cuadro 55. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento continúo de dimensiones 5m x 50 m 139

Cuadro 56. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento continúo de dimensiones $5m \times 50m$ 143

Cuadro 57. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento continúo de dimensiones $4m \times 40 m$ 143

Cuadro 58. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento continúo de dimensiones $4m \times 40m$ 147

Cuadro 59. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para losa superficial de dimensiones 15m x 30 m 148

Cuadro 60. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde de la losa superficial de dimensiones $15m \times 30m$ 152

Cuadro 61. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el softwareSIGMA/W para losa superficial de dimensiones 19m x 19 m152

Cuadro 62. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde de la losa superficial de dimensiones $19m \times 19m$ 156

Cuadro 63. Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para losa superficial de dimensiones $26m \times 26m$ 157

Cuadro 64. Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde de la losa superficial de dimensiones $26m \times 26m$ 161

Cuadro 65. Esfuerzos verticales y cálculos de círculo de Mohr para losa superficial de dimensiones $18m \ x \ 36 \ m$ 161

Cuadro 66. Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones $18m \times 36m$ 165

Cuadro 67. Diferencia de porcentaje de esfuerzos normales para cimiento rectangular de dimensiones $3m \times 6m$ 166

Cuadro 68. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento rectangular de dimensiones $3m \times 6m$ 167

Cuadro 69. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento rectangular de dimensiones $3m \times 6m$ 168

Cuadro 70. Diferencia de porcentaje en círculo de Mohr para cimiento rectangular de dimensiones $3m \ x \ 6m$ 169

Cuadro 71. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento rectangular de dimensiones $3m \ x \ 6m$ 169

Cuadro 72. Diferencia de porcentaje de esfuerzos normales para cimiento rectangular de dimensiones $3,5m \times 7m$ 170

Cuadro 73. Diferencia de porcentaje de esfuerzos efectivos para cimiento rectangular de dimensiones $3,5m \times 7m$ 171

Cuadro 74. Diferencia de porcentaje de presión de poros para cimiento rectangular de dimensiones $3,5m \times 7m$ 172

Cuadro 75. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento rectangular de dimensiones $3,5m \times 7m$ 173

Cuadro 76. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento rectangular de dimensiones $3,5m \times 7m$ 174

Cuadro 77. Diferencia de porcentaje en círculo de Mohr para cimiento rectangular de dimensiones $3,5m \times 7m$ 175

Cuadro 78. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento rectangular de dimensiones $3,5m \times 7m$ 175

Cuadro 79. Diferencia de porcentaje de esfuerzos normales para cimiento cuadrado de dimensiones $3m \times 3m$ 176

Cuadro 80. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento cuadrado de dimensiones $3m \times 3m$ 177

Cuadro 81. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento cuadrado de dimensiones $3m \times 3m$ 177

Cuadro 82. Diferencia de porcentaje en círculo de Mohr para cimiento cuadrado de dimensiones $3m \times 3m$ 178

Cuadro 83. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento cuadrado de dimensiones $3m \times 3m$ 178

Cuadro 84. Diferencia de porcentaje de esfuerzos normales para cimiento cuadrado de dimensiones $4m \ x \ 4m$ 179

Cuadro 85. Diferencia de porcentaje de esfuerzos efectivos para cimiento cuadrado de dimensiones $4m \times 4m$ 180

Cuadro 86. Diferencia de porcentaje de presión de poros para cimiento cuadrado de dimensiones $4m \times 4m$ 180

Cuadro 87. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento cuadrado de dimensiones $4m \times 4m$ 181

Cuadro 88. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento cuadrado de dimensiones $4m \times 4m$ 182

Cuadro 89. Diferencia de porcentaje en círculo de Mohr para cimiento cuadrado de dimensiones $4m \times 4m$ 183

Cuadro 90. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento cuadrado de dimensiones $4m \times 4m$ 183

Cuadro 91. Diferencia de porcentaje de esfuerzos normales para cimiento circular de diámetro 3*m* 184

Cuadro 92. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento circular de diámetro 3m 185

Cuadro 93. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento circular de diámetro 3m 185

Cuadro 94. Diferencia de porcentaje en círculo de Mohr para cimiento circular de diámetro 3*m*

Cuadro 95. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento circular de diámetro 3m 186

Cuadro 96. Diferencia de porcentaje de esfuerzos normales para cimiento circular de diámetro 3,5*m* 187

Cuadro 97. Diferencia de porcentaje de esfuerzos efectivos para cimiento circular de diámetro 3,5*m* 188

Cuadro 98. Diferencia de porcentaje de presión de poros para cimiento circular de diámetro 3,5*m*

Cuadro 99. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento circular de diámetro 3,5*m* 189

Cuadro 100. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento circular de diámetro 3,5m 190

Cuadro 101. Diferencia de porcentaje en círculo de Mohr para cimiento circular de diámetro 3,5*m*

Cuadro 102. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento circular de diámetro 3,5m 191

Cuadro 103. Diferencia de porcentaje de esfuerzos normales para cimiento circular de diámetro 4m 192

Cuadro 104. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento circular de diámetro 4m 193

Cuadro 105. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento circular de diámetro 4m 193

Cuadro 106. Diferencia de porcentaje en círculo de Mohr para cimiento circular de diámetro 4*m* 194

Cuadro 107. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento circular de diámetro 4m 194

Cuadro 108. Diferencia de porcentaje de esfuerzos normales para cimiento circular de diámetro 4,5*m* 195

Cuadro 109. Diferencia de porcentaje de esfuerzos efectivos para cimiento circular de diámetro 4,5*m* 196

Cuadro 110. Diferencia de porcentaje de presión de poros para cimiento circular de diámetro 4,5*m*

Cuadro 111. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento circular de diámetro 4,5m 197

Cuadro 112. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento circular de diámetro 4,5m 198

Cuadro 113. Diferencia de porcentaje en círculo de Mohr para cimiento circular de diámetro 4,5*m*

Cuadro 114. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento circular de diámetro 4,5m 199

Cuadro 115. Diferencia de porcentaje de esfuerzos normales para cimiento continuo de dimensiones $2m \times 20m$ 200

Cuadro 116. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento continuo de dimensiones $2m \times 20m$ 201

Cuadro 117. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento continuo de dimensiones $2m \times 20m$ 202

Cuadro 118. Diferencia de porcentaje en círculo de Mohr para cimiento continuo de dimensiones $2m \times 20m$ 203

Cuadro 119. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento continuo de dimensiones $2m \times 20m$ 203
Cuadro 120. Diferencia de porcentaje de esfuerzos normales para cimiento continuo de dimensiones $3m \times 30m$ 204

Cuadro 121. Diferencia de porcentaje de esfuerzos efectivos para cimiento continuo de dimensiones $3m \times 30m$ 205

Cuadro 122. Diferencia de porcentaje de presión de poros para cimiento continuo de dimensiones $3m \times 30m$ 206

Cuadro 123. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento continuo de dimensiones $3m \times 30m$ 207

Cuadro 124. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento continuo de dimensiones $3m \times 30m$ 208

Cuadro 125. Diferencia de porcentaje en círculo de Mohr para cimiento continuo de dimensiones $3m \times 30m$ 209

Cuadro 126. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento continuo de dimensiones $3m \times 30m$ 209

Cuadro 127. Diferencia de porcentaje de esfuerzos normales para cimiento continuo de dimensiones $5m \times 50m$ 210

Cuadro 128. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento continuo de dimensiones $5m \times 50m$ 211

Cuadro 129. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento continuo de dimensiones $5m \times 50m$ 212

Cuadro 130. Diferencia de porcentaje en círculo de Mohr para cimiento continuo de dimensiones $5m \times 50m$ 213

Cuadro 131. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento continuo de dimensiones $5m \times 50m$ 213

Cuadro 132. Diferencia de porcentaje de esfuerzos normales para cimiento continuo de dimensiones $4m \times 40m$ 214

Cuadro 133. Diferencia de porcentaje de esfuerzos efectivos para cimiento continuo de dimensiones $4m \times 40m$ 215

Cuadro 134. Diferencia de porcentaje de presión de poros para cimiento continuo de dimensiones $4m \times 40m$ 215

Cuadro 135. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro del cimiento continuo de dimensiones $4m \times 40m$ 216

Cuadro 136. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde del cimiento continuo de dimensiones $4m \times 40m$ 217

Cuadro 137. Diferencia de porcentaje en círculo de Mohr para cimiento continuo de dimensiones $4m \times 40m$ 218

Cuadro 138. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde del cimiento para cimiento continuo de dimensiones $2m \times 20m$ 218

Cuadro 139. Diferencia de porcentaje de esfuerzos normales para losa superficial de dimensiones $15m \times 30m$ 219

Cuadro 140. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro de la losa superficial de dimensiones $15m \times 30m$ 220

Cuadro 141. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde de la losa superficial de dimensiones $15m \times 30m$ 221

Cuadro 142. Diferencia de porcentaje en círculo de Mohr para losa superficial de dimensiones $15m \times 30m$ 222

Cuadro 143. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde de la losa superficial de dimensiones $15m \times 30m$ 222

Cuadro 144. Diferencia de porcentaje de esfuerzos normales para losa superficial de dimensiones $19m \times 19m$ 223

Cuadro 145. Diferencia de porcentaje de esfuerzos efectivos para losa superficial de dimensiones $19m \times 19m$ 223

Cuadro 146. Diferencia de porcentaje de presión de poros para losa superficial de dimensiones $19m \times 19m$ 224

Cuadro 147. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro de la losa superficial de dimensiones $19m x \ 19m$ 225

Cuadro 148. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde de la losa superficial de dimensiones $19m \times 19m$ 226

Cuadro 149. Diferencia de porcentaje en círculo de Mohr para losa superficial de dimensiones $19m \times 19m$ 227

Cuadro 150. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde de la losa superficial de dimensiones $19m \times 19m$ 227

Cuadro 151. Diferencia de porcentaje de esfuerzos normales para losa superficial de dimensiones $26m \times 26m$ 228

Cuadro 152. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro de la losa superficial de dimensiones 26*m x* 26*m* 229

Cuadro 153. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde de la losa superficial de dimensiones $26m \times 26m$ 230

Cuadro 154. Diferencia de porcentaje en círculo de Mohr para losa superficial de dimensiones $26m \times 26m$ 231

Cuadro 155. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde de la losa superficial de dimensiones $26m \times 26m$ 231

Cuadro 156. Diferencia de porcentaje de esfuerzos normales para losa superficial de dimensiones $18m \times 36m$ 232

Cuadro 157. Diferencia de porcentaje de esfuerzos efectivos para losa superficial de dimensiones $18m \times 36m$ 232

Cuadro 158. Diferencia de porcentaje de presión de poros para losa superficial de dimensiones $18m \times 36m$ 233

Cuadro 159. Diferencia de porcentaje para incremento de esfuerzos verticales en el centro de la losa superficial de dimensiones $18m \times 36m$ 234

Cuadro 160. Diferencia de porcentaje para incremento de esfuerzos verticales en el borde de la losa superficial de dimensiones $18m \times 36m$ 235

Cuadro 161. Diferencia de porcentaje en círculo de Mohr para losa superficial de dimensiones $18m \times 36m$ 236

Cuadro 162. Diferencia de porcentaje en asentamiento inmediato producido en el centro y borde de la losa superficial de dimensiones $18m \times 36m$ 236

LISTA DE ANEXOS

Pág.

402

Anexo A. Memorias de cálculo de asentamientos inmediatos, esfuerzos verticales y gráficos de círculo de Mohr producidos en cimentaciones superficiales, ante la presencia de condiciones de suelo estratificado 244

Anexo B. Modelo de encuesta y estadísticas

Anexo C. Modelación de ejercicios en el software SIGMA/W

Anexo D. Guía metodológica para el uso del software SIGMA/W

RESUMEN

En la determinación de esfuerzos verticales, gráficos de círculo de Mohr y asentamientos inmediatos producidos en cimentaciones superficiales, se realizan los cálculos manuales empleando la teoría elástica y debido al desconocimiento en el uso del software SIGMA/W se llevan a cabo comparaciones de estos cálculos con los arrojados por el software SIGMA/W del paquete GeoStudio®, que emplea el método de los elementos finitos para la obtención de resultados, de esta forma se realiza una guía metodológica de uso para estudiantes y docentes del área de ingeniería civil.

INTRODUCCION

La importancia de esta investigación es el aprendizaje y manejo del software SIGMA/W y de esta manera implementar el uso del mismo en la comunidad estudiantil y profesional del área de ingeniería civil.

Desde la antigüedad, en la ingeniería civil se han evidenciado dificultades en la predicción de cálculo de asentamientos debido a la naturaleza del suelo, por esta razón en la primera fase de estudio geotécnico se realiza un reconocimiento adecuado para la obtención de un buen perfil geológico-geotécnico del terreno, obteniendo los diferentes parámetros del suelo y con base en estos datos se pueden llevar a cabo cálculos de esfuerzos verticales producidos en perfiles de suelo y sometidos a diferente tipos de carga.

En el área de la geotecnia, es de vital importancia la determinación de asentamientos inmediatos y esfuerzos verticales que se producen en las diferentes cimentaciones superficiales por las cargas que estas transmiten al terreno de apoyo, existiendo diferentes teorías para la determinación de los mismos, ya sea aplicando formulas desarrolladas mediante la teoría elástica o con la ayuda de una herramienta computacional que utiliza elementos finitos para el análisis, en este caso el software SIGMA/W de GeoStudio®, el cual es un programa que el plan de estudios de ingeniería civil tiene la disponibilidad de licencia del mismo, pero no se ha llevado a cabo debido a la falta de información y conocimiento respecto a su funcionamiento y empleo.

La finalidad de este trabajo de grado consiste en brindar a la academia un factor innovador, con el empleo del software SIGMA/W basado en el método de elementos finitos en donde se puede obtener resultados de asentamientos inmediatos, esfuerzos verticales y gráficas de círculo de Mohr producidos en cimentaciones superficiales.

1. <u>DETERMINACIÓN DE ESFUERZOS VERTICALES, GRAFICAS DE</u> <u>CIRCULO DE MOHR Y ASENTAMIENTOS INMEDIATOS PRODUCIDOS EN</u> <u>CIMENTACIONES SUPERFICIALES EMPLEANDO LA TEORIA ELASTICA Y</u> <u>COMPARACIÓN CON LOS CALCULOS DEL SOFTWARE SIGMA/W</u>

1.1 PLANTEAMIENTO DEL PROBLEMA

En la ingeniería civil a nivel de la geotecnia, existe el paquete de GEOSTUDIO® que comprende diferentes aplicaciones, siendo una de ellas el software SIGMA/W, que aun cuando en el programa de ingeniería civil de la UFPS Ocaña, tiene la disponibilidad de licencia de dicho programa, este no se ha podido utilizar e implementar por parte de estudiantes y docentes, debido a la falta de conocimiento e información acerca de su funcionamiento y empleo, tampoco se ha llevado a cabo cálculos de verificación correspondientes a esfuerzos verticales, gráficas de circulo de Mohr y asentamientos inmediatos usando la teoría elástica para comparar con el software SIGMA/W empleando la teoría elástica.

1.2 FORMULACION DEL PROBLEMA

¿Es necesario realizar cálculos de verificación para determinar esfuerzos verticales, gráficas de círculo de Mohr y asentamientos inmediatos ocasionados en cimentaciones superficiales empleando la teoría elástica y compararlos con el software SIGMA/W?

1.3 **OBJETIVOS**

1.3.1 Objetivo General. Determinar esfuerzos verticales, graficas de círculo de Mohr y asentamientos inmediatos, producidos en cimentaciones superficiales mediante el uso de la teoría elástica, realizando comparaciones con los cálculos del software SIGMA/W y elaborando una guía metodológica para su aprendizaje.

1.3.2 Objetivos Específicos. Calcular esfuerzos verticales, gráficas de círculo de Mohr y asentamientos inmediatos en suelos cohesivos y granulares, mediante la teoría elástica.

Determinar esfuerzos verticales, graficas de circulo de Mohr y asentamientos inmediatos en suelos cohesivos y granulares, mediante el software SIGMA/W.

Comparar resultados de asentamientos inmediatos, gráficas de círculo de Mohr y esfuerzos verticales, calculados mediante la teoría elástica y por el software SIGMA/W.

Elaborar una guía metodológica para el uso del software SIGMA/W, en el análisis de esfuerzos verticales, gráficas de círculo de Mohr y asentamientos inmediatos en cimentaciones superficiales.

1.4 JUSTIFICACION

Actualmente en el área de geotecnia del plan de estudios de Ingeniería Civil de la Universidad Francisco de Paula Santander Ocaña, se evidencia la falencia en el manejo del software SIGMA/W, siendo una herramienta de gran utilidad que emplea elementos finitos para la obtención de resultados, ocasionando de esta manera en la comunidad estudiantil y profesional, agilidad y eficiencia en el cálculo de asentamientos elásticos, gráficas de círculo de Mohr y esfuerzos verticales, en consecuencia, es necesario realizar cálculos manuales de verificación y comparación con el programa, en base a la teoría elástica y de esta manera demostrar la exactitud de esta herramienta tecnológica, la cual genera un componente metodológico, didáctico e innovador para la enseñanza y formación universitaria, que se podrá implementar y ser usado de manera confiable por parte de estudiantes, docentes y profesionales del área de Ingeniería Civil.

1.5 **DELIMITACIONES**

1.5.1 Geográficas. Aplicable a estudiantes, docentes y profesionales del área de ingeniería civil.

1.5.2 Temporales. La realización de este proyecto se llevara a cabo en el transcurso de 6 meses, lo que comprende desde Marzo de 2015 hasta Agosto del año lectivo.

1.5.3 Conceptuales. Para el estudio de esfuerzos y deformaciones que sufren las cimentaciones superficiales debido a la aplicación de cargas, es necesario tener conocimiento acerca de parámetros como el ángulo de fricción, el módulo de elasticidad, gravedad de específica, entre otros y acerca de las teorías que rigen el estudio y comportamiento de los suelos cohesivos y granulares, estas teorías son: Método de Steinbrenner y método de Schmertman , que con el empleo conjunto de las mismas es posible conocer el valor del esfuerzo y deformación que está experimentando el suelo en estudio.

Para la obtención de los valores de esfuerzo y asentamientos inmediatos en el software SIGMA/W, tener conocimiento acerca del método de elementos finitos.

1.5.4 Operativas. Para llevar a cabo la determinación de esfuerzos verticales, graficas de círculo de Mohr y asentamientos inmediatos, se requiere tener conocimiento acerca del manejo del software SIGMA/W y elementos finitos.

2. MARCO REFERENCIAL

2.1 MARCO HISTORICO

2.1.1 Evolución a largo plazo de la Geotecnia. La Ingeniería Geotécnica es analizada en sus tendencias fundamentales mediante el triángulo geotécnico de Burland (1987) que es expandido a tetraedro mediante las ideas de Vick (2002). La parte esencial es la interacción existente entre los paradigmas de la teoría y de la práctica con su pasado y presente y una probable evolución futura basada en la opinión de relevantes personalidades de la Ingeniería Geotécnica. Se valora la importancia de la escuela de Terzaghi en el siglo XX y su método observacional.

El Triángulo Geotécnico postulado por Burland (2007) desde 1987 como una ayuda educacional, como se puede ver en la Figura 1 y a su vez con raíces en publicaciones de Karl Terzaghi, KT (1925). En este esquema del triángulo como se puede observar en la figura 1, co-existen cuatro aspectos distintos pero relacionados entre sí (Burland, 2007):

El perfil del terreno, con las condiciones de agua subterránea.

El comportamiento observado o medido del terreno.

Las predicciones usando métodos apropiados.

Procedimientos empíricos, criterio o juicio basado en precedentes y la bien ganada experiencia. 1

Fuente. Evolución de le geotecnia. [En línea]. s.f. Disponible en internet en: http://academic.uprm.edu/laccei/index.php/RIDNAIC/article/viewFile/202/207

¹ Evolución de la Geotecnia. [En línea]. Disponible en internet en:<http://academic.uprm.edu/laccei/index.php/RIDNAIC/article/viewFile/202/207>

Los tres primeros pueden ser descritos como constituyentes de los vértices de un triángulo y el empirismo ocupando el centro. Una idea similar ha sido desarrollada por Vick (2002), aunque a pesar de ser contemporáneos y afirmar lo mismo, no se citen con Burland, entre sí, en sus textos.

Se puede apreciar que en realidad el Triángulo Geotécnico de Burland es la proyección de un tetraedro, en donde el triángulo representa una de las caras, la del paradigma de la teoría/análisis y en el vértice posterior se ubica el paradigma de la práctica. La IG se encuentra en el interior del tetraedro (Figura 2).

Fuente. Evolución de le geotecnia. [En línea]. Disponible en internet en: http://academic.uprm.edu/laccei/index.php/RIDNAIC/article/viewFile/202/207

Esto permite visualizar mejor la interrelación entre los paradigmas de la teoría y de la práctica en la IG. Según Vick (2002), la dualidad teoría/práctica implica la coexistencia de formas de pensar diferentes. Mientras que a priori puede plantearse una asociación del tipo: Teoría = Método Deductivo, Práctica = Método Inductivo, la realidad indica que la interrelación es más profunda y que existe siempre la inducción inicial.

En gran parte del diseño geotécnico, como muros, zapatas, pilotes, taludes de presas, excavaciones y túneles en rocas, es esencial el uso de casos precedentes. La teoría sirve para verificarlos (Hendron, 1990).

La teoría y análisis, una vez aceptados, son la base del sistema deductivo. Constituyen los primeros principios desde los cuales se obtienen conclusiones y se hacen predicciones, que son el corazón de la ingeniería geotécnica. 2

² Evolución de la Geotecnia. [En línea]. Disponible en internet en:</http://academic.uprm.edu/laccei/index.php/RIDNAIC/article/viewFile/202/207>

2.1.2 El Vértice de la Modelación numérica en la Geotecnia. Simpson y Tatsuoka (2008) destacan que el desarrollo de modelos tenso-deformacionales de suelos, principalmente por el uso de FEA ha sido el rasgo principal de investigación en los últimos 60 años. Los modelos usados son relativamente simples: Mohr-Coulomb elásticos, CAM CLAY modificado y sus extensiones y desarrollos de los modelos hiperbólicos. Otros más complejos tienen menos uso debido a que requieren muchos parámetros difíciles de obtener. Existe una brecha entre lo que puede ser entendido en principio y lo que puede ser aplicado en la práctica, por las limitaciones en las propiedades deformacionales y en la resistencia de los suelos.

Las tendencias actuales para predecir desplazamientos se dirigen hacia análisis complejos no-lineares, elasto- visco plásticos, la inclusión de cargas cíclicas, efectos químicos, efectos de envejecimiento y efectos térmicos, hacia una consideración creciente de efectos acoplados entre esos efectos, y un mayor desarrollo de la mecánica de suelos no- saturada.

El cambio más significativo a observar en el futuro se refiere a la modelación de medios discretos como partículas de suelo o bloques de rocas. En general, los geomateriales están formados por partículas pero se lo modela como continuo como por ej. FEM ("Finite Element Method"). El DEM ("Discrete Element Method") se ha estado popularizando. Las limitaciones son computacionales. En un metro cúbico hay 109 mm3. Actualmente se modelan 105 partículas pero se puede alcanzar a 1011 para 2020, o sea que los suelos reales requieren de mayor número y potencia computacional.

La idea de modelar partícula por partícula parece remota. Se ha planteado usar factores de escala y modelar situaciones prácticas como taludes, aunque hay dificultades en la localización de bandas de corte y flujo de agua.³

2.1.3 Antecedentes de los Elementos Finitos. Desde las peripecias de Coulomb en la Martinica, en el siglo XVIII y los casi desconocidos trabajos de Collin, en el XIX, hasta los primeros métodos gráficos de Petterson y Fellenius con su famoso "círculo sueco", han sido muchos los autores que han dado su nombre a otros tantos métodos de análisis, Janbu, Lowe, Spencer, Bishop, Taylor, Morgenstern, Price, Sarma, etc, hasta llegar, finalmente, al Método de los Elementos Finitos.

El desarrollo de los elementos finitos tal y como se conocen hoy en día ha estado ligado al cálculo estructural. En los años 40 Courant propone la utilización de funciones polinómicas para la formulación de problemas elásticos en subregiones triangulares, como un método especial del método variacional de Rayleigh-Ritz para aproximar soluciones.⁴

³ Evolución de la Geotecnia. [En línea]. Disponible en internet en: http://academic.uprm.edu/laccei/index.php/RIDNAIC/article/viewFile/202/207

⁴ Antecedentes de elementos finitos. [En línea]. Disponible en internet en: <<u>http://icc.ucv.cl:8080/geotecnia/18_ciclo_conferencias/2006/01_geomecanica_computacional/presentacione</u> s/01_lunes_15_mayo/02_elementos_finitos_ing_geotec/elementos_finitos_ing_teotec.pdf >

Fueron Turner, Clough, Martin y Topp en 1956 quienes presentaron el MEF en la forma aceptada hoy en día. En su trabajo introdujeron la aplicación de elementos finitos simples (barras y placas triangulares con cargas en su plano) al análisis de estructuras, utilizando los conceptos de discretizado y funciones de forma.

El libro de Zienkiewicz y Cheung oZienkiewicz y Taylor en 1967 presenta una interpretación amplia del MEF y su aplicación a cualquier problema de campos.

En él se demuestra que las ecuaciones de los MEF pueden obtenerse utilizando un método de aproximación de pesos residuales, tal como el método de Galerkin o el de mínimos cuadrados.

Esta visión del problema difundió un gran interés entre los matemáticos para la solución de ecuaciones diferenciales lineales y no lineales mediante el MEF, que ha producido una gran cantidad de publicaciones hasta tal punto que hoy en día el MEF está considerado como una de las herramientas más potentes y probadas para la solución de problemas de ingeniería y ciencia aplicada.⁵

2.1.4 Origen, formación y constitución del suelo. El geotecnista debe conocer el contexto geológico del suelo, e incluso el climatológico y agrológico. Sin ese entendimiento, su trabajo estará lleno de incertidumbres que pueden tradujese en pérdidas de oportunidades al desconocer propiedades inherentes y sobretodo, se podrán incorporar elementos de riesgo para el diseño, por omitir circunstancias fundamentales intrínsecas y ambientales.

La mecánica de suelos es la aplicación de la mecánica a los problemas geotécnicos. Ella estudia las propiedades, comportamiento y utilización del suelo como material estructural, de tal modo que las deformaciones y resistencia del suelo ofrezcan seguridad, durabilidad y estabilidad de las estructuras. La estructura del suelo puede ser natural (la del suelo "in situ"), como un talud, canal en tierra o artificial (suelo como material de construcción), como un terraplén o un relleno.⁶

"En lo que respecta al área de geotecnia, en Colombia se ha empleado el reglamento colombiano de construcción sismo resistente (NSR-10), el Título H quien trata acerca de los estudios geotécnicos que son un conjunto de actividades que se realizan para conocer las propiedades mecánicas y físicas del suelo con el fin de dar datos para el diseño de las obras que se encuentran en contacto con el suelo y de forma que garantice el adecuado comportamiento".

⁶ Historia de los suelos. [En línea]. 2014. Disponible en internet en: http://www.galeon.com/geomecanica/cap1.pdf>

Por lo anteriormente mencionado acerca de modelación numérica, se destaca que el paquete de software Geostudio que es una herramienta diseñada con importantes beneficios para el medio ingenieril, conteniendo mejoras de ingeniería que se realizaron para cada producto desde la versión 2004 (Versión 6). Dentro de los diferentes software que este mismo contiene, para la realización de este manual se hará uso de SIGMA/W que es un modelo numérico que puede simular matemáticamente el verdadero proceso de cambio de volumen del suelo en respuesta a uno mismo o la carga externa, haciendo uso de los elementos finitos.

2.2 MARCO CONCEPTUAL

Para la determinación de esfuerzos verticales, graficas de circulo de Mohr y asentamientos inmediatos empleando la teoría elástica y comparando con el software SIGMA/W, se requiere tener conocimiento acerca del comportamiento de los suelos cohesivos y granulares ante la presencia de un asentamiento y esfuerzo vertical, además conocer acerca del método de elementos finitos aplicado a la geotecnia, para esta investigación se centrara en las ocasionadas en cimentaciones superficiales y bajo la actuación de una carga rectangular, cuadrada, puntual o circular, para el respectivo estudio del suelo, se emplea la teoría de la elasticidad, que utiliza el módulo de elasticidad (E) y el módulo de Poisson (v), los cuales son parámetros, en donde influyen deformaciones axiales y laterales del suelo, ocasionando que no posean un valor específico, además para la aplicación de la teoría de elasticidad, se deben realizar diferentes hipótesis, entre ellas: Que el suelo es un medio continuo, heterogéneo e isótropo, que la compresibilidad es la misma en cualquier dirección y que la relación de esfuerzo deformación del suelo es lineal, además en el estudio de los suelos existen infinidad de propiedades y métodos tanto empíricos como semi-empiricos, que ayudan a solucionar y a obtener resultados de determinado suelo, que son de gran utilidad para la geotecnia, para este caso en particular, en el cálculo de asentamientos inmediatos en suelos cohesivos y granulares, existen métodos para el cálculo de los mismos, entre ellos se encuentran, el empleado para suelos cohesivos, que es conocido como el método de Steinbrenner, se utiliza considerando un espacio finito y con ayuda de un factor de influencia, que es calculado dependiendo de los Factores F1 y F2 y teniendo en cuenta, que es una capa de suelo con espesor finito bajo la esquina de un área rectangular flexible uniformemente cargada y en el caso de un espacio semi-infinito circular, se debe tener en cuenta la distancia radial y la profundidad a la que se encuentra el estrato bajo el cimiento y de esta forma determinar el factor de influencia, para el caso de suelos granulares se hace uso de un método semi-empírico,que es el Método de Schmertman, en donde se calcula un factor de influencia que se obtiene de determinada gráfica y para determinar si la cimentación es cuadrada o continua, se debe considerar unas relaciones respecto al ancho y largo del cimiento, se considera cimiento cuadrado si esta relación es igual a la unidad y continua si el largo sobre el ancho es mayor a 10, entonces se puede entrar a la gráfica y obtener el valor de influencia, para conocer el valor del asentamiento del suelo.

También se debe conocer acerca de diferentes propiedades físicas y mecánicas, entre ellas se encuentra un factor que actúa como coeficiente promedio de fricción y que es denominado ángulo de fricción interna, en donde, una cimentación cumple la función de transferir cargas

de la estructura al suelo, produciendo que las presiones o esfuerzos del mismo, se distribuyan en él y se disipen, en el momento de analizar el esfuerzo ocasionado por determinada carga, se debe analizar el bulbo de presiones, en donde, se producen incrementos de carga vertical considerables por efecto de una carga aplicada.⁷

En consecuencia, al tener conocimiento y aplicar las diferentes teorías existentes en la geotecnia para suelos cohesivos y granulares, entonces se determina el valor del asentamiento ocasionado en el suelo.

2.3 MARCO TEORICO

2.3.1 Generalidades de Asentamientos inmediatos. El cálculo de asentamientos inmediatos por medio de la teoría elástica se puede emplear para obtener una estimación de los asentamientos iniciales que se generan en la masa de suelo producido por la aplicación de cargas. Para utilizar la teoría de la elasticidad es necesario determinar en forma adecuada el módulo de elasticidad (E) y el módulo de Poisson (v). El módulo de elasticidad es el parámetro más crítico y su valor se debe seleccionar teniendo en cuenta tanto la magnitud del esfuerzo inicial como su variación.⁸

2.3.2 Ley generalizada de Hooke. Considérese una muestra de suelo en forma de cubo sometida a fuerzas que actúan en las direcciones de los tres ejes coordenados, produciendo los esfuerzos normales σ_x , σ_y , σ_z todos diferentes de cero (Ver figura 3).

Supóngase también que la muestra de suelo en forma de cubo tiene lados iguales a la unidad; bajo la carga triaxial, la muestra se convierte en un paralelepípedo rectangular de lados 1 + ε_x , 1 + ε_y , 1 + ε_z , en donde ε_x , ε_y y ε_z son las deformaciones unitarias normales en las direcciones de los ejes coordenados.

Para expresar las componentes de la deformación ε_x , ε_y y ε_z en términos de los esfuerzos σ_x , σ_y , σ_z , se considera separadamente el efecto de cada componente del esfuerzo y se combinan los resultados obtenidos. La aproximación que aquí se propone está basada en el principio de superposición. Este principio dice que el efecto de una combinación de cargas en un suelo se puede obtener determinado separadamente los efectos de las diferentes cargas y combinando los resultados obtenidos siempre que se cumplan las siguientes condiciones:

A cada efecto esta linealmente relacionado con la carga que lo produce La deformación que resulta de cualquier carga dad es pequeña y no afecta las condiciones de aplicación de las demás cargas (Deformaciones infinitesimales).⁹

Asentamientos inmediatos. [En 2014. Disponible línea]. en internet en: <http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf> [En Asentamientos inmediatos. línea]. 2014. Disponible en internet en: <http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf> ⁹ Ibid., p.2

Figura 3. Muestra de suelo sometida a carga triaxial.

Fuente. Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf>

En el caso de cargas triaxiales, la primera condición se cumple si los esfuerzos no exceden el límite de proporcionalidad del suelo y la segunda condición también se cumple si el esfuerzo en cualquier cara de la muestra de suelo no causa en las otras, deformaciones suficientemente grandes para afectar el cálculo de esfuerzos en esas caras.

Considerando que el efecto de σ_x , causa una deformación igual a $\sigma_x/_E$ en la dirección "x" y deformaciones de $-v\sigma_x/_E$ en las direcciones "y" y "z", análogamente σ_y ocasiona una deformacion $\sigma_y/_E$ en la dirección "y" con deformaciones de $-v\sigma_y/_E$ en las direcciones "x" y "z" y de la misma forma σ_z causa una deformación de $\sigma_z/_E$ en dirección de "z" y deformaciones $-v\sigma_z/_E$ en las direcciones "x" e "y". En el cuadro 1, se puede observar que al combinar los resultados se tiene que las deformaciones totales en cada cara son:

Las ecuaciones (1), (2) y (3) son consideradas como la ley generalizada de Hooke para carga triaxial, donde: σ_x es el esfuerzo aplicado en la cara "x" (FL^{-2}) , σ_y es el esfuerzo aplicado en la cara "y" (FL^{-2}) , σ_z es el esfuerzo aplicado en la cara "z" (FL^{-2}) , E es el módulo de elasticidad (FL^{-2}) , y v es el módulo de Poissòn (adimensional).¹⁰

¹⁰ Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf>

Esfuerzo	Deformación unitaria en el eje					
aplicado	ε _x	ε	ε _z			
Ec.1 σ_x	$\frac{\sigma_x}{E}$	$-\frac{v\sigma_x}{E}$	$-\frac{v\sigma_x}{E}$			
Ec.2 σ_y	$-\frac{v\sigma_y}{E}$	$\frac{\sigma_y}{E}$	$-\frac{v\sigma_y}{E}$			
Ec.3 σ_z	$-\frac{v\sigma_z}{E}$	$-\frac{v\sigma_z}{E}$	$\frac{\sigma_z}{E}$			

Cuadro 1. Ecuaciones de deformación unitaria y esfuerzo aplicado

Fuente. Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf>

En la ecuación 3, ecuación 4 y ecuación 5, se puede apreciar el resultado de la aplicación simultánea de los tres esfuerzos, obteniendo lo siguiente: ¹¹

$$\varepsilon_{\chi} = \frac{1}{E} \left[\sigma_{\chi} - \nu (\sigma_{y} + \sigma_{z}) \right]$$
(4)

$$\varepsilon_y = \frac{1}{E} \left[\sigma_y - \nu (\sigma_x + \sigma_z) \right]$$
(5)

$$\varepsilon_z = \frac{1}{E} \left[\sigma_z - v(\sigma_x + \sigma_y) \right] \tag{6}$$

2.3.3 Hipótesis de la teoría elástica aplicada en suelos. Para aplicar la teoría de la elasticidad en los suelos, es necesario hacer las siguientes hipótesis:

El suelo es un medio continuo

El suelo es un material homogéneo

El suelo es un material isótropo

La compresibilidad medida en el suelo es la misma en cualquier dirección La relación esfuerzo del suelo es lineal.

2.3.4. Parámetros elásticos

2.3.4.1 Módulo de elasticidad. El módulo de elasticidad es un parámetro con una magnitud que describe con aproximación el comportamiento de un suelo para una combinación particular de esfuerzos. ¹²

¹¹ Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf ¹² Ibid., p.2

Si se aplica un esfuerzo uniaxial σ_z a un cilindro elástico, se producirá una compresión vertical y una expansión lateral, de tal manera que a la relación entre el esfuerzo uniaxial y la deformación en el sentido de la aplicación del esfuerzo uniaxial se le conoce como módulo de elasticidad (Ver figura 4).

En la figura 5, está representando el comportamiento esfuerzo-deformación de un suelo.

Como la deformación uniaxial ε_z es adimensional; entonces el módulo de elasticidad E se expresa en las mismas unidades que el esfuerzo uniaxial σ_z , esto es en FL^{-2} .¹³

2.3.4.2 Módulo de Poisson. El módulo de Poisson es aquel que se genera al aplicar un esfuerzo uniaxial σ_z al cilindro elástico, produciendo así una deformación lateral y una deformación axial, en donde al valor absoluto que da como resultado de la relación entre la deformación lateral y la deformación axial se le conoce como módulo de Poisson (*v*), matemáticamente se expresa como lo establecido en la ecuación 7.¹⁴

$$v = \left| \frac{deformacion \, lateral}{deformaciòn \, axial} \right| \tag{7}$$

Figura 4. Cilindro de suelo sometido a esfuerzo uniaxial.

Fuente. Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf>

¹³ Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf ¹⁴ Ibid., p.2

Figura 5. Curva esfuerzo-deformación para un suelo bajo la acción de una carga.

Fuente. Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf>

El módulo de Poisson, para materiales elásticos ideales, varía entre 0 y 0.5. El valor de 0.5 corresponde a un material cuyo volumen no cambia por efecto de la carga como por ejemplo, el agua y el valor de 0 corresponde a un material que no se deforma lateralmente por la acción de la carga, por ejemplo el corcho. ¹⁵

2.3.5 Uso de la teoría elástica para el cálculo de asentamientos. La teoría de la elasticidad puede utilizarse para obtener expresiones de las deformaciones que resultan en una masa de suelo cuando se les aplica una carga. En la práctica, resultan de gran interés las deformaciones verticales, es decir, los asentamientos que se producen en la superficie de la masa de suelo cuando la carga se aplica sobre el área de una cimentación. Las soluciones para los asentamientos basadas en la teoría elástica utilizan el módulo de elasticidad (E) y el módulo de Poisson (v); sin embargo, una masa de suelo no tiene valores únicos de E y de v, y la dificultad para determinar los valores apropiados de estos parámetros limita la aplicación práctica de estas soluciones.

No obstante, en depósitos de arcilla saturada, los asentamientos que se presentan inmediatamente durante la construcción se producen sin ningún drenaje del agua intersticial del suelo; lo cual hace que sea razonable la hipótesis de un módulo de elasticidad no drenado constante, ya que no hay cambio de volumen en la masa de suelo con una relación de Poisson de v=0.5 (para fines prácticos se considera v=0.45).¹⁶

2.3.5.1 Asentamiento elástico bajo una carga concentrada. Los esfuerzos inducidos dependen del tipo de carga (concentrada, lineal, uniformemente distribuida) y del estrato de deformación que induzcan al suelo. Por lo que los asentamientos que ocurren dependen también de la geometría de las cargas.

¹⁵ Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf

Para una carga vertical concentrada que actúa en la frontera de un medio elástico semiinfinito, se estima el asentamiento bajo la carga usando la fórmula de Boussinesq para el esfuerzo normal vertical. Si se aplica la ley de Hooke en su forma más simple correspondiente a un estado uniaxial de esfuerzos, ver ecuación 8, se obtiene:

$$d\delta = \frac{\sigma_z}{E} dz \tag{8}$$

Dónde: δ es la deformación vertical del elemento dz situado a una profundidad "z" bajo la carga puntual aplicada, ver ecuación 9.¹⁷

Para este caso, se tiene que:

$$d\delta = \frac{3P}{2\pi E z^2} dz \tag{9}$$

Integrando la expresión (9) entre z e α y suponiendo el estrato de suelo de profundidad infinita, se obtiene como resultado la ecuación 11, resulta:

$$\delta = \frac{3P}{2\pi E} \int_{z}^{\alpha} \frac{dz}{z^2} = -\frac{3P}{2\pi E} \left[\frac{1}{z} \right]$$
(10)

$$\delta = \frac{3}{2} \frac{P}{\pi E z} \tag{11}$$

Dónde: δ es el asentamiento elástico bajo la carga puntual aplicada (L), P es la carga puntual aplicada (F), E es el módulo de elasticidad (FL^{-2}) y z es la profundidad a la que se calcula el asentamiento (L).

De la misma forma se puede calcular el asentamiento en cualquier punto de la masa de suelo a una profundidad z, ver ecuación 12.

$$\delta = \frac{P}{2\pi E} (1+\nu) \left[2(1-\nu) + \left(\frac{z}{R}\right)^2 \right] \frac{1}{R}$$
(12)

Dónde: v es el módulo de Poisson (adimensional) y R es el radio vector (L), ver ecuación 13.

$$R = \sqrt{x^2 + y^2 + z} \tag{13}$$

Para puntos bajo la carga puntual aplicada, la ecuación (12) se reduce a, como se aprecia en la ecuación 14:

$$\delta = \frac{P}{2\pi E z} (1+\nu)(3-2\nu)$$
(14)

Cabe resaltar que la ecuación , coincide con la ecuación, para v= 0.5.¹⁸

 ¹⁷ Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf
 ¹⁸ Ibid., p.2

2.3.5.2 Asentamientos elásticos bajo cargas distribuidas en un área circular. Para el caso de una superficie circular flexible bajo cargas distribuidas en la frontera superior de un medio semi-infinito, elástico, homogéneo e isótropo, se tiene que el asentamiento bajo el centro del área cargada está dada por la ecuación 15:

$$\delta_e = (1 - \nu^2) \frac{q}{E} D \tag{15}$$

El asentamiento en los puntos de la periferia del área circular cargada es, ver ecuación 16:

$$\delta_p = \frac{2}{\pi} (1 - v^2) \frac{q}{E} D$$
(16)

Y el asentamiento promedio de dicha área es, ver ecuación 17:19

$$\delta_m = \frac{8}{3\pi} (1 - v^2) \frac{q}{E} D$$
(17)

Dónde: q es la carga distribuida aplicada en el área circular (FL^{-2}) y D es el diametro del área circular (L).

Para un área circular rígida con una carga puntual aplicada P y diámetro D, la carga media distribuida o por unidad de área en un medio semi-infinito, elástico, homogéneo e isótropo es, ver ecuación 18:

$$q_m = \frac{4P}{\pi D^2} \tag{18}$$

Por lo tanto, el asentamiento bajo cargas distribuidas en cualquier punto del área circular rígida es, ver ecuación 19:

$$\delta_n = \frac{\pi}{4} (1 - v^2) \frac{q_m}{E} D$$
(19)

Dónde: q_m es la carga media distribuida en el área circular (FL^{-2}).²⁰

2.3.5.3 Asentamientos elásticos bajo cargas distribuidas en una superficie rectangular. Para el cálculo de asentamientos elásticos inducidos por una carga rectangular con carga uniforme, Steinbrenner resolvió el problema de cálculo de asentamientos en un medio elástico, homogéneo e isótropo de espesor "H" bajo una esquina del rectángulo cargado con la siguiente expresión, ver ecuación 20:

$$\delta = \frac{q}{E} (1 - v^2) \left[x ln \frac{y + \sqrt{x^2 + y^2} \sqrt{x^2 + H^2}}{x(y + \sqrt{x^2 + y^2} + H^2)} + y ln \frac{(x + \sqrt{x^2 + y^2}) \sqrt{y^2 + H^2}}{y(x + \sqrt{x^2 + y^2} + H^2)} \right] + \frac{q}{2\pi E} (1 - v - 2v^2) H tan^{-1} \frac{xy}{H \sqrt{x^2 + y^2 + H^2}}$$
(20)

 ¹⁹ Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf
 ²⁰ Ibid., p.2

Dónde: q es la carga distribuida aplicada en el área rectangular (FL^{-2}) , "x" es el largo del area rectangular (L) "y" es el ancho del area rectangular (L) y H es el espesor del estrato en el que se calcula el asentamiento (L).

Para calcular asentamientos bajo una esquina de una superficie rectangular uniformemente cargada en un medio semi-infinito, elástico, homogéneo e isótropo, Schleicher obtuvo la siguiente ecuación, ver ecuación 21:

$$\delta = \left[\frac{q(1-v^2)}{\pi E}\right] \left[x ln \frac{y + \sqrt{y^2 + x^2}}{x} + y ln \frac{x + \sqrt{x^2 + y^2}}{y} \right]$$
(21)

Dónde: q es la carga distribuida aplicada en el área rectangular (FL^{-2}) , "x" es el largo del area rectangular (L) e "y" es el ancho del área rectangular (L).²¹

2.3.6 Principio de esfuerzo efectivo. En una masa de suelo existen esfuerzos dentro del esqueleto del suelo que resultan de las fuerzas que actúan sobre los puntos de contacto entre partículas individuales y existen esfuerzo dentro del fluido intersticial que los vacíos del suelo.

Para estudiar el comportamiento ingenieril de los suelos es necesario tener la capacidad de distinguir estas dos clases de esfuerzos y también entender la relación entre ellos. Si se considera una masa de suelo saturado con una superficie horizontal, con el nivel freático a nivel del terreno, se tiene que en un plano horizontal XX de área A, a profundidad z, la columna vertical de suelo por encima de XX tendrá el peso total W, como se aprecia en la figura 6 y matemáticamente se obtiene lo siguiente, ver ecuación 22:

$$W = W_s + W_w \tag{22}$$

Donde W_s es el peso de las partículas del suelo y W_w es el peso del agua en los vacíos.

Figura 6. Masa de suelo saturado con una superficie horizontal

Fuente. Autora del proyecto

²¹ Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf>

Las partículas del suelo por debajo del nivel freático están sometidas a un empuje U de tal manera que su peso efectivo W'_s esta dado por, ver ecuación 23:

$$W'_{s} = W_{s} - U \tag{23}$$

Entonces, ver ecuación 24:

$$W_{\rm s} = W'_{\rm s} + U \tag{24}$$

Se tiene que, ver ecuación 25:

$$W = W'_s + U + W_w \tag{25}$$

Si V_s representa el volumen de las partículas de suelo en la columna y V_w el volumen de agua, entonces $U = \rho_w g V_s$ (Principio de Arquímedes) y $W_w = \rho_w g V_w$.

Entonces, ver ecuación 26:

$$W = W'_s + \rho_w g(V_s + V_v) \tag{26}$$

Como el suelo está saturado, el volumen de agua V_w es igual al volumen de vacíos V_v . Por tanto $V_s + V_w$ representa el volumen total V de la columna.²²

Entonces, ver ecuación 27:

$$W = W'_{s} + \rho_{w}gV \tag{27}$$

Y como V = Az, entonces, ver ecuación 28:

$$\frac{W}{A} = \frac{W_{s}}{A} + \rho_{w}gz \tag{28}$$

 $W/_A$ Define el esfuerzo sobre XX como resultado del peso total de la columna y se denomina *esfuerzo total*, representado por σ . W'_s/A es el esfuerzo sobre XX como resultado del peso específico de las partículas de suelo y se denomina *esfuerzo efectivo*, σ' . Puesto que el plano XX está a la profundidad z por debajo del nivel freático, el termino $\rho_w gz$ constituye a la *presión intersticial hidrostática* en representada por u. Así se obtiene la relación (Ec.29).²³

$$\sigma = \sigma' + u \tag{29}$$

2.3.7 Distribución de esfuerzos en el suelo debido a una carga puntual. Boussinesq (1885), en la figura 7, se puede observar la idealización de un modelo, donde se coloca una carga puntual sobre un medio elástico semi-infinito, encontrando que la solución para determinar el valor del incremento del esfuerzo vertical ($\Delta \sigma_z$) en un punto cualquiera con coordenadas cartesianas de localización ($x = x_a, y = y_a, z = z_a$).

Debido a la carga (P) impuesta, de forma general será, como se observa en la ecuación 30:

²² BERRY Peter L., REID David, Mecánica de Suelos, Mac Graw Hill interamericano S.A, 1993, Santafé de Bogotá, Pág. 50, ISBN: 958-600-172-5.

²³ Ibid., p.3

$$\Delta \sigma_z = \frac{3P}{2\pi z^2} \cos^5 \theta \tag{30}$$

donde:

$$\cos\theta = \frac{z}{\sqrt{r^2 + z^2}} \tag{31}$$

$$r = \sqrt{x^2 + y^2} \tag{32}$$

Figura 7. Modelo de Boussinesq, de carga puntual (P) sobre un medio elástico semi-infinito y sistema de ejes utilizado.

Fuente. Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en en:

<ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaci ones/Capitulos%20del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

% 20Distribuci% F3n% 20de% 20esfuerzos% 20en% 20el% 20suelo% 20debido% 20a% 20carga s.pdf >

Utilizando las definiciones antes vistas y realizando las simplificaciones respectivas, se puede expresar el incremento de esfuerzo vertical en el suelo ($\Delta \sigma_z$), de dos maneras, como se aprecia en la ecuación 33 y ecuación 34 respectivamente.²⁴

$$\Delta \sigma_{z} = \frac{3P}{2\pi z^{2} \left(1 + \left(\frac{r}{z}\right)^{2}\right)^{5/2}}$$
(33)

ò

²⁴ Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en: <ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaciones/Capitulos%2 0del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

^{% 20} Distribuci% F3n% 20 de% 20 es fuerzos% 20 en% 20 el% 20 suelo% 20 debido% 20 a% 20 cargas.pdf > 100 c

$$\Delta \sigma_z = \frac{3P}{2\pi} \cdot \frac{z^3}{(r^2 + z^2)^{5/2}}$$
(34)

Si se toma cualquiera de las dos ecuaciones y se realiza un análisis y un diagrama del incremento del esfuerzo vertical del plano **x-z** (y=0), se obtendrá un esquema como el mostrado en la figura 8, para el caso de una carga puntual unitaria, que podrá ser utilizado para cualquier valor de carga fundamentados en los principios de elasticidad, aclarando que la unidad de $\frac{\Delta \sigma_z}{P} = [1/m^2]$.²⁵

Figura 8. Distribución de esfuerzos en el terreno debido a una carga puntual.

Fuente. Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en:

 $<\!\!ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaciones/Capitulos%20del%20no%20nacido%20Libro/Cap%EDtulo%205%20-$

%20Distribuci%F3n%20de%20esfuerzos%20en%20el%20suelo%20debido%20a%20carga s.pdf >

²⁵ Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en: <ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaciones/Capitulos%2 0del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

^{% 20} Distribuci% F3n% 20 de% 20 es fuerzos% 20 en% 20 el% 20 suelo% 20 debido% 20 a% 20 cargas.pdf > 100 c

2.3.8 Distribución de esfuerzos en el terreno debido a una carga circular. Partiendo de la solución dada por Boussinesq para una carga puntual y dividiendo un área cargada circular en diferenciales de área, como muestra la figura 9.

Donde, una carga puntual (dP) sobre este diferencial se puede aproximar a $dP = q. r. d\theta. dr$ y se obtiene que, ver ecuación 35:

$$d(\Delta\sigma_z) = \frac{3(q.dx.dy)}{2\pi z^2 \left[1 + \left[\frac{\sqrt{x^2 + y^2}}{z}\right]^2\right]^{5/2}}$$
(35)

Integrando en toda la superficie del área circular, se tiene que, ver ecuación 36:

$$\Delta \sigma_{z} = \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=B/2} \frac{3(q.r.d\theta.dr)}{2\pi z^{2} \left(1 + \left(\frac{r}{z}\right)^{2}\right)^{5/2}}$$
(36)

Figura 9. Modelo de carga circular (q) sobre un medio elástico semi-infinito, y sistema de ejes utilizado

Fuente. Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en:

 $<\!\!ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaciones/Capitulos%20del%20no%20nacido%20Libro/Cap%EDtulo%205%20-$

% 20Distribuci% F3n% 20de% 20esfuerzos% 20en% 20el% 20suelo% 20debido% 20a% 20carga s.pdf >

Al solucionar la anterior integral, se encuentra que el incremento del esfuerzo vertical ($\Delta \sigma_z$) para un punto cualquiera (a) debajo del centro de una cimentación circular, de radio R, cargada con un valor de esfuerzo de contacto (q) uniformemente distribuido, en una profundidad dada (z) cualquiera, será, ver ecuación 37: ²⁶

²⁶ Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en: <ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaciones/Capitulos%2 0del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

^{% 20} Distribuci% F3n% 20 de% 20 es fuerzos% 20 en% 20 el% 20 suelo% 20 debido% 20 a% 20 cargas.pdf > 100 c

$$\Delta \sigma_z = q \left[1 - \left[\frac{1}{1 + \left(\frac{R}{z}\right)^2} \right]^{3/2} \right]$$
(37)

Donde:

R: Es el radio de la cimentación, y será igual a R=B/2.

Para conocer el incremento de esfuerzo vertical en lugares diferentes a puntos localizados debajo del centro de la cimentación circular, se deberá solucionar la integral de la ecuación 28, con los adecuados límites de integración, variándolos de acuerdo a la distancia (r) desde el centro de la cimentación hasta punto investigado y a la profundidad (z).²⁷

2.3.9 Distribución de esfuerzos en el terreno debido a una carga rectangular

Partiendo de la solución dada por Boussinesq para una carga puntual y la definición de \mathbf{r} y dividiendo un área cargada rectangular en diferenciales de área, como muestra la figura 10.

Figura 10. Modelo de carga rectangular (q) sobre un medio elástico semi-infinito, y sistema de ejes utilizado.

Fuente. Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en:

<ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaci ones/Capitulos%20del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

%20Distribuci%F3n%20de%20esfuerzos%20en%20el%20suelo%20debido%20a%20carga s.pdf >

²⁷ Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en: <ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaciones/Capitulos%2 0del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

^{% 20}Distribuci%F3n% 20de% 20esfuerzos% 20en% 20el% 20suelo% 20debido% 20a% 20cargas.pdf >

Donde, una carga puntual (**dP**) sobre este diferencial se puede aproximar a $\mathbf{dP} = \mathbf{q} \cdot \mathbf{dx} \cdot \mathbf{dy}$, se obtiene que, ver ecuación 38:

$$d(\Delta\sigma_z) = \frac{3(q.dx.dy)}{2\pi z^2 \left[1 + \left[\frac{\sqrt{x^2 + y^2}}{z}\right]^2\right]^{5/2}} = \frac{3(q.dx.dy)z^3}{2\pi (x^2 + y^2 + z^2)^{5/2}}$$
(38)

Integrando en toda la superficie del área rectangular, se tiene que, ver ecuación 39: 28

$$\Delta \sigma_z = \int_{y=0}^{y=L} \int_{x=0}^{x=B} \frac{3(q.dx.dy)z^3}{2\pi (x^2 + y^2 + z^2)^{5/2}}$$
(39)

Al solucionar la anterior integral (Newmark) 1935, encontró que el incremento del esfuerzo vertical ($\Delta \sigma_z$) para un punto cualquiera (a) debajo de la esquina de una cimentación rectangular, de ancho **B** y largo **L**, cargada con un valor de esfuerzo de contacto (**q**) uniformemente distribuido, en una profundidad dada (**z**) cualquiera, será, ver ecuación 41:

$$\Delta \sigma_z = q I(m, n) \tag{40}$$

donde:

$$m = \frac{B}{z} \quad (30)$$

$$n = \frac{L}{z} \quad (31)$$

$$I(m,n) = \frac{1}{4\pi} \left[\frac{2mn\sqrt{m^2 + n^2 + 1}}{m^2 + n^2 + 1} \frac{m^2 + n^2 + 2}{m^2 + n^2 + 1} + \tan^{-1} \left(\frac{2mn\sqrt{m^2 + n^2 + 1}}{m^2 + n^2 + 1 - m^2 n^2} \right) \right] \quad (41)$$

En el caso que el valor de (m^2n^2) sea mas grande que el valor de $(m^2 + n^2 + 1)$, el termino de la ecuación 31 que utiliza tangente inversa se vuelve negativo, luego será necesario modificar la ecuación, sumando el anterior resultado el valor de π , de la siguiente manera, ver ecuación 42:

$$I(m,n) = \frac{1}{4\pi} \left[\frac{2mn\sqrt{m^2 + n^2 + 1}}{m^2 + n^2 + m^2 n^2 + 1} \frac{m^2 + n^2 + 2}{m^2 + n^2 + 1} + \tan^{-1} \left(\frac{2mn\sqrt{m^2 + n^2 + 1}}{m^2 + n^2 + 1 - m^2 n^2} \right) + \pi \right]$$
(42)

El valor del factor de influencia I (m,n), siempre deberá estar entre, ver ecuación 43:

$$0 \le I(m,n) \le 0.25$$
 (43)

Los valores del factor de influencia **I** (**m**,**n**), a partir de las ecuaciones 42 y 43, se puede obtener del grafico de la figura 11, para diferentes valores de **m** y **n** o del cuadro 2.²⁹

²⁸ Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en: <ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaciones/Capitulos%2 0del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

[%] 20Distribuci % F3n% 20de% 20esfuerzos% 20en% 20el% 20suelo% 20debido% 20a% 20cargas.pdf > 29 Ibid., p.4

Figura 11. Valor del factor de influencia para diferentes valores de m y n.

Fuente. Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en:

<ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaci ones/Capitulos%20del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

% 20 Distribuci% F3n% 20 de% 20 es fuerzos% 20 en% 20 el% 20 suelo% 20 debido% 20 a% 20 carga s.pdf <math display="inline">>

La profundidad del bulbo de presiones (Db) de un área rectangular es difícil de determinar de forma general, más aun cuando es una distribución de carga compuesta. Se puede deducir que esta varía entre dos veces su ancho (B) (En el caso de una zapata cuadrada) y tres veces su ancho (B), pero de manera aproximada Db es asumida, para el caso de una zapata rectangular como se evidencia en la Ecuación 44: ³⁰

$$D_b = 2B$$

(44)

³⁰ Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en: <ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaciones/Capitulos%2 0del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

^{% 20} Distribuci% F3n% 20 de% 20 es fuerzos% 20 en% 20 el% 20 suelo% 20 debido% 20 a% 20 cargas.pdf > 100 c

Cuadro 2. Valor del factor de influencia para diferentes valores de m y n.

	n ó m											
món	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	2.0	00
0.1	0.0047	0.0092	0.0132	0.0168	0.0198	0.0222	0.0242	0.0258	0.0270	0.0279	0.0311	0.0316
0.2	0.0092	0.0179	0.0259	0.0328	0.0387	0.0435	0.0473	0.0504	0.0528	0.0547	0.0610	0.0620
0.3	0.0132	0.0259	0.0374	0.0474	0.0559	0.0629	0.0686	0.0731	0.0766	0.0794	0.0887	0.0902
0.4	0.0168	0.0328	0.0474	0.0602	0.0711	0.0801	0.0873	0.0931	0.0977	0.1013	0.1134	0.1154
0.5	0.0198	0.0387	0.0559	0.0711	0.0840	0.0947	0.1034	0.1103	0.1158	0.1202	0.1350	0.1375
0.6	0.0222	0.0435	0.0629	0.0801	0.0947	0.1069	0.1168	0.1247	0.1311	0.1360	0.1533	0.1562
0.7	0.0242	0.0473	0.0686	0.0873	0.1034	0.1168	0.1277	0.1365	0.1436	0.1491	0.1686	0.1720
0.8	0.0258	0.0504	0.0731	0.0931	0.1103	0.1247	0.1365	0.1461	0.1537	0.1598	0.1812	0.1850
0.9	0.0270	0.0528	0.0766	0.0977	0.1158	0.1311	0.1436	0.1537	0.1618	0.1684	0.1915	0.1958
1.0	0.0279	0.0547	0.0794	0.1013	0.1202	0.1360	0.1491	0.1598	0.1684	0.1752	0.1999	0.2046
1.5	0.0304	0.0595	0.0864	0.1105	0.1314	0.1490	0.1637	0.1758	0.1857	0.1936	0.2236	0.2299
2.0	0.0311	0.0610	0.0887	0.1134	0.1350	0.1533	0.1686	0.1812	0.1915	0.1999	0.2325	0.2399
3.0	0.0315	0.0618	0.0898	0.1150	0.1368	0.1555	0.1711	0.1841	0.1947	0.2034	0.2378	0.2465
4.0	0.0316	0.0619	0.0901	0.1153	0.1372	0.1560	0.1717	0.1847	0.1954	0.2042	0.2391	0.2485
5.0	0.0316	0.0620	0.0901	0.1154	0.1374	0.1561	0.1718	0.1849	0.1956	0.2044	0.2395	0.2492
10.0	0.0316	0.0620	0.0902	0.1154	0.1374	0.1562	0.1720	0.1850	0.1958	0.2046	0.2398	0.2499
~~~~	0.0316	0.0620	0.0902	0.1154	0.1375	0.1562	0.1720	0.1850	0.1958	0.2046	0.2399	0.2500

**Fuente.** Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en en:

<ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fundaci ones/Capitulos%20del%20no%20nacido%20Libro/Cap%EDtulo%205%20-

%20Distribuci%F3n%20de%20esfuerzos%20en%20el%20suelo%20debido%20a%20carga s.pdf >

**2.3.10 Elementos finitos.** El método de los elementos finitos (MEF) ha adquirido una gran importancia en la solución de problemas ingenieriles, físicos, entre otros, permitiendo resolver casos que hasta hace poco tiempo eran prácticamente imposibles de resolver por métodos matemáticos tradicionales.

El MEF permite realizar un modelo matemático de cálculo del sistema real, más fácil y económico de modificar que un prototipo. Sin embargo no deja de ser un método aproximado de cálculo debido a las hipótesis básicas del método. Los prototipos, por lo tanto, siguen siendo necesarios, pero en menor número, ya que el primero puede acercarse bastante más al diseño óptimo.

El método de los elementos finitos como formulación matemática es relativamente nuevo; aunque su estructura básica es conocida desde hace bastante tiempo, en los últimos años ha sufrido un gran desarrollo debido a los avances informáticos.

Han sido precisamente estos avances informáticos los que han puesto a disposición de los usuarios gran cantidad de programas que permiten realizar cálculos con elementos finitos.³¹

³¹ Elementos finitos. [En línea]. s.f. Disponible en internet en:

 $< http://icc.ucv.cl:8080/geotecnia/18_ciclo_conferencias/2006/01_geomecanica_computational/presentationes/01_lunes_15_mayo/02_elementos_finitos_ing_geotec/elementos_finitos_ing_teotec.pdf > 0.01_lunes_15_mayo/02_elementos_finitos_ing_geotec/elementos_finitos_ing_teotec.pdf > 0.000_cong_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_teotec.pdf > 0.000_cong_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec.pdf > 0.000_cong_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec.pdf > 0.000_cong_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_ing_geotec/elementos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_finitos_fini$ 

Pero no hay que llevarse a engaño, el manejo correcto de este tipo de programas exige un profundo conocimiento no solo del material con el que se trabaja, sino también de los principios del MEF.

Sólo en este caso estaremos en condiciones de garantizar que los resultados obtenidos en los análisis se ajustan a la realidad.³²

**2.3.11 Software SIGMA/W.** SIGMA/W es un elemento de producto de software CAD finito que se puede utilizar para llevar a cabo el estrés y análisis de la deformación de las estructuras de tierra. Su formulación integral hace posible el análisis de problemas simples y de alta complejidad. SIGMA/W puede realizar un análisis elástico lineal simple deformación o un análisis de tensión altamente sofisticada, no lineal elastoplástico eficaz.³³

Los muchos modelos de suelo constitutivos le permiten representar una amplia gama de suelos o materiales estructurales. Además, SIGMA / W puede modelar la generación de la presión de agua de los poros y la disipación en una estructura del suelo en respuesta a las cargas externas. Estas características permiten a SIGMA / W para analizar casi cualquier tensión o deformación problema que se encontrará en los proyectos geotécnicos, civiles y de ingeniería minera.³⁴

**2.3.11.1 Procedimiento de Utilización.** En la modelación del software SIGMA/W, se lleva a cabo el siguiente procedimiento:

**Definir un Modelo de estrés-deformación.** Se debe dibujar o importar un archivo DXF TM y de esta forma definir la geometría de las regiones y líneas que identifican las capas del suelo. Seguidamente se procede a aplicar las condiciones de contorno y especificar propiedades de los materiales, elementos estructurales, vigas entre otros.

**Visualización de los resultados del análisis.** Al haber resuelto el análisis, el software SIGMA/W cuenta con muchas propiedades para visualizar los resultados. Entre las que se encuentran:

- Malla de vectores o desplazamiento deformados en cualquier ampliación.
- Contornos o gráficos con más de 30 parámetros calculados, incluyendo la deformación, la tensión total y efectiva, la tensión y la presión del agua intersticial.
- Zonas de rendimiento sombreadas
- El estado de tensión en cualquier nodo o elemento de punto de Gauss como un círculo de Mohr con los diagramas de fuerza espacial asociados.
- Distribución de momentos o cizalla plot a lo largo de los elementos estructurales.

³² Elementos finitos. [En línea]. s.f. Disponible en internet en: <a href="http://icc.ucv.cl:8080/geotecnia/18_ciclo_conferencias/2006/01_geomecanica_computacional/presentacione">http://icc.ucv.cl:8080/geotecnia/18_ciclo_conferencias/2006/01_geomecanica_computacional/presentacione</a> s/01_lunes_15_mayo/02_elementos_finitos_ing_geotec/elementos_finitos_ing_teotec.pdf >

³³ Generalidades de Software SIGMA/W. [En línea]. 2014. Disponible en internet en: <a href="http://www.geo-slope.com/products/sigmaw.aspx">http://www.geo-slope.com/products/sigmaw.aspx</a>>

³⁴ Ibid., p.3

Teniendo los resultados, se añaden etiquetas, ejes, imágenes y si se desea se puede exportar los resultados en otras aplicaciones como Microsoft ® Excel ® para su posterior análisis.³⁵

## • Aplicaciones típicas

Dentro de las aplicaciones típicas se encuentran:

- Arreglo de zapatas, tanques llenos de líquido, o estructuras de tierra
- Deformación dentro o debajo de un terraplén o dique de tierra
- Clausura en torno a un túnel
- El movimiento lateral de las excavaciones arriostrados o anclados y la solución de la superficie alrededor de la excavación
- Piso de rebote a cielo abierto, zanjas inclinadas
- Los cambios de volumen (consolidación desacoplada o alzadas) como resultado de los cambios de presión de agua de poro
- La colocación del relleno por etapas, remoción de tierra

• Interacción suelo-estructura, que incluye gratis anclas unidas ONU, puntales de excavación cruzadas y cerchas

- Análisis consolidación totalmente acoplado
- Simulación del depósito de relaves
- Deformaciones permanentes que resultan de la pérdida de fuerza
- Estabilidad de reducción de resistencia. ³⁶

# 2.4. MARCO LEGAL

Para llevar a cabo los diferentes resultados obtenidos en el software y aplicando la base teórica existente, se debe tener en cuenta y aplicar los conceptos establecidos por la Norma Colombiana de Diseño y Construcción Sismo Resistente (NSR-10), creada por la ley 1229 de 2008.

³⁵ Generalidades de Software SIGMA/W. [En línea]. 2014. Disponible en internet en: <<u>http://www.geo-slope.com/products/sigmaw.aspx></u>

³⁶ Ibid., p.2

# 3. <u>DISEÑO METODOLOGICO</u>

### **3.1 TIPO DE INVESTIGACIÓN**

Tipo de investigación descriptiva, en donde, se puede describir el comportamiento que tienen los diferentes tipos de cimentaciones superficiales mediante ecuaciones matemáticas pertenecientes a la teoría elástica y con el empleo del software SIGMA/W que emplea el método de elementos finitos.

## **3.2 POBLACIÓN**

Los diferentes datos fueron obtenidos del banco de datos del Grupo de investigación GIGMA, en donde, la Universidad Francisco de Paula Santander Ocaña dispone de estos laboratorios.

## 3.3 TÉCNICAS DE RECOLECCIÓN DE INFORMACIÓN

Las técnicas de recolección empleadas para este proyecto son: Manuales existentes acerca del software SIGMA/W. Trabajos de grado donde empleen software con el método de elementos finitos. Profesionales con conocimiento en el software SIGMA/W. Norma Sismo Resistente Colombiana en su Título H-Estudios.

### 4 PRESENTACION DE RESULTADOS

### **4.1** <u>CALCULAR ESFUERZOS VERTICALES, GRÁFICAS DE CÍRCULO DE</u> <u>MOHR Y ASENTAMIENTOS INMEDIATOS EN SUELOS COHESIVOS Y</u> <u>GRANULARES, MEDIANTE LA TEORÍA ELÁSTICA.</u>

Para el cálculo de esfuerzos verticales, gráficas de círculo de Mohr y asentamientos inmediatos en suelos cohesivos y suelos granulares producidos en cimentaciones superficiales, se realiza el cálculo de incremento de esfuerzos verticales causados por una carga externa, empleando el método basado en la teoría de Boussinesq, en donde, para cimientos cuadrados, rectangulares y losas superficiales, se considera la distribución ocasionado por una carga rectangular, para cimientos circulares la distribución ocasionado por una carga circular y para cimientos continuos la distribución ocasionado por una carga de franja (Ancho finito y longitud infinita), el cálculo de esfuerzos geoestáticos verticales asociados al peso propio del suelo, se determina dependiendo la condición del ejercicio, que puede ser: Esfuerzos normales, esfuerzos efectivos y presión de poros, la determinación de las gráficas de circulo de Mohr, se consideran los esfuerzos horizontales y verticales asociados al peso propio del suelo, teniendo en cuenta la relación de poissón para la obtención del coeficiente de esfuerzo lateral  $K_o$  coeficiente de presión de tierras, estos diferentes cálculos se analizan a cada metro de profundidad, obteniendo 8 puntos de análisis y en el caso de los esfuerzos ocasionados por las cargas externas se contempla su comportamiento en el centro y borde del cimiento, para el cálculo de asentamientos inmediatos se emplea la teoría elástica para suelos cohesivos y la teoría de Schmertman para suelos granulares, analizando su comportamiento en el centro y borde del cimiento. Estos diferentes cálculos, se llevan a cabo para dieciséis modelos de ejercicios, contemplados de la siguiente manera:

Cuatro ejercicios de cimientos cuadrados y rectangulares, cuatro ejercicios de cimientos circulares, cuatro ejercicios de cimientos continuos y cuatro ejercicios de losas superficiales, considerando suelos estratificados en condiciones de presencia y ausencia de nivel freático, con un módulo de elasticidad constante, con una carga actuante de igual valor para los diferentes ejercicios equivalente a 1000 *kPa*, el detalle de enunciados y procesos de cálculo llevados a cabo se puede observar en el anexo A. Los diferentes resultados acerca de esfuerzos verticales, esfuerzos producidos en el círculo de Mohr y asentamientos inmediatos, se pueden apreciar en el cuadro 3, cuadro 4, cuadro 5, cuadro 6, cuadro 7, cuadro 8, cuadro 9, cuadro 10, cuadro 11, cuadro 12, cuadro 13, cuadro 14, cuadro 15, cuadro 16, cuadro 17, cuadro 18, cuadro 29, cuadro 20, cuadro 20, cuadro 30, cuadro 31, cuadro 32, cuadro 33, cuadro 34 y las respectivas graficas de circulo de Mohr, se pueden observar a partir de la gráfica 1 a la gráfica 32.

## 4.1.1 Cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Cuadro 3. Esfuerzos verticales y Círculo de Mohr para cimiento rectangular de dimensiones	s
3 <i>m x</i> 6 <i>m</i> .	

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de Esfuerzos - Centro (kPa)	Incremento de Esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
I	16,59	920	247	16,59	11,06
2	33,18	684	230	33,18	22,13
3	50,695	484	200	50,695	21,748
4	69,135	348	170	69,135	29,659
5	87,58	256	142	87,580	37,571
6	106,015	188	122	106,015	45,48
7	124,455	144	104	124,455	53,391
8,5	152,115	104	78	152,115	65,257

Fuente. Autora del proyecto

Gráfica 1. Gráfica de Circulo de Mohr mediante cálculos basados en la teoría elástica -Profundidad de 1m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto

Gráfica 2. Gráfica de Circulo de Mohr mediante cálculos basados en la teoría elástica -Profundidad de 2m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto

**Gráfica 3.** Gráfica de círculo de Mohr – Profundidad de 3m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto

**Gráfica 4.** Gráfica de círculo de Mohr – Profundidad de 4m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto

**Gráfica 5.** Gráfica de círculo de Mohr – Profundidad de 5m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto

**Gráfica 6.** Gráfica de círculo de Mohr – Profundidad de 6m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto

**Gráfica 7.** Gráfica de círculo de Mohr – Profundidad de 7m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto

**Gráfica 8.** Gráfica de círculo de Mohr – Profundidad de 8,5m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto
**Cuadro 4.** As entamiento inmediato en el centro y borde del cimiento rectangular de dimensiones  $3m \times 6m$ .

Profundidad	Asentamientos inmediatos			
(m)	Centro (m)	Borde (m)		
0	0,2426	0,126		

Fuente. Autora del proyecto

# **4.1.2** Cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 5.** Esfuerzos verticales y Círculo de Mohr para cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de Esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	18	8,19	9,81	936	250	8,19	5,460
2	36	16,38	19,62	752	225	16,38	10,920
3	55,1	25,67	29,43	552	205	25,67	11,012
4	75,3	36,06	39,24	416	186	36,06	15,470
5	95,5	46,45	49,05	308	164	46,45	19,927
6	115,7	56,84	58,86	236	142	56,84	24,384
7	135,9	67,23	68,67	188	122	67,23	28,841
8,5	166,2	82,815	83,385	132	99	82,815	35,528

#### Fuente. Autora del proyecto

**Gráfica 9.** Gráfica de círculo de Mohr – Profundidad de 1m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Autora del proyecto





Fuente. Autora del proyecto





Fuente. Autora del proyecto





Fuente. Autora del proyecto

**Gráfica 13.** Gráfica de círculo de Mohr – Profundidad de 5m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Autora del proyecto

**Gráfica 14.** Gráfica de círculo de Mohr – Profundidad de 6m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Autora del proyecto

**Gráfica 15.** Gráfica de círculo de Mohr – Profundidad de 7m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Autora del proyecto

**Gráfica 16.** Gráfica de círculo de Mohr – Profundidad de 8,5m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Autora del proyecto

**Cuadro 6.** Asentamiento inmediato en el centro y borde del cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad	Asentamiento	os inmediatos	
(m)	Centro (m)	Borde (m)	
0	0,3445	0,14956	

# 4.1.3 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

**Cuadro 7.** Esfuerzos verticales y Círculo de Mohr para cimiento cuadrado de dimensiones  $3m \times 3m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	18,44	872	244	18,44	7,910
2	36,88	552	217	36,88	15,821
3	54,395	340	178	54,395	36,281
4	70,985	240	140	70,985	47,347
5	87,575	156	108	87,575	58,412
б	104,165	112	85	104,165	69,478
7	120,755	76	60	120,755	80,543
8,5	145,64	48	50	145,64	97,142

Fuente. Autora del proyecto

**Gráfica 17.** Gráfica de círculo de Mohr – Profundidad de 1m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Gráfica 18.** Gráfica de círculo de Mohr – Profundidad de 2m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Gráfica 19.** Gráfica de círculo de Mohr – Profundidad de 3m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Gráfica 20.** Gráfica de círculo de Mohr – Profundidad de 4m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Gráfica 21.** Gráfica de círculo de Mohr – Profundidad de 5m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Gráfica 22.** Gráfica de círculo de Mohr – Profundidad de 6m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Gráfica 23.** Gráfica de círculo de Mohr – Profundidad de 7m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Gráfica 24.** Gráfica de círculo de Mohr – Profundidad de 8,5m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Cuadro 8.** Asentamiento inmediato en el centro y borde del cimiento cuadrado de dimensiones  $3m \times 3m$ .

Profundidad	Asentamientos inmediatos			
(m)	Centro (m)	Borde (m)		
0	0,24865	0,0676		

Fuente. Autora del proyecto

## 4.1.4 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 9.** Esfuerzos verticales y Círculo de Mohr para cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de Esfuerzos - Centro (kPa)	Incremento de Esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	20,2	10,39	9,81	932	249	10,39	4,457
2	40,4	20,78	19,62	716	233	20,78	8,914
3	59,5	30,07	29,43	492	207	30,07	20,057
4	77,5	38,26	39,24	340	179	38,26	25,520
5	95,5	46,45	49,05	240	149,2	46,45	30,982
6	113,5	54,64	58,86	176	123	54,64	36,445
7	131,5	62,83	68,67	156	100	62,83	41,907
8,5	158,5	75,115	83,385	151,12	77	75,115	50,102

#### Fuente. Autora del proyecto

**Gráfica 25.** Gráfica de círculo de Mohr – Profundidad de 1m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Gráfica 26.** Gráfica de círculo de Mohr – Profundidad de 2m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Gráfica 27.** Gráfica de círculo de Mohr – Profundidad de 3m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Gráfica 28.** Gráfica de círculo de Mohr – Profundidad de 4m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Gráfica 29.** Gráfica de círculo de Mohr – Profundidad de 5m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Gráfica 30.** Gráfica de círculo de Mohr – Profundidad de 6m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Gráfica 31.** Gráfica de círculo de Mohr – Profundidad de 7m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Gráfica 32.** Gráfica de círculo de Mohr – Profundidad de 8,5m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Cuadro 10.** Asentamiento inmediato en el centro y borde del cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad	Asentamientos inmediatos			
(m)	Centro (m)	Borde (m)		
0	0,2889	0,0706		

Fuente. Autora del proyecto

## 4.1.5 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

**Cuadro 11.** Esfuerzos verticales y Círculo de Mohr para cimiento circular de diámetro 3,0*m*.

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de Esfuerzos - Centro (kPa)	Incremento de Esfuerzos - Borde (kPa)	Vertical (kPa)	Horizontal (kPa)
I	16,59	829,32	400	16,59	11,06
2	33,18	488	300	33,18	22,13
3	50,695	284,46	210	50,695	21,748
4	69,135	179,1	148	69,135	29,659
5	87,58	121,26	108	87,580	37,571
6	106,015	86,92	78	106,015	45,48
7	124,455	65,13	58	124,455	53,391
8,5	152,115	44,96	41	152,115	65,257

**Cuadro 12.** Asentamiento inmediato en el centro y borde del cimiento circular de diámetro 3,0*m*.

Profundidad	Asentamientos inmediatos			
(m)	Centro (m)	Borde (m)		
0	0,23264	0,1388		

Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

# **4.1.6** Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
I	18	8,19	9,81	877,87	405	8,19	5,460
2	36	16,38	19,62	573,76	310	16,38	10,920
3	55,I	25,67	29,43	355,52	240	25,67	11,012
4	75,3	36,06	39,24	231,03	180	36,06	15,470
5	95,5	46,45	49,05	159,15	135	46,45	19,927
б	115,7	56,84	58,86	115,26	100	56,84	24,384
7	135,9	67,23	<b>68,6</b> 7	86,92	79	67,23	28,841
8,5	166,2	82,815	83,385	60,37	56	82,815	35,528

Cuadro 13. Esfuerzos verticales y Círculo de Mohr para cimiento circular de diámetro 3,5*m*.

Fuente. Autora del proyecto

**Cuadro 14.** As entamiento inmediato en el centro y borde del cimiento circular de diámetro 3,5m.

Profundidad	Asentamienta	os inmediatos	
(m)	Centro (m)	Borde (m)	
0	0,3448	0,16657	

Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

# 4.1.7 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	18,44	910,56	410	18,44	7,910
2	36,88	646,45	340	36,88	15,821
3	54,395	423,97	275	54,395	36,281
4	70,985	284,458	210	70,985	47,347
5	87,575	199,59	158	87,575	58,412
6	104,165	146,19	120	104,165	69,478
7	120,755	111,04	98	120,755	80,543
8,5	145,64	77,65	72	145,64	97,142

Cuadro 15. Esfuerzos verticales y Círculo de Mohr para cimiento circular de diámetro 4,0m.

### Fuente. Autora del proyecto

**Cuadro 16.** Asentamiento inmediato en el centro y borde del cimiento circular de diámetro 4,0*m*.

Profundidad	Asentamientos inmediatos			
(m)	Centro (m)	Borde (m)		
0	0,2196	0,0675		

### Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

# **4.1.8** Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

Cuadro 17. Esfuerzos verticales y Círculo de Mohr para cimiento circular de diámetro 4, 5m.

Profundidad (m)	Esfuerzos normles (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	20,2	10,39	9,81	933,01	430	10,39	4,457
2	40,4	20,78	19,62	706,76	360	20,78	8,914
3	59,5	30,07	29,43	488	300	30,07	20,057
4	77,5	38,26	39,24	337,91	240	38,26	25,520
5	95,5	46,45	49,05	241,64	190	46,45	30,982
6	113,5	54,64	58,86	179,11	150	54,64	36,445
7	131,5	62,83	68,67	137,12	120	62,83	41,907
8,5	158,5	75,115	83,385	96,6	85	75,115	50,102

**Cuadro 18.** Asentamiento inmediato en el centro y borde del cimiento circular de diámetro 4,5*m*.

Profundidad	Asentamientos inmediatos				
(m)	Centro (m)	Borde (m)			
0	0,2278	0,0675			

Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

## **4.1.9** Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

**Cuadro 19.** Esfuerzos verticales y Círculo de Mohr para cimiento continúo de dimensiones 2m x 20 m.

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
I	16,59	818,31	479,74	16,59	11,06
2	33,18	549,815	409,155	33,18	22,13
3	50,695	395,818	334,08	50,695	21,748
4	69,135	305,751	274,907	69,135	29,659
5	87,58	248,093	230,881	87,580	37,571
6	106,015	203,282	197,91	106,015	45,48
7	124,455	179,461	172,667	124,455	53,391
8,5	152,115	148,427	152,876	152,115	65,257

Fuente. Autora del proyecto

**Cuadro 20.** Asentamiento inmediato en el centro y borde del cimiento continúo de dimensiones  $2m \times 20m$ .

Profundidad	Asentmientos inmediatos			
(m)	Centro (m)	Borde (m)		
0	0,3498	0,13182		

Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

# 4.1.10 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 21.** Esfuerzos verticales y Círculo de Mohr para cimiento continúo de dimensiones *3m x* 30 *m*.

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
I	18	8,19	9,81	919,49	493,076	8,19	5,460
2	36	16,38	19,62	715,243	459,745	16,38	10,920
3	55,1	25,67	29,43	549,815	409,155	25,67	11,012
4	75,3	36,06	39,24	437,7	357,621	36,06	15,470
5	95,5	46,45	49,05	360,764	312,452	46,45	<i>19,927</i>
6	115,7	56,84	58,86	305,751	274,907	56,84	24,384
7	135,9	67,23	68,67	264,816	244,131	67,23	28,841
8,5	166,2	82,815	83,385	220,151	207,901	82,815	35,528

#### Fuente. Autora del proyecto

**Cuadro 22.** Asentamiento inmediato en el centro y borde del cimiento continúo de dimensiones  $3m \times 30m$ .

Profundidad	l Teoría elástica			
(m)	Centro (m)	Borde (m)		
0	0,5781	0,13771		

### Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

### 4.1.11 Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

**Cuadro 23.** Esfuerzos verticales y Círculo de Mohr para cimiento continúo de dimensiones  $5m \times 50 m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	18,44	977,286	498,380	18,44	7,910
2	36,88	880,992	488,643	36,88	15,821
3	54,395	755,376	468,410	54,395	36,281
4	70,985	641,736	440,496	70,985	47,347
5	87,575	549,815	409,155	87,575	58,412
6	104,165	477,351	377,688	104,165	69,478
7	120,755	420,02	347,984	120,755	80,543
8,5	145,64	354,44	308,360	145,64	97,142

**Cuadro 24.** Asentamiento inmediato en el centro y borde del cimiento continúo de dimensiones  $5m \times 50m$ .

Profundidad	Asentamiento	os inmediatos
(m)	Centro (m)	Borde (m)
0	0,2553	0,0732

Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento Cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

### 4.1.12 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 25.** Esfuerzos verticales y Círculo de Mohr para cimiento continúo de dimensiones  $4m \times 40 m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	20,2	10,39	9,81	959,481	<b>496,91</b> 7	10,39	4,457
2	40,4	20,78	19,62	818,31	479,74	20,78	8,914
3	59,5	30,07	29,43	688,159	447,956	30,07	20,057
4	77,5	38,26	39,24	549,815	409,155	38,26	25,520
5	95,5	46,45	49,05	461,762	370,05	46,45	30,982
6	113,5	54,64	58,86	395,819	334,08	54,64	36,445
7	131,5	62,83	68,67	345,335	302,367	62,83	41,907
8,5	158,5	75,115	83,385	289,052	262,641	75,115	50,102

Fuente. Autora del proyecto

**Cuadro 26.** Asentamiento inmediato en el centro y borde del cimiento continúo de dimensiones  $4m \times 40m$ .

Profundidad	Asentamientos inmediatos			
(m)	Centro (m)	Borde (m)		
0	0,24888	0,0726		

Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

## 4.1.13 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático)

**Cuadro 27.** Esfuerzos verticales y Círculo de Mohr para losa superficial de dimensiones 15m x 30 m.

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	16,59	1000	250	16,59	11,06
2	33,18	1000	250	33,18	22,13
3	50,695	984	249	50,695	21,748
4	69,135	956	248	69,135	29,659
5	87,58	912	246,7	87,580	37,571
6	106,015	872	244	106,015	45,48
7	124,455	816	240	124,455	53,391
8,5	152,115	752	239	152,115	65,257

#### Fuente. Autora del proyecto

**Cuadro 28.** Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones  $15m \times 30m$ .

Profundidad	Asentamienta	os inmediatos
(m)	Centro (m)	Borde (m)
0	0,4632	0,0882

#### Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

## 4.1.14 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 29.** Esfuerzos verticales y Círculo de Mohr para losa superficial de dimensiones  $19m x \ 19 m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	18	8,19	9,81	1000	250	8,19	5,460
2	36	16,38	19,62	996	250	16,38	10,920
3	55,1	25,67	29,43	988	250	25,67	11,012
4	75,3	36,06	39,24	960	249	36,06	15,470
5	95,5	46,45	49,05	928	248	46,45	19,927
6	115,7	56,84	58,86	872	247	56,84	24,384
7	135,9	67,23	68,67	816	245	67,23	28,841
8,5	166,2	82,815	83,385	728	241	82,815	35,528

**Cuadro 30.** Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones  $19m \times 19m$ .

Profundidad	Asentamienta	os inmediatos
(m)	Centro (m)	Borde (m)
0	0,4306	0,08572

#### Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

### 4.1.15 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático)

**Cuadro 31.** Esfuerzos verticales y Círculo de Mohr para losa superficial de dimensiones  $26m \times 26 m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
I	18,44	1000	250	18,44	7,910
2	36,88	1000	250	36,88	15,821
3	54,395	996	250	54,395	36,281
4	70,985	988	250	70,985	47,347
5	87,575	976	249	87,575	58,412
6	104,165	944	248,5	104,165	69,478
7	120,755	924	248	120,755	80,543
8,5	145,64	872	247	145,64	97,142

Fuente. Autora del proyecto

**Cuadro 32.** Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones  $26m \times 26m$ .

Profundidad	Asentamientos inmediato				
(m)	Centro (m)	Borde (m)			
0	0,1843	0,0526			

Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

# 4.1.16 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
I	20,2	10,39	9,81	1000	250	10,39	4,457
2	40,4	20,78	19,62	996	250	20,78	8,914
3	59,5	30,07	29,43	988	249,8	30,07	20,057
4	77,5	38,26	39,24	964	249	38,26	25,520
5	95,5	46,45	49,05	948	248	46,45	30,982
6	113,5	54,64	58,86	920	246,8	54,64	36,445
7	131,5	62,83	68,67	884	244,5	62,83	41,907
8,5	158,5	75,115	83,385	824	240,5	75,115	50,102

**Cuadro 33.** Esfuerzos verticales y Círculo de Mohr para losa superficial de dimensiones 18m x 36 m.

#### **Fuente.** Autora del proyecto

**Cuadro 34.** Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones  $18m \times 36m$ .

Profundidad	Asentamientos inmediatos			
(m)	Centro (m)	Borde (m)		
0	0,21536	0,140		

Fuente. Autora del proyecto

Nota: Las gráficas de círculo de Mohr se pueden apreciar en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

**4.2 DETERMINAR ESFUERZOS VERTICALES, GRÁFICAS DE CIRCULO DE MOHR Y ASENTAMIENTOS INMEDIATOS EN SUELOS COHESIVOS Y GRANULARES MEDIANTE EL SOFTWARE SIGMA/W.** Para la determinación de esfuerzos verticales, gráficas de círculo de Mohr y asentamientos inmediatos para suelos cohesivos y granulares, empleando el software SIGMA/W, se debe tener conocimiento acerca del análisis con los elementos finitos, en donde, se asignan las diferentes propiedades del suelo y se lleva a cabo la solución del problema, teniendo en cuenta que el software trabaja por fases de procedimiento, es decir, un tipo de análisis en condiciones de suelo Insitu, para determinar: Esfuerzos geoestáticos y graficas de circulo de Mohr y se introduce una 2 fase que analiza la carga externa, para el cálculo de asentamientos inmediatos e incremento de esfuerzos verticales. Los diferentes resultados obtenidos se pueden apreciar en los siguientes cuadros de acuerdo al ejercicio planteado, a partir del cuadro 35 hasta el cuadro 66 y las gráficas de círculo de Mohr como se aprecia a partir de la figura 12 hasta la figura 139.

La modelación de los ejercicios en el software, se aprecian en el anexo C.

# **4.2.1** Cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro(kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	16,7926	914,44	490,29	16,793	13,033
2	33,8526	689,02	453,05	33,853	22,437
3	51,8773	529,13	405,27	51,877	20,261
4	70,7055	433,29	362,06	70,705	26,869
5	89,2999	372,31	327,40	89,3	34,028
6	107,5965	331,71	300,55	107,6	41,915
7	125,5784	302,74	279,17	125,58	50,616
8,5	152,0418	266,61	250,02	152,04	65,146

**Cuadro 35.** Esfuerzos verticales y cálculos de Círculo de Mohr, mediante el software SIGMA/W para cimiento rectangular de dimensiones  $3m \times 6m$ .

#### Fuente. Autora del proyecto

**Figura 12.** Gráfica de círculo de Mohr calculado mediante el software SIGMA/W Profundidad de 1m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Software SIGMA/W

**Figura 13.** Gráfica de círculo de Mohr calculado mediante el software SIGMA/W– Profundidad de 2m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Software SIGMA/W

**Figura 14.** Gráfica de círculo de Mohr calculado mediante el software SIGMA/W – Profundidad de 3m para cimiento rectangular de dimensiones  $3 \times 6m$ .



Fuente. Software SIGMA/W

**Figura 15.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Software SIGMA/W

**Figura 16.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 5m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Software SIGMA/W

**Figura 17.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Software SIGMA/W

**Figura 18.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 7m para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Software SIGMA/W





### Fuente. Software SIGMA/W

**Cuadro 36.** Asentamiento inmediato mediante el software SIGMA/W en el centro y borde del cimiento rectangular de dimensiones  $3m \times 6m$ .

Profundidad	Software SIGMA/W		
(m)	Centro (m)	Borde (m)	
0	0,290195	0,212892	

Fuente. Autora del proyecto

### **4.2.2** Cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 37.** Esfuerzos verticales y cálculos de Círculo de Mohr, mediante el software SIGMA/W para cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
I	18,0742	8,2642	9,81	932,93	494,06	8,2650	5,3787
2	36,2571	16,6371	19,62	741,40	468,94	16,6370	10,3290
3	55,5706	26,1406	29,43	589,62	431,87	26,1410	9,8060
4	75,9497	36,7097	39,24	491,12	394,65	36,7100	13,7680
5	96,2484	47,1984	49,05	425,80	362,44	47,1980	17,8800
6	116,4406	57,5806	58,86	381,10	335,98	57,5810	22,2020
7	136,5215	67,8515	68,67	348,54	313,85	67,8510	26,7580
8,5	166,4767	83,0917	83,385	307,18	282,45	83,0920	33,9800

**Figura 20.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Software SIGMA/W

**Figura 21.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Software SIGMA/W

**Figura 22.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Software SIGMA/W

**Figura 23.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Software SIGMA/W

**Figura 24.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Software SIGMA/W

**Figura 25.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Software SIGMA/W

**Figura 26.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



#### Fuente. Software SIGMA/W

**Figura 27.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Software SIGMA/W

**Cuadro 38.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad	Softwar	e SIGMA/W
(m)	Centro (m)	Borde (m)
0	0,319958	0,228733

# 4.2.3 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	18,6273	940,37	499,65	18,627	7,1675
2	37,5246	758,60	479,00	37,525	14,386
3	55,5758	603,27	440,82	55,576	33,98
4	72,6204	494,85	398,99	72,62	44,26
5	89,4600	423,43	362,57	89,46	54,966
6	106,0210	375,59	333,29	106,02	66,272
7	122,2801	341,32	309,19	122,28	78,258
8,5	146,1789	295,47	273,16	146,18	97,44

**Cuadro 39.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento cuadrado de dimensiones  $3m \times 3m$ .

### Fuente. Autora del proyecto

**Figura 28.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Software SIGMA/W

**Figura 29.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



### Fuente. Software SIGMA/W

**Figura 30.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Software SIGMA/W

**Figura 31.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Software SIGMA/W

**Figura 32.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Software SIGMA/W

**Figura 33.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Software SIGMA/W

**Figura 34.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Software SIGMA/W



**Figura 35.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento cuadrado de dimensiones  $3m \times 3m$ .

Fuente. Software SIGMA/W

**Cuadro 40.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento cuadrado de dimensiones  $3m \times 3m$ .

Profundidad	Software SIGMA/W				
(m)	Centro (m)	Borde (m)			
0	0,301457	0,193098			

Fuente. Autora del proyecto

### 4.2.4 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 41.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	20,2259	10,4159	9,81	977,80	501,65	10,416	3,2723
2	40,4935	20,8735	19,62	863,31	495,46	20,874	7,6379
3	59,6769	30,2469	29,43	729,32	477,64	30,247	18,61
4	77,7505	38,5105	39,24	619,54	452,02	38,511	23,937
5	95,7911	46,7411	49,05	540,35	424,78	46,741	29,3
6	113,7855	54,9255	58,86	484,10	399,19	54,926	34,722
7	131,7331	63,0631	68,67	441,85	375,18	63,063	40,205
8,5	158,5970	75,2120	83,385	383,05	335,47	75,212	48,498

**Figura 36.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Software SIGMA/W

**Figura 37.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Software SIGMA/W

**Figura 38.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Software SIGMA/W

**Figura 39.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Software SIGMA/W

**Figura 40.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Software SIGMA/W

**Figura 41.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Software SIGMA/W


**Figura 42.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento cuadrado de dimensiones  $4m \times 4m$ .

Fuente. Software SIGMA/W

**Figura 43.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Software SIGMA/W

**Cuadro 42.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad	Software !	SIGMA/W
(m)	Centro (m)	Borde (m)
0	0,342107	0,206764

## 4.2.5 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	16,5829	821,70	378,44	16,59	10,592
2	33,1948	449,35	260,16	33,195	21,721
3	50,7415	253,90	179,65	50,741	21,405
4	69,1830	164,17	130,45	69,183	29,34
5	87,5716	117,40	100,16	87,572	37,308
6	105,9346	91,17	81,16	105,93	45,289
7	124,3286	75,29	68,62	124,33	53,242
8,5	151,9704	58,70	54,55	151,97	65,13

**Cuadro 43.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento circular de diámetro 3m.

Fuente. Autora del proyecto

**Figura 44.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento circular de diámetro 3m.



**Fuente.** Software SIGMA/W



**Figura 45.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento circular de diámetro 3*m*.

Fuente. Software SIGMA/W

**Figura 46.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento circular de diámetro 3m.



Fuente. Software SIGMA/W



**Figura 47.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento circular de diámetro 3m.

Fuente. Software SIGMA/W

**Figura 48.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento circular de diámetro 3m.



Fuente. Software SIGMA/W

**Figura 49.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento circular de diámetro 3m.



Fuente. Software SIGMA/W

**Figura 50.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento circular de diámetro 3m.



Fuente. Software SIGMA/W

**Figura 51.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento circular de diámetro 3m.



Fuente. Software SIGMA/W

**Cuadro 44.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento circular de diámetro 3m.

Profundidad	Software S	Software SIGMA/W		
(m)	Centro (m)	Borde (m)		
0	0,162825	0,100596		

Fuente. Autora del proyecto

4.2.6 Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 45.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento circular de diámetro 3,5m.

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de Poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr horizontal (kPa)
I	18,0062	8,1962301074	9,81	868,07	395,44	8,1962	5,0212
2	36,0129	16,3929161120	19,62	530,02	290,56	16,3930	10,2890
3	55,1068	25,6768243453	29,43	320,26	212,81	25,6770	10,2090
4	75,2877	36,0476750775	39,24	213,72	161,04	36,0480	14,4860
5	95,4626	46,4126091432	49,05	155,41	126,92	46,4130	18,7700
б	115,6370	56,7769763878	58,86	121,72	104,51	56,7770	23,0560
7	135,8141	67,1441091987	68,67	100,95	89,27	67,1440	27,3440
8,5	166,0839	82,6989279525	83,385	78,92	71,54	82,6990	33,7780

**Figura 52.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento circular de diámetro 3,5*m*.



Fuente. Software SIGMA/W

**Figura 53.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento circular de diámetro 3,5*m*.



Fuente. Software SIGMA/W

**Figura 54.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento circular de diámetro 3,5*m*.



Fuente. Software SIGMA/W

**Figura 55.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento circular de diámetro 3,5*m*.



Fuente. Software SIGMA/W

**Figura 56.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento circular de diámetro 3,5*m*.



Fuente. Software SIGMA/W

**Figura 57.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento circular de diámetro 3,5*m*.



Fuente. Software SIGMA/W

**Figura 58.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento circular de diámetro 3,5*m*.



Fuente. Software SIGMA/W

**Figura 59.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento circular de diámetro 3,5m.



Fuente. Software SIGMA/W

**Cuadro 46.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento circular de diámetro 3,5m.

Profundidad	Software SIGMA/W		
(m)	Centro (m)	Borde (m)	
0	0,189466	0,115917	

## 4.2.7 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	18,4430	934,32	422,44	18,443	7,6164
2	36,8925	694,64	350,32	36,893	15,491
3	54,4116	476,99	283,24	54,412	35,875
4	70,9821	332,53	226,91	70,982	46,938
5	87,5251	245,92	185,13	87,525	58,033
6	104,0563	194,01	155,72	104,06	69,147
7	120,5966	161,49	134,56	120,6	80,265
8,5	145,4218	124,37	107,03	145,42	96,948

**Cuadro 47.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento circular de diámetro 4m.

#### Fuente. Autora del proyecto

**Figura 60.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento circular de diámetro 4m.



Fuente. Software SIGMA/W





Fuente. Software SIGMA/W





Fuente. Software SIGMA/W

**Figura 63.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento circular de diámetro 4m.



**Fuente.** Software SIGMA/W

**Figura 64.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento circular de diámetro 4m.



Fuente. Software SIGMA/W





Fuente. Software SIGMA/W





Fuente. Software SIGMA/W

**Figura 67.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento circular de diámetro 4m.



Fuente. Software SIGMA/W

**Cuadro 48.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento circular de diámetro 4m.

Profundidad	Software SIGMA/W			
(m)	Centro (m)	Borde (m)		
0	0,266062	0,142847		

Fuente. Autora del proyecto

### **4.2.8** Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 49.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento circular de diámetro 4, 5m.

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos borde (kPa)	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	20,2155	10,4055	9,81	956,51	431,99	10,39	4,2302
2	40,4371	20,8171	19,62	758,24	369,48	20,8170	8,4078
3	59,5417	30,1117	29,43	547,86	308,77	30,1120	19,2020
4	77,5580	38,3180	39,24	394,89	255,25	38,3180	24,4210
5	95,5162	46,4662	49,05	297,99	213,56	46,4660	29,7360
6	113,4089	54,5489	58,86	237,96	182,83	54,5490	35,1320
7	131,3795	62,7095	68,67	199,42	159,80	62,7100	40,4600
8,5	158,3804	74,9954	83,385	154,35	128,49	74,9950	48,3520

**Figura 68.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 1m para cimiento circular de diámetro 4,5*m*.



Fuente. Software SIGMA/W

**Figura 69.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento circular de diámetro 4,5*m*.



Fuente. Software SIGMA/W



**Figura 70.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento circular de diámetro 4,5*m*.

Fuente. Software SIGMA/W

**Figura 71.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 4m para cimiento circular de diámetro 4,5*m*.



Fuente. Software SIGMA/W

**Figura 72.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento circular de diámetro 4,5*m*.



Fuente. Software SIGMA/W

**Figura 73.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 6m para cimiento circular de diámetro 4,5m.



Fuente. Software SIGMA/W

**Figura 74.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento circular de diámetro 4,5*m*.



Fuente. Software SIGMA/W

**Figura 75.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento circular de diámetro 4,5m.



Fuente. Software SIGMA/W

**Cuadro 50.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento circular de diámetro 4,5m.

Profundidad	Software SIGMA/W			
(m)	Centro (m)	Borde (m)		
0	0,287911	0,152222		

### **4.2.9** Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	16,8188	826,80	475,26	16,819	13,579
2	33,9267	526,01	395,89	33,927	22,576
3	51,9750	377,20	323,86	51,975	20,046
4	70,7948	300,41	273,51	70,795	26,417
5	89,3481	254,67	239,00	89,348	33,443
6	10,7573	225,30	214,95	107,57	41,315
7	125,4621	204,86	197,24	125,46	50,112
8,5	151,7436	179,91	178,50	151,74	65,015

**Cuadro 51.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento continúo de dimensiones  $2m \times 20 m$ .

#### Fuente. Autora del proyecto

**Figura 76.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento continúo de dimensiones  $2m \times 20m$ .



**Fuente.** Software SIGMA/W



**Figura 77.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento continúo de dimensiones  $2m \times 20m$ .

Fuente. Software SIGMA/W

**Figura 78.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento continúo de dimensiones  $2m \times 20m$ .



Fuente. Software SIGMA/W

**Figura 79.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento continúo de dimensiones 2m x 20m.



Fuente. Software SIGMA/W

**Figura 80.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento continúo de dimensiones  $2m \times 20m$ .



Fuente. Software SIGMA/W

**Figura 81.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento continúo de dimensiones  $2m \times 20m$ .



Fuente. Software SIGMA/W

**Figura 82.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento continúo de dimensiones  $2m \times 20m$ .



Fuente. Software SIGMA/W

**Figura 83.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento continúo de dimensiones  $2m \times 20m$ .



Fuente. Software SIGMA/W

**Cuadro 52.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento continúo de dimensiones  $2m \times 20m$ .

<b>Profundidad</b>	Software SIGMA/W			
(m)	Centro (m)	Borde (m)		
0	0,221888	0,171948		

Fuente. Autora del proyecto

## 4.2.10 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 53.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento continúo de dimensiones  $3m \times 30 m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	18,1233	8,3133	9,81	914,44	490,29	8,3133	6,2126
2	36,4109	16,7909	19,62	689,02	453,04	16,791	10,546
3	55,8255	26,3955	29,43	529,13	405,27	26,395	9,4191
4	76,2683	37,0283	39,24	433,29	362,06	37,028	12,94
5	96,5695	47,5195	49,05	372,31	327,40	47,52	16,79
6	116,6905	57,8305	58,86	331,71	300,55	57,831	21,075
7	136,6228	67,9528	68,67	302,74	279,17	67,953	25,843
8,5	166,2160	82,8310	83,385	266,61	250,02	82,831	33,866

**Figura 84.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 85.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 86.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 87.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 88.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 89.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 90.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 91.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Software SIGMA/W

**Cuadro 54.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento continúo de dimensiones  $3m \times 30m$ .

Profundidad	Software SIGMA/W			
(m)	Centro (m)	Borde (m)		
0	0,290195	0,212892		

## 4.2.11 Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos verticales - Centro (kPa)	Incremento de esfuerzos verticales - Borde	Circulo de Mohr Vertical (kPa)	Circulo de Mohr Horizontal (kPa)
1	18,5602	993,07	501,90	18,56	6,502
2	37,3017	923,86	501,57	37,302	14,246
3	55,1808	819,65	495,06	55,181	34,361
4	72,0931	720,28	481,75	72,093	45,132
5	88,8749	641,56	464,25	88,875	56,129
6	105,4703	582,20	444,93	105,470	67,468
7	121,8623	535,63	424,33	121,860	79,197
8,5	146,1431	468,46	386,98	142,110	94,353

**Cuadro 55.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento continúo de dimensiones  $5m \times 50 m$ .

#### Fuente. Autora del proyecto

**Figura 92.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento continúo de dimensiones  $5m \times 50m$ .



**Fuente.** Software SIGMA/W

**Figura 93.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento continúo de dimensiones  $5m \times 50m$ .



Fuente. Software SIGMA/W

**Figura 94.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento continúo de dimensiones  $5m \times 50m$ .



Fuente. Software SIGMA/W

**Figura 95.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento continúo de dimensiones  $5m \times 50m$ .



Fuente. Software SIGMA/W

**Figura 96.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para cimiento continúo de dimensiones  $5m \times 50m$ .



Fuente. Software SIGMA/W

**Figura 97.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento continúo de dimensiones  $5m \times 50m$ .



Fuente. Software SIGMA/W

**Figura 98.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento continúo de dimensiones  $5m \times 50m$ .



**Fuente.** Software SIGMA/W

**Figura 99.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento continúo de dimensiones  $5m \times 50m$ .



Fuente. Software SIGMA/W

**Cuadro 56.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento continúo de dimensiones  $5m \times 50m$ .

Profundidad	Software SIGMA/W			
(m)	Centro (m)	Borde (m)		
0	0,368559	0,210578		

Fuente. Autora del proyecto

# 4.2.12 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 57.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para cimiento continúo de dimensiones  $4m \times 40 m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	20,2259	10,4159	9,81	977,80	501,65	10,416	3,2723
2	40,4935	20,8735	19,62	863,31	495,46	20,874	7,6379
3	59,6769	30,2469	29,43	729,32	477,64	30,247	18,61
4	77,7505	38,5105	39,24	619,54	452,02	38,511	23,937
5	95,7911	46,7411	49,05	540,35	424,78	46,741	29,3
6	113,7855	54,9255	58,86	484,10	399,19	54,926	34,722
7	131,7331	63,0631	68,67	441,85	375,18	63,063	40,205
8,5	158,5970	75,2120	83,385	383,05	335,47	75,212	48,498

**Figura 100.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para cimiento continúo de dimensiones  $4m \times 40m$ .



Fuente. Software SIGMA/W

**Figura 101.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para cimiento continúo de dimensiones  $4m \times 40m$ .



Fuente. Software SIGMA/W



**Figura 102.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para cimiento continúo de dimensiones  $4m \times 40m$ .

Fuente. Software SIGMA/W

**Figura 103.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para cimiento continúo de dimensiones  $4m \times 40m$ .



Fuente. Software SIGMA/W





Fuente. Software SIGMA/W

**Figura 105.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para cimiento continúo de dimensiones  $4m \times 40m$ .



Fuente. Software SIGMA/W
**Figura 106.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para cimiento continúo de dimensiones  $4m \times 40m$ .



Fuente. Software SIGMA/W

**Figura 107.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para cimiento continúo de dimensiones  $4m \times 40m$ .



Fuente. Software SIGMA/W

**Cuadro 58.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde del cimiento continúo de dimensiones  $4m \times 40m$ .

Profundidad	Software SIGMA/W		
(m)	Centro (m)	Borde (m)	
0	0,342107	0,206764	

# 4.2.13 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	16,5900	1004,07	500,37	16,59	11,056
2	33,1799	1008,98	501,10	33,18	22,116
3	50,6948	1006,21	501,56	50,695	21,723
4	69,1347	995,89	501,46	69,135	29,626
5	87,5745	979,12	500,55	87,575	37,53
6	106,0143	956,92	498,68	106,01	45,433
7	124,4541	929,86	495,88	124,45	53,337
8,5	152,1138	879,68	490,39	152,11	65,192

**Cuadro 59.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para losa superficial de dimensiones  $15m \times 30 m$ .

#### **Fuente.** Autora del proyecto

**Figura 108.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para losa superficial de dimensiones  $15m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 109.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para losa superficial de dimensiones  $15m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 110.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para losa superficial de dimensiones  $15m \times 30m$ .



Fuente. Software SIGMA/W

**Figura 111.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para losa superficial de dimensiones 15 m x 30m.



Fuente. Software SIGMA/W

**Figura 112.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para losa superficial de dimensiones 15 m x 30m.



Fuente. Software SIGMA/W





Fuente. Software SIGMA/W

**Figura 114.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para losa superficial de dimensiones  $15m \times 30m$ .



**Fuente.** Software SIGMA/W





Fuente. Software SIGMA/W

**Cuadro 60.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde de la losa superficial de dimensiones  $15m \times 30m$ .

Profundidad	Software SIGMA/W		
(m)	Centro (m)	Borde (m)	
0	0,556977	0,271404	

Fuente. Autora del proyecto

# 4.2.14 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 61.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para losa superficial de dimensiones  $19m x \ 19m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
1	17,9999	8,1899	9,81	1021,59	517,95	8,190	5,245
2	35,9996	16,3796	19,62	1045,92	535,77	16,380	10,512
3	55,0991	25,6691	29,43	1068,00	554,45	25,669	10,402
4	75,2984	36,0584	39,24	1086,47	574,01	36,058	14,662
5	95,4976	46,4476	49,05	1099,69	593,26	46,448	18,923
6	115,6966	56,8366	58,86	1107,51	612,20	56,837	23,184
7	135,8955	67,2255	68,67	1110,14	630,83	67,226	27,445
8,5	166,1938	82,8088	83,385	1105,37	658,40	82,809	33,838

**Figura 116.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para losa superficial de dimensiones  $19mx \ 19m$ .



Fuente. Software SIGMA/W

**Figura 117.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para losa superficial de dimensiones  $19m \times 19m$ .



Fuente. Software SIGMA/W

**Figura 118.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para losa superficial de dimensiones  $19m \times 19m$ .



Fuente. Software SIGMA/W

**Figura 119.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para losa superficial de dimensiones  $19m \times 19m$ .



Fuente. Software SIGMA/W

**Figura 120.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para losa superficial de dimensiones  $19m \times 19m$ .



Fuente. Software SIGMA/W

**Figura 121.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para losa superficial de dimensiones  $19m \times 19m$ .



Fuente. Software SIGMA/W

**Figura 122.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para losa superficial de dimensiones  $19m \times 19m$ .



Fuente. Software SIGMA/W

**Figura 123.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para losa superficial de dimensiones  $19m \times 19m$ .



Fuente. Software SIGMA/W

**Cuadro 62.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde de la losa superficial de dimensiones  $19m x \ 19m$ .

Profundidad	Software	e SIGMA/W
(m)	Centro (m)	Borde (m)
0	0,559938	0,266801

# 4.2.15 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Profundidad (m)	Esfuerzos normales (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
I	18,4391	1000,67	499,92	18,439	7,7101
2	36,8761	1002,20	499,69	36,876	15,623
3	54,3863	1003,60	499,31	54,386	22,63
4	70,9697	1003,47	498,74	70,97	47,158
5	87,5514	1000,73	498,00	87,551	58,241
6	104,1317	994,75	497,11	104,13	69,326
7	120,7109	985,43	496,12	120,71	80,415
8,5	145,5781	966,65	494,49	145,58	97,052

**Cuadro 63.** Esfuerzos verticales y cálculos de círculo de Mohr, mediante el software SIGMA/W para losa superficial de dimensiones  $26m \times 26m$ 

#### Fuente. Autora del proyecto

**Figura 124.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para losa superficial de dimensiones  $26m \times 26m$ .



Fuente. Software SIGMA/W





Fuente. Software SIGMA/W

**Figura 126.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para losa superficial de dimensiones  $26m \times 26m$ .



Fuente. Software SIGMA/W



**Figura 127.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para losa superficial de dimensiones  $26m \times 26m$ .

Fuente. Software SIGMA/W





Fuente. Software SIGMA/W

**Figura 129.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para losa superficial de dimensiones  $26m \times 26m$ .



Fuente. Software SIGMA/W

**Figura 130.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para losa superficial de dimensiones  $26m \times 26m$ .



Fuente. Software SIGMA/W



**Figura 131.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para losa superficial de dimensiones  $26m \times 26m$ .

### Fuente. Software SIGMA/W

**Cuadro 64.** Asentamiento inmediato, mediante el software SIGMA/W en el centro y borde de la losa superficial de dimensiones  $26m \times 26m$ .

Profundidad	Software SIGMA/W			
(m)	Centro (m) Borde (m)			
0	0,398175	0,186975		

Fuente. Autora del proyecto

# 4.2.16 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático)

**Cuadro 65.** Esfuerzos verticales y cálculos de círculo de Mohr para losa superficial de dimensiones  $18m \times 36m$ .

Profundidad (m)	Esfuerzos normales (kPa)	Esfuerzos efectivos (kPa)	Presión de poros (kPa)	Incremento de esfuerzos - Centro (kPa)	Incremento de esfuerzos - Borde (kPa)	Circulo de Mohr Vetical (kPa)	Circulo de Mohr Horizontal (kPa)
I	20,1991	10,3891	9,81	1022,71	520,10	10,389	4,0835
2	40,3963	20,7763	19,62	1048,40	539,99	20,776	8,3514
3	59,4919	30,0619	29,43	1072,90	558,51	30,062	19,299
4	77,4859	38,2459	39,24	1092,80	575,49	38,246	24,582
5	95,4785	46,4285	49,05	1106,61	591,97	46,429	29,868
6	113,4701	54,6101	58,86	1113,07	607,97	54,61	35,157
7	131,4608	62,7908	68,67	1111,78	623,55	62,791	40,447
8,5	158,4456	75,0606	83,385	1096,20	646,44	75,061	48,387

**Figura 132.** Gráfica de círculo de Mohr calculado por el software SIGMA/W - Profundidad de 1m para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Software SIGMA/W

**Figura 133.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 2m para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Software SIGMA/W

**Figura 134.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 3m para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Software SIGMA/W

**Figura 135.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 4m para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Software SIGMA/W

**Figura 136.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 5m para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Software SIGMA/W

**Figura 137.** Gráfica de círculo de Mohr calculado por el software SIGMA/W– Profundidad de 6m para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Software SIGMA/W

**Figura 138.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 7m para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Software SIGMA/W

**Figura 139.** Gráfica de círculo de Mohr calculado por el software SIGMA/W – Profundidad de 8,5m para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Software SIGMA/W

**Cuadro 66.** Asentamiento inmediato en el centro y borde de la losa superficial de dimensiones  $18m \times 36m$ .

Profundidad	Software SIGMA/W		
(m)	Centro (m)	Borde (m)	
0	0,419166	0,191526	

**4.3** <u>COMPARAR</u> <u>RESULTADOS</u> <u>DE</u> <u>ASENTAMIENTOS</u> <u>INMEDIATOS,</u> <u>GRÁFICAS</u> <u>DE</u> <u>CÍRCULO</u> <u>DE</u> <u>MOHR</u> <u>Y</u> <u>ESFUERZOS</u> <u>VERTICALES,</u> <u>CALCULADOS POR LA TEORÍA ELÁSTICA Y POR EL SOFTWARE SIGMA/W.</u> Los resultados de los diferentes parámetros calculados, se obtienen mediante métodos con base en la teoría elástica y empleando el software basado en elementos finitos SIGMA/W, se determinan diferencias de porcentaje debido a que para los dos opciones empleadas para el cálculo difieren en sus fórmulas, entonces, para condiciones de esfuerzos geoestáticos y cálculos de circulo de Mohr, se analizan de acuerdo al perfil de suelo existente, para incremento de esfuerzos verticales y asentamientos inmediatos producidos en el centro y borde del cimiento, se considera el comportamiento con respecto a las condiciones del suelo y del tipo de carga externa existente.

A continuación se muestra el detalle de los cálculos obtenidos mediante la teoría elástica y el software con sus respectivas diferencia de porcentaje.

**4.3.1 Cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)**La máxima diferencia de porcentaje para esfuerzos normales es de 3%, para incremento de esfuerzos verticales producidos en el centro es de 157%, para incremento de esfuerzos verticales producidos en el borde es de 221%, para esfuerzos verticales es de 3% y para esfuerzos horizontales es de 18% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 20% y en el borde de 69%. Como se puede ver en el cuadro 67, cuadro 68, cuadro 69, cuadro 70 y cuadro 71 respectivamente, las comparaciones gráficas, a nivel de esfuerzos normales se aprecian en la gráfica 33, para incrementos de esfuerzos verticales en el centro en la gráfica 34, para incrementos de esfuerzos verticales en el borde como se observa en la gráfica 35.

**Cuadro 67.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento rectangular de dimensiones  $3m \times 6m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
Ι	16,59	16,7925596018	1,220974092
2	33,18	33,8525524464	2,026981454
3	50,695	51,8772949719	2,332172743
4	69,135	70,7054556187	2,271578244
5	87,58	89,2998689914	1,963769116
6	106,015	107,5964580138	1,491730429
7	124,455	125,5783711128	0,902632367
8,5	152,115	152,0418105870	0,048114527

**Gráfica 33.** Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento rectangular de dimensiones  $3m \times 6m$ .



### Fuente. Autora del proyecto

**Cuadro 68.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento rectangular de dimensiones  $3m \times 6m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	920	914,44	0,604425966
2	684	689,02	0,733805307
3	484	529,13	9,324373669
4	348	433,29	24,507858424
5	256	372,31	45,435518378
6	188	331,71	76,441335090
7	156	302,74	94,065919603
8,5	104	266,61	156,354331984

**Gráfica 34.** Análisis comparativo de incremento de esfuerzos verticales producidos en el centro calculado mediante la teoría elástica y el software para cimiento rectangular de dimensiones  $3m \times 6m$ .



### Fuente. Autora del proyecto

**Cuadro 69.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento rectangular de dimensiones  $3m \times 6m$ .

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	247	490,29	98,498726412
2	230	453,05	96,977416578
3	200	405,27	102,635337463
4	170	362,06	112,977344775
5	142	327,40	130,560692198
б	122	300,55	146,353109604
7	104	279,17	168,429003966
8,5	78	250,02	220,541864477

**Gráfica 35.** Análisis comparativo de incremento de esfuerzos verticales producidos en el borde calculado mediante la teoría elástica y el software para cimiento rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto

**Cuadro 70.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento rectangular de dimensiones  $3m \times 6m$ .

Profundidad	Teoria	elastica	Sof	ftware	Diferencia de porcentaje	Diferencia de norcentaie
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)
1	16,59	11,06	16,793	13,033	1,223628692	17,839059675
2	33,18	22,13	33,853	22,437	2,028330319	1,387257117
3	50,695	21,748	51,877	20,261	2,331590887	6,837410337
4	69,135	29,659	70,705	26,869	2,270919216	9,406925385
5	87,58	37,571	89,3	34,028	1,963918703	9,430145591
б	106,015	45,48	107,6	41,915	1,495071452	7,838610378
7	124,455	53,391	125,58	50,616	0,903941184	5,197505198
8,5	152,115	65,257	152,04	65,146	0,049304802	0,170096695

Fuente. Autora del proyecto

**Cuadro 71.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento rectangular de dimensiones  $3m \times 6m$ .

Profundidad	Teoría	elástica	Soft	ware	Diferencia de porcentaje -	Diferencia de porcentaje -	
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)	
0	0,2426	0,126	0,290195	0,212892	19,6187	68,9619	

# **4.3.2** Cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, para esfuerzos efectivos de 2% y respecto a presión de poros no existe diferencia de porcentaje, para incremento de esfuerzos verticales producidos en el centro es de 133%, para incremento de esfuerzos verticales producidos en el borde es de 186%, para esfuerzos verticales es de 2% y para esfuerzos horizontales es de 12% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 8% y en el borde de 53%. Como se aprecia en el cuadro 72, cuadro 73, cuadro 74, cuadro 75, cuadro 76, cuadro 77 y cuadro 78, respectivamente. Las comparaciones gráficas, se observa en la gráfica 36 para esfuerzos normales, en la gráfica 37 para esfuerzos verticales en el centro y en la gráfica 40 para incremento de esfuerzos verticales en el borde.

**Cuadro 72.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	18	18,0742020238	0,412233466
2	36	36,2570541924	0,714039423
3	55,1	55,5705853071	0,854056819
4	75,3	75,9497203665	0,862842452
5	95,5	96,2483913038	0,783655815
6	115,7	116,4406159660	0,640117516
7	135,9	136,5214892355	0,457313639
8,5	166,2	166,4766929434	0,166481915

**Gráfica 36.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Autora del proyecto

**Cuadro 73.** Comparación de los resultados obtenidos de esfuerzos efectivos para cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	8,19	8,264202024	0,906007616
2	16,38	16,6370541924	1,569317414
3	25,67	26,1405853071	1,833211169
4	36,06	36,7097203665	1,801775836
5	46,45	47,1983913038	1,611176111
6	56,84	57,5806159660	1,302983754
7	67,23	67,8514892355	0,924422483
8,5	82,815	83,0916929434	0,334109694

**Gráfica 37.** Análisis comparativo de esfuerzos efectivos mediante la teoría elástica y el software para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



### **Fuente.** Autora del proyecto

**Cuadro 74.** Comparación de los resultados obtenidos de presión de poros para cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad (m)	Teoría elástca (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	9,81	9,81	0
2	19,62	19,62	0
3	29,43	29,43	0
4	39,24	39,24	0
5	49,05	49,05	0
6	58,86	58,86	0
7	68,67	68,67	0
8,5	83,385	83,385	0

**Gráfica 38.** Análisis comparativo de presión de poros mediante la teoría elástica y el software para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Autora del proyecto

**Cuadro 75.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	<u>936</u>	932,93	0,327587279
2	752	741,40	1,409291194
3	552	589,62	6,815621860
4	416	491,12	18,058274150
5	308	425,80	38,246314342
6	236	381,10	61,484740230
7	188	348,54	85,394996949
8,5	132	307,18	132,711395215

**Gráfica 39.** Análisis comparativo de incremento de esfuerzos verticales en el centro mediante la teoría elástica y el software para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



## Fuente. Autora del proyecto

**Cuadro 76.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	250	494,06	97,623981423
2	225	468,94	108,416532370
3	205	431,87	110,668330709
4	186	394,65	112,179231947
5	164	362,44	121,001539783
6	142	335,98	136,606621935
7	122	313,85	157,256623391
8,5	99	282,45	185,299431389

**Gráfica 40.** Análisis comparativo de incremento de esfuerzos verticales en el borde mediante la teoría elástica y el software para cimiento rectangular de dimensiones  $3,5m \times 7m$ .



#### Fuente. Autora del proyecto

**Cuadro 77.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad	Teoria	elastica	Soft	ware	Diferencia de porcentaie	Diferencia de porcentaje	
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)	
1	8,19	5,460	8,2650	5,3787	0,915750916	1,489010989	
2	16,38	10,920	16,6370	10,3290	1,568986569	5,412087912	
3	25,67	11,012	26,1410	9,8060	1,834826646	10,951689066	
4	36,06	15,470	36,7100	13,7680	1,802551303	11,001939237	
5	46,45	19,927	47,1980	17,8800	1,610333692	10,272494605	
6	56,84	24,384	57,5810	22,2020	1,303659395	8,948490814	
7	67,23	28,841	67,8510	26,7580	0,923694779	7,222357061	
8,5	82,815	35,528	83,0920	33,9800	0,334480469	4,357126773	

#### Fuente. Autora del proyecto

**Cuadro 78.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento rectangular de dimensiones  $3,5m \times 7m$ .

Profundidad	Teoría	elástica	Software		Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,3445	0,14956	0,319958	0,228733	7,1239	52,9373

# 4.3.3 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 3%, para incremento de esfuerzos verticales producidos en el centro es de 469%, para incremento de esfuerzos verticales producidos en el borde es de 447%, para esfuerzos verticales es de 3% y para esfuerzos horizontales es de 10% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 22% y en el borde de 186%. Como se observa en el cuadro 79, cuadro 80, cuadro 81, cuadro 82 y cuadro 83, respectivamente. Las comparaciones gráficas, para esfuerzos normales se aprecian en la gráfica 41, para incremento de esfuerzos verticales en el centro en la gráfica 42, para incremento de esfuerzos verticales en el borde como se puede ver en la gráfica 43.

**Cuadro 79.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento cuadrado de dimensiones  $3m \times 3m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	18,44	18,6273467600	1,015980260
2	36,88	37,5246383851	1,747934884
3	54,395	55,5757511843	2,170698013
4	70,985	72,6203665607	2,303819907
5	87,575	89,4599804230	2,152418410
6	104,165	106,0209800279	1,781769335
7	120,755	122,2801182978	1,262985630
8,5	145,64	146,1789198757	0,370035619

Fuente. Autora del proyecto

**Gráfica 41.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Cuadro 80.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento cuadrado de dimensiones  $3m \times 3m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	872	940,37	7,840698546
2	552	758,60	37,427686997
3	340	603,27	77,432168582
4	240	494,85	106,186118108
5	156	423,43	171,430512495
6	116	375,59	223,786987524
7	76	341,32	349,103144690
8,5	52	295,47	468,212428406

## Fuente. Autora del proyecto

**Gráfica 42.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento cuadrado de dimensiones  $3m x \ 3m$ .



Fuente. Autora del proyecto

**Cuadro 81.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento cuadrado de dimensiones  $3m \times 3m$ .

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	244	499,65	104,773072120
2	217	479,00	120,737943475
3	178	440,82	147,650384776
4	140	398,99	184,994083006
5	108	362,57	235,714824858
б	85	333,29	292,105036073
7	60	309,19	415,313599599
8,5	50	273,16	446,311522853

**Gráfica 43.** Análisis comparativo de incremento de esfuerzos en el borde calculado mediante la teoría elástica y el software para cimiento cuadrado de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

**Cuadro 82.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento cuadrado de dimensiones  $3m \times 3m$ .

Profundidad	Teoria elastica		Software		Diferencia de norcentaie	Difarancia da porcantaja
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)
1	18,44	7,910	18,627	7,1675	1,014099783	9,386852086
2	36,88	15,821	37,525	14,386	1,748915401	9,070223121
3	54,395	36,281	55,576	33,98	2,171155437	6,342162564
4	70,985	47,347	72,62	44,26	2,303303515	6,519948466
5	87,575	58,412	89,46	54,966	2,152440765	5,899472711
6	104,165	69,478	106,02	66,272	1,780828493	4,614410317
7	120,755	80,543	122,28	78,258	1,262887665	2,836993904
8,5	145,64	97,142	146,18	97,44	0,370777259	0,306767413

Fuente. Autora del proyecto

**Cuadro 83.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento cuadrado de dimensiones  $3m \times 3m$ .

Profundidad	Teoría	elástica	Software		Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,24865	0,0676	0,301457	0,193098	21,2375	185,6479

# 4.3.4 Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, esfuerzos efectivos de 1% y respecto a presión de poros no existe diferencia de porcentaje, para incremento de esfuerzos verticales producidos en el centro es de 405%, incremento de esfuerzos verticales producidos en el borde es de 336%, para esfuerzos verticales es de 1% y esfuerzos horizontales es de 27%, los asentamientos inmediatos producidos en el centro, presentan diferencia de porcentaje de 19% y en el borde de 193%. Como se observa en el cuadro 84, cuadro 85, cuadro 86, cuadro 87, cuadro 88 y cuadro 90, respectivamente. Las comparaciones gráficas, en lo correspondiente a esfuerzos normales como muestra la gráfica 44, para esfuerzos verticales en el centro como se aprecia en la gráfica 47, para incremento de esfuerzos verticales en el borde como indica la gráfica 48.

**Cuadro 84.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	20,2	20,2258991181	0,128213456
2	40,4	40,4935361128	0,231525032
3	59,5	59,6768914271	0,297296516
4	77,5	77,7505183167	0,323249441
5	95,5	<b>95,791135838</b> 7	0,304854281
б	113,5	113,7855194581	0,251558994
7	131,5	131,7330517563	0,177225670
8,5	158,5	158,5969892561	0,061191960

Fuente. Autora del proyecto

**Gráfica 44.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	10,39	10,4158991181	0,249269664
2	20,78	20,8735361128	0,450125663
3	30,07	30,2468914271	0,588265471
4	38,26	38,5105183167	0,654778664
5	46,45	46,7411358387	0,626772527
6	54,64	54,9255194581	0,522546592
7	62,83	63,0630517563	0,370924330
8,5	75,115	75,2119892561	0,129121023

**Cuadro 85.** Comparación de los resultados obtenidos de esfuerzos efectivos para cimiento cuadrado de dimensiones  $4m \times 4m$ .

Fuente. Autora del proyecto

**Gráfica 45.** Análisis comparativo de esfuerzos efectivos calculados mediante la teoría elástica y el software para cimiento cuadrado de dimensiones 4m x 4m.



Fuente. Autora del proyecto

**Cuadro 86.** Comparación de los resultados obtenidos de presión de poros para cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad (m)	Teoría elástca (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	9,81	9,81	0
2	19,62	19,62	0
3	29,43	29,43	0
4	39,24	39,24	0
5	49,05	49,05	0
б	58,86	58,86	0
7	68,67	68,67	0
8,5	83,385	83,385	0

**Gráfica 46.** Análisis comparativo de presión de poros calculados mediante la teoría elástica y el software para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Cuadro 87.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	932	977,80	4,914449994
2	716	863,31	20,573875916
3	492	729,32	48,235552547
4	340	619,54	82,218338527
5	240	540,35	125,146675163
б	176	484,10	175,057549821
7	156	441,85	183,239963077
8,5	76	383,05	404,017842166

**Gráfica 47.** Análisis comparativo de incremento de esfuerzos verticales en el centro mediante la teoría elástica y el software para cimiento cuadrado de dimensiones  $4m \times 4m$ .



## Fuente. Autora del proyecto

**Cuadro 88.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	249	501,65	101,464915900
2	233	495,46	112,642731345
3	207	477,64	130,744310999
4	179	452,02	152,523403226
5	149,2	424,78	184,704235995
6	123	399,19	224,542309183
7	100	375,18	275,177093349
8,5	77	335,47	335,670387582
**Gráfica 48.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento cuadrado de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

**Cuadro 89.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad	Teoria	elastica	Soft	ware	Diferencia de norcentaie	Diferencia de norcentaie (
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	Horizontal) (%)
1	10,39	4,457	10,416	3,2723	0,250240616	26,580659637
2	20,78	8,914	20,874	7,6379	0,452358037	14,315683195
3	30,07	20,057	30,247	18,61	0,588626538	7,214438849
4	38,26	25,520	38,511	23,937	0,656037637	6,202978056
5	46,45	30,982	46,741	29,3	0,626480086	5,428958750
6	54,64	36,445	54,926	34,722	0,523426061	4,727671834
7	62,83	41,907	63,063	40,205	0,370841954	4,061373995
8,5	75,115	50,102	75,212	48,498	0,129135326	3,201469003

Fuente. Autora del proyecto

**Cuadro 90.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento cuadrado de dimensiones  $4m \times 4m$ .

Profundidad	Teoría	elástica	Soft	Software Diferencia de		Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,2889	0,0706	0,342107	0,206764	18,4171	192,8669

# 4.3.5 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, para incremento de esfuerzos verticales producidos en el centro es de 31%, para incremento de esfuerzos verticales producidos en el borde es de 34%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 5% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 31% y en el borde de 28%. Como se muestra en el cuadro 91, cuadro 92, cuadro 93, cuadro 94 y cuadro 95, respectivamente. Las diferentes comparaciones graficas se pueden apreciar en la gráfica 49 para esfuerzos normales, en la gráfica 50 para incremento de esfuerzos verticales en el centro del cimiento, en la gráfica 51 para incremento de esfuerzos verticales en el borde del cimiento.

**Cuadro 91.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento circular de diámetro 3m.

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	16,59	16,5828703058	0,042975854
2	33,18	33,1947779303	0,044538669
3	50,695	50,7414509472	0,091628261
4	69,135	69,1829776122	0,069396995
5	87,58	87,5715713462	0,009623948
6	106,015	105,9346351166	0,075805201
7	124,455	124,3285781768	0,101580349
8,5	152,115	151,9704233613	0,095044301

Fuente. Autora del proyecto

**Gráfica 49.** Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,0m.



Fuente. Autora del proyecto

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	829,32	821,70	0,918825061
2	488	449,35	7,920081967
3	284,46	253,90	10,743162483
4	179,1	164,17	8,336125070
5	121,26	117,40	3,183242619
б	86,92	91,17	4,889553613
7	65,13	75,29	15,599570091
8,5	44,96	58,70	30,560498221

**Cuadro 92.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento circular de diámetro 3m.

#### Fuente. Autora del proyecto

**Gráfica 50.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,0m.



Fuente. Autora del proyecto

**Cuadro 93.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento circular de diámetro 3m.

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	400	378,44	5,389529504
2	300	260,16	13,280499203
3	210	179,65	14,451590346
4	148	130,45	11,859425457
5	108	100,16	7,256810617
6	78	81,16	4,053348068
7	58	68,62	18,313436878
8,5	41	54,55	33,047166777

**Gráfica 51.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,0*m*.



#### Fuente. Autora del proyecto

**Cuadro 94.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento circular de diámetro 3m.

Profundidad	Teoria	elastica	Soft	vare	Diferencia de norcentaie	Diferencia de norcentaie
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)
1	16,59	11,06	16,59	10,592	0,00000000	4,231464738
2	33,18	22,13	33,195	21,721	0,045207957	1,848169905
3	50,695	21,748	50,741	21,405	0,090738732	1,577156520
4	69,135	29,659	69,183	29,34	0,069429377	1,075558852
5	87,58	37,571	87,572	37,308	0,009134506	0,700007985
6	106,015	45,48	105,93	45,289	0,080177333	0,419964820
7	124,455	53,391	124,33	53,242	0,100437909	0,279073252
8,5	152,115	65,257	151,97	65,13	0,095322618	0,194615137

### Fuente. Autora del proyecto

**Cuadro 95.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento circular de diámetro 3m.

Profundidad	Teoría	elástica	Soft	ware	Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,23264	0,1388	0,162825	0,100596	30,0099	27,5245

# **4.3.6** Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, para esfuerzos efectivos de 1% y respecto a presión de poros no existe diferencia de porcentaje, para incremento de esfuerzos verticales producidos en el centro es de 31%, para incremento de esfuerzos verticales producidos en el borde es de 28%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 7% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 46% y en el borde de 31%. Como indica el cuadro 96, cuadro 97, cuadro 98, cuadro 99, cuadro 100, cuadro 101 y cuadro 102, respectivamente. Las comparaciones gráficas, se aprecian en la gráfica 52 para esfuerzos normales, en la gráfica 53 para esfuerzos efectivos, en la gráfica 54 para presión de poros, en la gráfica 55 para incremento de esfuerzos verticales en el borde.

**Cuadro 96.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento circular de diámetro 3,5*m*.

Profundidad (m)	Teoría elástica	Software (kPa)	Diferencia de porcentaje
1	18	18,0062301074	0,0346117080
2	36	36,0129161120	0,0358780888
3	55,1	55,1068243453	0,0123853817
4	75,3	75,2876750775	0,0163677590
5	95,5	95,4626091432	0,0391527296
6	115,7	115,6369763878	0,0544715749
7	135,9	135,8141091987	0,0632014726
8,5	166,2	166,0839279525	0,0698387771

Fuente. Autora del proyecto

**Gráfica** 52. Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,5m.



Fuente. Autora del proyecto

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje
1	8,19	8,1962301074	0,0760696879
2	16,38	16,3929161120	0,0788529425
3	25,67	25,6768243453	0,0265849058
4	36,06	36,0476750775	0,0341789311
5	46,45	46,4126091432	0,0804970005
6	56,84	56,7769763878	0,1108789799
7	67,23	67,1441091987	0,1277566581
8,5	82,815	82,6989279525	0,1401582412

**Cuadro 97.** Comparación de los resultados obtenidos de esfuerzos efectivos para cimiento circular de diámetro 3,5*m*.

Fuente. Autora del proyecto

**Gráfica 53.** Análisis comparativo de esfuerzos efectivos calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,5m.



Profundidad (m)	Teoría elástca (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	9,81	9,81	0
2	19,62	19,62	0
3	29,43	29,43	0
4	39,24	39,24	0
5	49,05	49,05	0
6	58,86	58,86	0
7	68,67	68,67	0
8,5	83,385	83,385	0

**Cuadro 98.** Comparación de los resultados obtenidos de presión de poros para cimiento circular de diámetro 3,5m.

Fuente. Autora del proyecto

**Gráfica 54.** Análisis comparativo de presión de poros calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,5*m*.





**Cuadro 99.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento circular de diámetro 3,5m.

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	877,87	868,07	1,115770006
2	573,76	530,02	7,623464001
3	355,52	320,26	9,917274572
4	231,03	213,72	7,491754362
5	159,15	155,41	2,351766745
6	115,26	121,72	5,603589599
7	86,92	100,95	16,140020853
8,5	60,37	78,92	30,724987077

**Gráfica 55.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculados mediante la teoría elástica y software para cimiento circular de diámetro 3,5*m*.



## Fuente. Autora del proyecto

**Cuadro 100.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento circular de diámetro 3,5m.

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	405	395,44	2,360658511
2	310	290,56	6,270856180
3	250	212,81	14,877494437
4	180	161,04	10,532985571
5	135	126,92	5,988270091
6	100	104,51	4,505998491
7	79	89,27	12,997683761
8,5	56	71,54	27,743157476

**Gráfica 56.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento circular de diámetro 3,5m.



#### Fuente. Autora del proyecto

**Cuadro 101.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento circular de diámetro 3,5m.

Profundidad	Teoria	elastica	Soft	vare	Diferencia de porcentaje	Diferencia de porcentaie	
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)	
I	8,19	5,460	8,1962	5,0212	0,075702076	8,036630037	
2	16,38	10,920	16,393	10,289	0,079365079	5,778388278	
3	25,67	11,012	25,677	10,209	0,027269186	7,292045042	
4	36,06	15,470	36,048	14,486	0,033277870	6,360698125	
5	46,45	19,927	46,413	18,77	0,079655544	5,806192603	
б	56,84	24,384	56,777	23,056	0,110837438	5,446194226	
7	67,23	28,841	67,144	27,344	0,127919084	5,190527374	
8,5	82,815	35,528	82,699	33,778	0,140071243	4,925692412	

Fuente. Autora del proyecto

**Cuadro 102.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento circular de diámetro 3,5m.

Profundidad	Teoría	elástica	Software		Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,3448	0,16657	0,189466	0,115917	45,0505	30,4094

# 4.3.7 Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, para incremento de esfuerzos verticales producidos en el centro es de 61%, para incremento de esfuerzos verticales producidos en el borde es de 49%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 4% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 22% y en el borde de 112%. Como indica el cuadro 103, cuadro 104, cuadro 105, cuadro 106 y cuadro 107, respectivamente. Las comparaciones gráficas se aprecian a continuación, para esfuerzos normales en la gráfica 57, para incremento de esfuerzos verticales en el centro en la gráfica 58, para incremento de esfuerzos verticales en el borde en la gráfica 59.

**Cuadro 103.** Comparación de los resultados de esfuerzos normales para cimiento circular de diámetro 4m.

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	18,44	18,4430022081	0,016280955
2	36,88	36,8925162281	0,033937712
3	54,395	54,4116161278	0,030547160
4	70,985	70,9820619998	0,004138903
5	87,575	87,5250750449	0,057008227
6	104,165	104,0563105757	0,104343517
7	120,755	120,5966205866	0,131157644
8,5	145,64	145,4217894765	0,149828703

Fuente. Autora del proyecto

**Gráfica 57.** Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,0m.



Fuente. Autora del proyecto

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	910,56	934,32	2,609439394
2	646,45	694,64	7,454521263
3	423,97	476,99	12,505345752
4	284,458	332,53	16,899816705
5	199,59	245,92	23,214724343
6	146,19	194,01	32,709473145
7	111,04	161,49	45,431026596
8,5	77,65	124,37	60,172588233

**Cuadro 104.** Comparación de los resultados para incremento de esfuerzos verticales en el centro del cimiento circular de diámetro 4m.

Fuente. Autora del proyecto

**Gráfica 58.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,0m.





**Cuadro 105.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento circular de diámetro 4m.

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	410	422,44	3,033450114
2	340	350,32	3,035246664
3	275	283,24	2,994782936
4	210	226,91	8,052554498
5	158	185,13	17,171159356
б	120	155,72	29,769770293
7	<del>98</del>	134,56	37,310844001
8,5	72	107,03	48,653978156

**Gráfica 59.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,0m.



#### Fuente. Autora del proyecto

**Cuadro 106.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento circular de diámetro 4m.

Profundidad	Teoria	elastica	Software Di		Diferencia de norcentaie	Diferencia de porcentaje	
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)	
1	18,44	7,910	18,443	7,6164	0,016268980	3,711757269	
2	36,88	15,821	36,893	15,491	0,035249458	2,085835282	
3	54,395	36,281	54,412	35,875	0,031252873	1,119043025	
4	70,985	47,347	70,982	46,938	0,004226245	0,863835090	
5	87,575	58,412	87,525	58,033	0,057093919	0,648839280	
6	104,165	69,478	104,06	69,147	0,100801613	0,476409799	
7	120,755	80,543	120,6	80,265	0,128359074	0,345157245	
8,5	145,64	97,142	145,42	96,948	0,151057402	0,199707644	

#### Fuente. Autora del proyecto

**Cuadro 107.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento circular de diámetro 4m.

Profundidad	Teoría	elástica	Software		Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,2196	0,0675	0,266062	0,142847	21,1576	111,6252

# **4.3.8** Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, esfuerzos efectivos de 1% y respecto a presión de poros no existe diferencia de porcentaje, para incremento de esfuerzos verticales producidos en el centro es de 60%, para incremento de esfuerzos verticales producidos en el borde es de 52%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 8% y en la determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje es de 27% y en el borde de 126%. Como se puede ver en el cuadro 108, cuadro 109, cuadro 110, cuadro 111, cuadro 112, cuadro 113 y cuadro 114, respectivamente. Las comparaciones graficas se pueden apreciar en la gráfica 60 para esfuerzos normales, en la gráfica 61 para esfuerzos verticales en el centro, en la gráfica 64 para incremento de esfuerzos verticales en el borde.

**Cuadro 108.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento circular de diámetro 4,5m.

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	20,2	20,2154783475	0,076625483
2	40,4	40,4370767460	0,091774124
3	59,5	59,5417265725	0,070128693
4	77,5	77,5579649263	0,074793453
5	95,5	95,5162111349	0,016975010
6	113,5	113,4088932962	0,080270224
7	131,5	131,3795483091	0,091598244
8,5	158,5	158,3804030130	0,075455512

Fuente. Autora del proyecto

**Gráfica 60.** Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5m.



Fuente. Autora del proyecto

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	10,39	10,4054783475	0,148973508
2	20,78	20,8170767460	0,178425149
3	30,07	30,1117265725	0,138764790
4	38,26	38,3179649263	0,151502682
5	46,45	46,4662111349	0,034900183
6	54,64	54,5488932962	0,166739941
7	62,83	62,7095483091	0,191710474
8,5	75,115	74,9954030130	0,159218514

**Cuadro 109.** Comparación de los resultados obtenidos de esfuerzos efectivos para cimiento circular de diámetro 4,5m.

Fuente. Autora del proyecto

**Gráfica 61.** Análisis comparativo de esfuerzos efectivos calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5m.



Fuente. Autora del proyecto

**Cuadro 110.** Comparación de los resultados obtenidos de presión de poros para cimiento circular de diámetro 4,5m.

Profundidad (m)	Teoría elástca (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	9,81	9,81	0
2	19,62	19,62	0
3	29,43	29,43	0
4	39,24	39,24	0
5	49,05	49,05	0
6	58,86	58,86	0
7	68,67	68,67	0
8,5	83,385	83,385	0

**Gráfica 62.** Análisis comparativo de presión de poros calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5m.



## Fuente. Autora del proyecto

**Cuadro 111.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento circular de diámetro 4,5m.

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	933,01	956,51	2,518491370
2	706,76	758,24	7,283589303
3	488	547,86	12,267031612
4	337,91	394,89	16,861298661
5	241,64	297,99	23,321808846
6	179,11	237,96	32,855148705
7	137,12	199,42	45,432963242
8,5	96,6	154,35	59,777611653

**Gráfica 63.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5m.



#### Fuente. Autora del proyecto

**Cuadro 112.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento circular de diámetro 4,5m.

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	430	431,99	0,461930476
2	360	369,48	2,632894618
3	300	308,77	2,923022343
4	240	255,25	6,354562646
5	190	213,56	12,398539957
6	150	182,83	21,887105115
7	120	159,80	33,167165562
8,5	85	128,49	51,159926340

**Gráfica 64.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculados mediante la teoría elástica y el software para cimiento circular de diámetro 4,5m.



Fuente. Autora del proyecto

**Cuadro 113.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento circular de diámetro 4,5m.

Profundidad	Teoria	elastica	Soft	vare	Diferencia de norcentaie	Diferencia de norcentaie	
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical)	(Horizontal)	
1	10,39	4,457	10,39	4,2302	0,00000000	5,088624635	
2	20,78	8,914	20,817	8,4078	0,178055823	5,678707651	
3	30,07	20,057	30,112	19,202	0,139674094	4,262850875	
4	38,26	25,520	38,318	24,421	0,151594354	4,306426332	
5	46,45	30,982	46,466	29,736	0,03444564	4,021690014	
6	54,64	36,445	54,549	35,132	0,166544656	3,602688983	
7	62,83	41,907	62,71	40,46	0,190991565	3,452883766	
8,5	75,115	50,102	74,995	48,352	0,159755042	3,492874536	

**Fuente.** Autora del proyecto

**Cuadro 114.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento circular de diámetro 4,5m.

P	rofundidad	Teoría	elástica	Software		Diferencia de porcentaje -	Diferencia de porcentaje -
	(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
	0	0,2278	0,0675	0,287911	0,152222	26,3876	125,5141

# **4.3.9** Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 3%, para incremento de esfuerzos verticales producidos en el centro es de 22%, para incremento de esfuerzos verticales producidos en el borde es de 17%, para esfuerzos verticales es de 3% y para esfuerzos horizontales es de 23% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 37% y en el borde de 31%. Como se aprecia en el cuadro 115, cuadro 116, cuadro 117, cuadro 118 y cuadro 119, respectivamente. Las diferentes comparaciones a nivel gráfico, se observa en la gráfica 65 para esfuerzos normales, en la gráfica 66 para incremento de esfuerzos verticales en el centro, en la gráfica 67 para incremento de esfuerzos verticales en el borde del cimiento.

**Cuadro 115.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento continúo de dimensiones  $2m \times 20m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	16,59	16,8187725193	1,378978417
2	33,18	33,9267398455	2,250572169
3	50,695	51,9750365654	2,524975965
4	69,135	70,7948256497	2,400847110
5	87,58	89,3481210679	2,018863973
6	106,015	107,5728891229	1,469498772
7	124,455	125,4621347858	0,809236098
8,5	152,115	151,7436152105	0,244147382

Fuente. Autora del proyecto

**Gráfica 65.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $2m \times 20m$ .



Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	818,31	826,80	1,037935600
2	549,815	526,01	4,329553567
3	395,818	377,20	4,703052003
4	305,751	300,41	1,746288783
5	248,093	254,67	2,649339139
б	203,282	225,30	10,830602889
7	179,461	204,86	14,151060420
8,5	148,427	179,91	21,209607694

**Cuadro 116.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento continúo de dimensiones  $2m \times 20m$ .

#### Fuente. Autora del proyecto

**Gráfica 66.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $2m \times 20m$ .



Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	479,74	475,26	0,934536386
2	409,155	395,89	3,241722194
3	334,08	323,86	3,059955294
4	274,907	273,51	0,507860488
5	230,881	239,00	3,514431157
6	197,91	214,95	8,611247057
7	172,667	197,24	14,230127535
8,5	152,876	178,50	16,762721046

**Cuadro 117.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento continúo de dimensiones 2m x 20m.

#### Fuente. Autora del proyecto

**Gráfica 67.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $2m \times 20m$ .



Fuente. Autora del proyecto

Profundidad	Teoria	elastica	Soft	vare	Diferencia de norcentaie	Diferencia de norcentaie	
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)	
1	16,59	11,06	16,819	13,579	1,380349608	22,775768535	
2	33,18	22,13	33,927	22,576	2,251356239	2,015363760	
3	50,695	21,748	51,975	20,046	2,524903837	7,826006989	
4	69,135	29,659	70,795	26,417	2,401099298	10,930914731	
5	87,58	37,571	89,348	33,443	2,018725736	10,987197573	
6	106,015	45,48	107,57	41,315	1,466773570	9,157871592	
7	124,455	53,391	125,46	50,112	0,807520791	6,141484520	
8,5	152,115	65,257	151,74	65,015	0,246524011	0,370841442	

**Cuadro 118.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento continúo de dimensiones  $2m \times 20m$ .

#### Fuente. Autora del proyecto

**Cuadro 119.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento continúo de dimensiones  $2m \times 20m$ 

Profundidad	Teoría	elástica	Soft	ware	Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,3498	0,13182	0,221888	0,171948	36,5672	30,4415

#### Fuente. Autora del proyecto

# 4.3.10 Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 2%, para esfuerzos efectivos de 3% y respecto a presión de poros no existe diferencia de porcentaje, para incremento de esfuerzos verticales producidos en el centro es de 22%, para incremento de esfuerzos verticales producidos en el borde es de 21%, para esfuerzos verticales es de 3% y para esfuerzos horizontales es de 17% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 50% y en el borde de 55%. Como se observa en el cuadro 120, cuadro 121, cuadro 122, cuadro 123, cuadro 124, cuadro 125 y cuadro 126, respectivamente. Las comparaciones graficas se muestran en la gráfica 68 para esfuerzos normales, en la gráfica 69 para esfuerzos efectivos, en la gráfica 70 para presión de poros, en la gráfica 71 para incremento de esfuerzos verticales en el centro, en la gráfica 72 para incremento de esfuerzos verticales en el borde.

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	18	18,1232813003	0,684896113
2	36	36,4109215648	1,141448791
3	5 <i>5,1</i>	55,8254666312	1,316636354
4	75,3	76,2683076386	1,285933119
5	95,5	96,5695293840	1,119926057
б	115,7	116,6905128299	0,856104434
7	135,9	136,6228417688	0,531892398
8,5	166,2	166,2160370299	0,009649236

**Cuadro 120.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento continúo de dimensiones  $3m \times 30m$ .

### Fuente. Autora del proyecto

**Gráfica 68.** Análisis comparativo de esfuerzos normales calculados mediante la teoría elástica y el software para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Autora del proyecto

**Cuadro 121.** Comparación de los resultados obtenidos de esfuerzos efectivos para cimiento continúo de dimensiones  $3m \times 30m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	8,19	8,3132813003	1,505266182
2	16,38	16,7909215648	2,508678662
3	25,67	26,3954666312	2,826126339
4	36,06	37,0283076386	2,685267994
5	46,45	47,5195293840	2,302539040
6	56,84	57,8305128299	1,742633409
7	67,23	67,9528417688	1,075177404
8,5	82,815	82,8310370299	0,019364885

Fuente. Autora del proyecto

**Gráfica 69.** Análisis comparativo de esfuerzos efectivos calculados mediante la teoría elástica y el software para cimiento continúo de dimensiones  $3m \times 30m$ .



Profundidad	Teoría elástca	Software	Diferencia de
(m)	(kPa)	(kPa)	porcentaje (%)
1	9,81	9,81	0
2	19,62	19,62	0
3	29,43	29,43	0
4	39,24	39,24	0
5	49,05	49,05	0
6	58,86	58,86	0
7	68,67	68,67	0
8,5	83,385	83,385	0

**Cuadro 122.** Comparación de los resultados obtenidos de presión de poros para cimiento continúo de dimensiones  $3m \times 30m$ .

Fuente. Autora del proyecto

**Gráfica 70.** Análisis comparativo de presión de poros calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $3m \times 30m$ .



Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	919,49	914,44	0,549295684
2	715,243	689,02	3,666414310
3	549,815	529,13	3,762180268
4	437,7	433,29	1,008145461
5	360,764	372,31	3,201795924
6	286,387	331,71	15,825686909
7	243,337	302,74	24,412988810
8,5	220,151	266,61	21,102563814

**Cuadro 123.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento continúo de dimensiones  $3m \times 30m$ .

### Fuente. Autora del proyecto

**Gráfica 71.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $3m \times 30m$ .



Fuente. Autora del proyecto

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	493,076	490,29	0,564947971
2	459,745	453,04	1,457348654
3	409,155	405,27	0,950223587
4	357,621	362,06	1,241018558
5	312,452	327,40	4,782867968
6	274,907	300,55	9,329374701
7	244,131	279,17	14,352896271
8,5	207,901	250,02	20,260079738

**Cuadro 124.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento continúo de dimensiones  $3m \times 30m$ .

#### Fuente. Autora del proyecto

**Gráfica 72.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $3m \times 30m$ .



Profundidad	Teoria	elastica	Soft	ware	Difarancia da norcantaja	Diferencia de porcentaie	
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)	
1	8,19	5,460	8,3133	6,2126	1,505494505	13,783882784	
2	16,38	10,920	16,791	10,546	2,509157509	3,424908425	
3	25,67	11,012	26,395	9,4191	2,824308531	14,465128950	
4	36,06	15,470	37,028	12,94	2,684414864	16,354234001	
5	46,45	19,927	47,52	16,79	2,303552207	15,742459979	
6	56,84	24,384	57,831	21,075	1,743490500	13,570374016	
7	67,23	28,841	67,953	25,843	1,075412762	10,394923893	
8,5	82,815	35,528	82,831	33,866	0,019320171	4,678000450	

**Cuadro 125.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento continúo de dimensiones  $3m \times 30m$ .

### Fuente. Autora del proyecto

**Cuadro 126.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento continúo de dimensiones  $3m \times 30m$ .

Profundidad	Teoría	elástica	Software		Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,5781	0,13771	0,290195	0,212892	49,8019	54,5944

#### Fuente. Autora del proyecto

# 4.3.11 Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 2%, para incremento de esfuerzos verticales producidos en el centro es de 33%, para incremento de esfuerzos verticales producidos en el borde es de 26%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 13% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 45 % y en el borde de 188 %. Como indica el cuadro 127, cuadro 128, cuadro 129, cuadro 130 y cuadro 131, respectivamente. Las comparaciones gráficas, se observan en la gráfica 73 para esfuerzos normales, en la gráfica 74 para incremento de esfuerzos verticales en el centro, en la gráfica 75 para incremento de esfuerzos verticales en el borde del cimiento.

**Cuadro 127.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento continúo de dimensiones  $5m \times 50m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	18,44	18,5601667950	0,651663747
2	36,88	37,3017487275	1,143570302
3	54,395	55,1808489750	1,444708107
4	70,985	72,0930744958	1,560998092
5	87,575	88,8749149550	1,484344796
6	104,165	105,4703451690	1,253151413
7	120,755	121,8622966186	0,916977863
8,5	145,64	146,1431068892	0,345445543

Fuente. Autora del proyecto

**Gráfica 73.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $5m \times 50m$ .



Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	977,286	993,07	1,614764800
2	880,992	923,86	4,866027705
3	755,376	819,65	8,509181837
4	641,736	720,28	12,239608568
5	549,815	641,56	16,685976430
6	477,351	582,20	21,964710679
7	420,02	535,63	27,525679625
8,5	354,44	468,46	32,169750246

**Cuadro 128.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento continúo de dimensiones  $5m \times 50m$ .

#### Fuente. Autora del proyecto

**Gráfica 74.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $5m \times 50m$ .



Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	498,380	501,90	0,706727252
2	488,643	501,57	2,645242071
3	468,410	495,06	5,688953792
4	440,496	481,75	9,366172419
5	409,155	464,25	13,464463909
6	377,688	444,93	17,804739520
7	347,984	424,33	21,940265989
8,5	308,360	386,98	25,497353690

**Cuadro 129.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento continúo de dimensiones  $5m \times 50m$ .

Fuente. Autora del proyecto

**Gráfica 75.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $5m \times 50m$ .



Fuente. Autora del proyecto

Profundidad	Teoria	elastica	Software Dife		Diferencia de norcentaie	Diferencia de norcentaie	
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)	
1	18,44	7,910	18,56	6,502	0,650759219	17,800252845	
2	36,88	15,821	37,302	14,246	1,144251627	9,955122938	
3	54,395	36,281	55,181	34,361	1,444985752	5,292026129	
4	70,985	47,347	72,093	45,132	1,560893146	4,678226709	
5	87,575	58,412	88,875	56,129	1,484441907	3,908443471	
6	104,165	69,478	105,47	67,468	1,252820045	2,893002101	
7	120,755	80,543	121,86	79,197	0,915075980	1,671157022	
8,5	145,64	97,142	142,11	94,353	2,423784675	2,871054745	

**Cuadro 130.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento continúo de dimensiones  $5m \times 50m$ .

Fuente. Autora del proyecto

**Cuadro 131.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento continúo de dimensiones  $5m \times 50m$ 

Profundidad	Teoría	elástica	Software		Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,2553	0,0732	0,368559	0,210578	44,3631	187,6749

#### Fuente. Autora del proyecto

# **4.3.12** Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, para esfuerzos efectivos de 1% y respecto a presión de poros no existe diferencia de porcentaje, para incremento de esfuerzos verticales producidos en el centro es de 33%, para incremento de esfuerzos verticales producidos en el borde es de 28%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 27% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 38% y en el borde de 185%. Como se aprecia en el cuadro 132, cuadro 133, cuadro 134, cuadro 135, cuadro 136, cuadro 137 y cuadro 138, respectivamente. Las comparaciones a nivel gráfico, se observan en la gráfica 76 para esfuerzos normales, grafica 77 para esfuerzos efectivos, gráfica 78 para presión de poros, gráfica 79 para incremento de esfuerzos verticales en el centro, gráfica 80 para incremento de esfuerzos verticales en el borde.

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	20,2	20,2258991181	0,128213456
2	40,4	40,4935361128	0,231525032
3	59,5	59,6768914271	0,297296516
4	77,5	77,7505183167	0,323249441
5	95,5	95,7911358387	0,304854281
6	113,5	113,7855194581	0,251558994
7	131,5	131,7330517563	0,177225670
8,5	158,5	158,5969892561	0,061191960

**Cuadro 132.** Comparación de los resultados obtenidos de esfuerzos normales para cimiento continúo de dimensiones  $4m \times 40m$ .

Fuente. Autora del proyecto

**Gráfica 76.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $4m \times 40m$ .



Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	10,39	10,4158991181	0,249269665
2	20,78	20,8735361128	0,450125663
3	30,07	30,2468914271	0,588265471
4	38,26	38,5105183167	0,654778664
5	46,45	46,7411358387	0,626772527
6	54,64	54,9255194581	0,522546592
7	62,83	63,0630517563	0,370924330
8,5	75,115	75,2119892561	0,129121023

**Cuadro 133.** Comparación de los resultados obtenidos de esfuerzos efectivos para cimiento continúo de dimensiones  $4m \times 40m$ .

Fuente. Autora del proyecto

**Gráfica 77.** Análisis comparativo de esfuerzos efectivos calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $4m \times 40m$ .





**Cuadro 134.** Comparación de los resultados obtenidos de presión de poros para cimiento continúo de dimensiones  $4m \times 40m$ .

Profundidad (m)	Teoría elástca (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	9,81	9,81	0
2	19,62	19,62	0
3	29,43	29,43	0
4	39,24	39,24	0
5	49,05	49,05	0
б	58,86	58,86	0
7	68,67	68,67	0
8,5	83,385	83,385	0

**Gráfica 78.** Análisis comparativo de presión de poros calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $4m \times 40m$ .



Fuente. Autora del proyecto

**Cuadro 135.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro del cimiento continúo de dimensiones  $4m \times 40m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	959,481	977,80	1,909540048
2	818,31	863,31	5,499010346
3	688,159	729,32	5,981164024
4	549,815	619,54	12,681965932
5	461,762	540,35	17,019594594
б	395,819	484,10	22,303701360
7	345,335	441,85	27,949481634
8,5	289,052	383,05	32,520639901

**Gráfica 79.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $4m \times 40m$ .



## Fuente. Autora del proyecto

**Cuadro 136.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde del cimiento continúo de dimensiones  $4m \times 40m$ .

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	496,917	501,65	0,951998139
2	479,74	495,46	3,276267152
3	447,956	477,64	6,626705249
4	409,155	452,02	10,475710128
5	370,05	424,78	14,789547387
б	334,08	399,19	19,488457943
7	302,367	375,18	24,080039604
8,5	262,641	335,47	27,728038820

**Gráfica 80.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para cimiento continúo de dimensiones  $4m \times 40m$ .



### Fuente. Autora del proyecto

**Cuadro 137.** Comparación de los resultados obtenidos en círculo de Mohr para cimiento continúo de dimensiones  $4m \times 40m$ .

Profundidad	Teoria elastica		Software		Diferencia de norcentaie	Diferencia de porcentaje
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)
1	10,39	4,457	10,416	3,2723	0,250240616	26,580659637
2	20,78	8,914	20,874	7,6379	0,452358037	14,315683195
3	30,07	20,057	30,247	18,61	0,588626538	7,214438849
4	38,26	25,520	38,511	23,937	0,656037637	6,202978056
5	46,45	30,982	46,741	29,3	0,626480086	5,428958750
6	54,64	36,445	54,926	34,722	0,523426061	4,727671834
7	62,83	41,907	63,063	40,205	0,370841954	4,061373995
8,5	75,115	50,102	75,212	48,498	0,129135326	3,201469003

Fuente. Autora del proyecto

**Cuadro 138.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde del cimiento para cimiento continúo de dimensiones  $4m \times 40m$ .

I	Profundidad	Teoría elástica		Software		Diferencia de porcentaje -	Diferencia de porcentaje -
	(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
	0	0,24888	0,0726	0,342107	0,206764	37,4586	184,7989
# 4.3.13 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, para incremento de esfuerzos verticales producidos en el centro es de 17%, para incremento de esfuerzos verticales producidos en el borde es de 104%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 1% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 21% y en el borde de 208%. Como se puede observar en el cuadro 139, cuadro 140, cuadro 141, cuadro 142, y cuadro 143, respectivamente. Las diferentes comparaciones gráficas se muestran la gráfica 81 para esfuerzos normales, gráfica 82 para incremento de esfuerzos verticales en el centro, gráfica 83 para incremento de esfuerzos verticales en el borde del cimiento.

**Cuadro 139.** Comparación de los resultados obtenidos de esfuerzos normales para losa superficial de dimensiones  $15m \times 30m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	16,59	16,5899771316	0,000137845
2	33,18	33,1799117901	0,000265853
3	50,695	50,6948098905	0,000375006
4	69,135	69,1346760490	0,000468577
5	87,58	87,5745138660	0,00626414
6	106,015	106,0143228080	<b>0,00063</b> 877
7	124,455	124,4541225000	0,000705074
8,5	152,115	152,1137984883	0,000789871

Fuente. Autora del proyecto

**Gráfica 81.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $15m \times 30m$ .



Fuente. Autora del proyecto

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	1000	1004,07	0,407164451
2	1000	1008,98	0,898343352
3	984	1006,21	2,256787174
4	956	995,89	4,172604778
5	912	979,12	7,359624862
6	872	956,92	9,737969293
7	816	929,86	13,953262610
8,5	752	879,68	16,979031173

**Cuadro 140.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro de la losa superficial de dimensiones  $15m \times 30m$ .

# Fuente. Autora del proyecto

**Gráfica 82.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $15m \times 30m$ .



Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	250	500,37	100,146664544
2	250	501,10	100,438044099
3	250	501,56	100,622079100
4	249	501,46	101,388158156
5	248	500,55	101,833012455
6	247	498,68	101,896076240
7	245	495,88	102,401973125
8,5	241	490,39	103,479789266

**Cuadro 141.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde de la losa superficial de dimensiones  $15m \times 30m$ .

## Fuente. Autora del proyecto

**Gráfica 83.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $15m \times 30m$ .



Fuente. Autora del proyecto

Profundidad	Teoria	elastica	Soft	ware	Diferencia de porcentaje	Diferencia de norcentaie
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)
1	16,59	11,06	16,59	11,056	0,00000000	0,036166365
2	33,18	22,13	33,18	22,116	0,00000000	0,063262540
3	50,695	21,748	50,695	21,723	0,00000000	0,114953099
4	69,135	29,659	69,135	29,626	0,00000000	0,111264709
5	87,58	37,571	87,575	37,53	0,005709066	0,109126720
6	106,015	45,48	106,01	45,433	0,004716314	0,103342128
7	124,455	53,391	124,45	53,337	0,004017516	0,101140642
8,5	152,115	65,257	152,11	65,192	0,003286987	0,099606173

**Cuadro 142.** Comparación de los resultados obtenidos en círculo de Mohr para losa superficial de dimensiones  $15m \times 30m$ .

#### Fuente. Autora del proyecto

**Cuadro 143.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde de la losa superficial de dimensiones  $15m \times 30m$ .

Profundidad	Teoría	Teoría elástica Software Diferencia de porcentaje -		Diferencia de porcentaje -		
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,4632	0,0882	0,556977	0,271404	20,2455	207,7143

#### Fuente. Autora del proyecto

# 4.3.14 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, para esfuerzos efectivos de 1% y respecto a presión de poros no existe diferencia de porcentaje, para incremento de esfuerzos verticales producidos en el centro es de 52%, para incremento de esfuerzos verticales producidos en el borde es de 174%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 6% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 31% y en el borde de 212%. Como se puede apreciar en el cuadro 144, cuadro 145, cuadro 146, cuadro 147, cuadro 148, cuadro 149 y cuadro 150, respectivamente. A continuación se observa la comparación gráfica, para esfuerzos normales en la gráfica 84, para esfuerzos verticales producidos en el centro en la gráfica 86, para incrementos de esfuerzos verticales producidos en el borde en la gráfica 88.

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	18	17,9998989234	0,000561537
2	36	35,9995850574	0,001152618
3	55, I	55,0990757248	0,00167745
4	75,3	75,2983945753	0,002132038
5	95,5	95,4975619013	0,002552983
6	115,7	115,6965999103	0,002938712
7	135,9	135,8955274103	0,003291089
8,5	166,2	166,1937825282	0,003740958

**Cuadro 144.** Comparación de los resultados obtenidos de esfuerzos normales para losa superficial de dimensiones  $19m \times 19m$ .

Fuente. Autora del proyecto

**Gráfica 84.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $19m x \ 19m$ .



Fuente. Autora del proyecto

**Cuadro 145.** Comparación de los resultados obtenidos de esfuerzos efectivos para losa superficial de dimensiones  $19m \times 19m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	8,19	8,1898989234	0,001234147
2	16,38	16,3795850574	0,002533227
3	25,67	25,6690757248	0,003600604
4	36,06	36,0583945753	0,004452093
5	46,45	46,4475619013	0,005248867
6	56,84	56,8365999103	0,005981861
7	67,23	67,2255274103	0,006652670
8,5	82,815	82,8087825282	0,007507664

**Gráfica 85.** Análisis comparativo de esfuerzos efectivos calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $19m \times 19m$ .



# Fuente. Autora del proyecto

**Cuadro 146.** Comparación de los resultados obtenidos de presión de poros para losa superficial de dimensiones  $19m \times 19m$ .

Profundidad	Teoría elástca	Software	Diferencia de
(m)	(kPa)	(kPa)	porcentaje (%)
1	9,81	9,81	0
2	19,62	19,62	0
3	29,43	29,43	0
4	39,24	39,24	0
5	49,05	49,05	0
6	58,86	58,86	0
7	68,67	68,67	0
8,5	83,385	83,385	0

**Gráfica 86.** Análisis comparativo de presión de poros calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $19m x \ 19m$ .



### Fuente. Autora del proyecto

**Cuadro 147.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro de la losa superficial de dimensiones  $19m \times 19m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	1000	1021,59	2,158962853
2	<u>996</u>	1045,92	5,011969382
3	<u>988</u>	1068,00	8,096999687
4	960	1086,47	13,174029471
5	<u>928</u>	1099,69	18,500712949
б	872	1107,51	27,007964096
7	816	1110,14	36,046382069
8,5	728	1105,37	51,835920044

**Gráfica 87.** Análisis comparativo de incremento de esfuerzos verticales producidos en el centro calculado mediante la teoría elástica para losa superficial de dimensiones  $19m \times 19m$ 



# Fuente. Autora del proyecto

.

**Cuadro 148.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde de la losa superficial de dimensiones  $19m x \ 19m$ .

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	250	517,95	107,181823570
2	250	535,77	114,306713307
3	250	554,45	121,781130317
4	249	574,01	130,524532561
5	248	593,26	139,219627648
6	247	612,20	147,853077544
7	245	630,83	157,480285271
8,5	241	658,40	173,195412378

**Gráfica 88.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $19m \times 19m$ .



#### Fuente. Autora del proyecto

**Cuadro 149.** Comparación de los resultados obtenidos en círculo de Mohr para losa superficial de dimensiones  $19m \times 19m$ .

Profundidad	Teoria	elastica	Soft	ware	Diferencia de porcentaie	Diferencia de norcentaie
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)
1	8,19	5,460	8,190	5,245	0,001221001	3,932234432
2	16,38	10,920	16,380	10,512	0,00000000	3,736263736
3	25,67	11,012	25,669	10,402	0,003895598	5,539411551
4	36,06	15,470	36,058	14,662	0,005546312	5,223012282
5	46,45	19,927	46,448	18,923	0,004305705	5,038390124
6	56,84	24,384	56,837	23,184	0,005277973	4,921259843
7	67,23	28,841	67,226	27,445	0,005949725	4,840331473
8,5	82,815	35,528	82,809	33,838	0,007245064	4,756811529

Fuente. Autora del proyecto

**Cuadro 150.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde de la losa superficial de dimensiones  $19m \times 19m$ .

Profundidad	Teoría elástica		Software		Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,4306	0,08572	0,559938	0,266801	30,0367	211,2471

# 4.3.15 Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, para incremento de esfuerzos verticales producidos en el centro es de 13%, para incremento de esfuerzos verticales producidos en el borde es de 101%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 3% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 117% y en el borde de 256%. Como se observa en el cuadro 151, cuadro 152, cuadro 153, cuadro 154 y cuadro 155, respectivamente. Las comparaciones gráficas, se pueden apreciar en la gráfica 89 para esfuerzos normales, en la gráfica 90 para incrementos de esfuerzos verticales en el centro, en la gráfica 91 para incrementos de esfuerzos verticales en el borde.

**Cuadro 151.** Comparación de los resultados obtenidos de esfuerzos normales para losa superficial de dimensiones  $26m \times 26m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	18,44	18,4390510181	0,005146323
2	36,88	36,8761106144	0,010546056
3	54,395	54,3863025474	0,015989434
4	70,985	70,9696586910	0,021612043
5	87,575	87,5514073758	0,026939908
6	104,165	104,1317141905	0,031954888
7	120,755	120,7109112917	0,036510876
8,5	145,64	145,5781261734	0,042484089

Fuente. Autora del proyecto

**Gráfica 89.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $26m \times 26m$ .



Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	1000	1000,67	0,067049771
2	1000	1002,20	0,220280362
3	996	1003,60	0,762845685
4	988	1003,47	1,565547658
5	976	1000,73	2,533744980
6	944	994,75	5,375782773
7	924	985,43	6,648712525
8,5	856	966,65	12,926942321

**Cuadro 152.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro de la losa superficial de dimensiones  $26m \times 26m$ .

# Fuente. Autora del proyecto

**Gráfica 90.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $26m \times 26m$ .



Fuente. Autora del proyecto

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	250	499,92	99,968876296
2	250	499,69	99,875405592
3	250	499,31	99,723786933
4	250	498,74	99,495781526
5	249	498,00	99,998907015
6	248,5	497,11	100,045397660
7	248	496,12	100,047348024
8,5	247	494,49	100,196544248

**Cuadro 153.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde de la losa superficial de dimensiones  $26m \times 26m$ .

Fuente. Autora del proyecto

**Gráfica 91.** Análisis comparativo de incremento de esfuerzos verticales producidos en el borde calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $26m \times 26m$ .



Profundidad	Teoria	elastica	Software		Difarancia da norcantaja	Diferencia de porcentaie	
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical) (%)	(Horizontal) (%)	
I	18,44	7,910	18,439	7,7101	0,005422993	2,527180784	
2	36,88	15,821	36,876	15,623	0,010845987	1,251501169	
3	54,395	36,281	54,386	36,079	0,016545638	0,556765249	
4	70,985	47,347	70,97	47,158	0,021131225	0,399180518	
5	87,575	58,412	87,551	58,241	0,027405081	0,292748065	
6	104,165	69,478	104,13	69,326	0,033600538	0,218774288	
7	120,755	80,543	120,71	80,415	0,037265538	0,158921322	
8,5	145,64	97,142	145,58	97,052	0,041197473	0,092647876	

**Cuadro 154.** Comparación de los resultados obtenidos en círculo de Mohr para losa superficial de dimensiones  $26m \times 26m$ .

#### Fuente. Autora del proyecto

**Cuadro 155.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde de la losa superficial de dimensiones  $26m \times 26m$ .

Profundidad	Teoría	elástica	Soft	ware	Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,1843	0,0526	0,398175	0,186975	116,0472	255,4568

#### Fuente. Autora del proyecto

# 4.3.16 Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático)

La máxima diferencia de porcentaje para esfuerzos normales es de 1%, para esfuerzos efectivos de 1% y respecto a presión de poros no existe diferencia de porcentaje, para incremento de esfuerzos verticales producidos en el centro es de 34%, para incremento de esfuerzos verticales producidos en el borde es de 169%, para esfuerzos verticales es de 1% y para esfuerzos horizontales es de 9% y para determinación de asentamientos inmediatos producidos en el centro, la diferencia de porcentaje obtenido es de 97% y en el borde de 37%. Como indica el cuadro 156, cuadro 157, cuadro 158, cuadro 159, cuadro 160, cuadro 161 y cuadro 162, respectivamente. Las comparaciones graficas se muestran en la gráfica 92 para esfuerzos normales, en la gráfica 93 para esfuerzos verticales producidos en el centro, en la gráfica 95 para incremento de esfuerzos verticales producidos en el centro, en la gráfica 96 para incremento de esfuerzos verticales producidos en el centro, en la gráfica 96 para incremento de esfuerzos verticales producidos en el centro, en la gráfica 96 para incremento de esfuerzos verticales producidos en el centro, en la gráfica 96 para incremento de esfuerzos verticales producidos en el centro, en la gráfica 96 para incremento de esfuerzos verticales producidos en el centro, en la gráfica 96 para incremento de esfuerzos verticales producidos en el centro, en la gráfica 96 para incremento de esfuerzos verticales producidos en el centro, en la gráfica 96 para incremento de esfuerzos verticales producidos en el centro.

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
I	20,2	20,1990975474	0,004467587
2	40,4	40,3963331682	0,009076316
3	59,5	59,4918865008	0,013636133
4	77,5	77,4858670570	0,018236055
5	95,5	95,4785099147	0,022502707
6	113,5	113,4700691025	0,026370835
7	131,5	131,4607563574	0,029843074
8,5	158,5	158,4455537979	0,034350916

**Cuadro 156.** Comparación de los resultados obtenidos de esfuerzos normales para losa superficial de dimensiones  $18m \times 36m$ .

Fuente. Autora del proyecto

**Gráfica 92.** Análisis comparativo de esfuerzos normales calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Autora del proyecto

**Cuadro 157.** Comparación de los resultados obtenidos de esfuerzos efectivos para losa superficial de dimensiones  $18m \times 36m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	10,39	10,3890975474	0,008685781
2	20,78	20,7763331682	0,017645966
3	30,07	30,0618865008	0,026982039
4	38,26	38,2458670570	0,036939213
5	46,45	46,4285099147	0,046264984
6	54,64	54,6100691025	0,054778363
7	62,83	62,7907563573	0,062460039
8,5	75,115	75,0605537979	0,072483794

**Gráfica 93.** Análisis comparativo de esfuerzos efectivos calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $18m \times 36m$ .



### Fuente. Autora del proyecto

**Cuadro 158.** Comparación de los resultados obtenidos de presión de poros para losa superficial de dimensiones  $18m \times 36m$ .

Profundidad (m)	Teoría elástca (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	9,81	9,81	0
2	19,62	19,62	0
3	29,43	29,43	0
4	39,24	39,24	0
5	49,05	49,05	0
6	58,86	58,86	0
7	68,67	68,67	0
8,5	83,385	83,385	0

**Gráfica 94.** Análisis comparativo de presión de poros calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $18m \times 36m$ .



Fuente. Autora del proyecto

**Cuadro 159.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el centro de la losa superficial de dimensiones  $18m \times 36m$ .

Profundidad (m)	Teoría elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	1000	1022,71	2,271135687
2	996	1048,40	5,261212674
3	988	1072,90	8,592919328
4	964	1092,80	13,361007681
5	948	1106,61	16,731433841
6	920	1113,07	20,986181629
7	884	1111,78	25,767409881
8,5	824	1096,20	33,034203764

**Gráfica 95.** Análisis comparativo de incremento de esfuerzos verticales en el centro calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $18m \times 36m$ .



## Fuente. Autora del proyecto

**Cuadro 160.** Comparación de los resultados obtenidos para incremento de esfuerzos verticales en el borde de la losa superficial de dimensiones  $18m \times 36m$ .

Profundidad (m)	Teoria elástica (kPa)	Software (kPa)	Diferencia de porcentaje (%)
1	250	520,10	108,039966394
2	250	539,99	115,994672889
3	249,8	558,51	123,583578197
4	249	575,49	131,119866621
5	248	591,97	138,698551594
6	246,8	607,97	146,342013299
7	244,5	623,55	155,031624891
8,5	240,5	646,44	168,790943516

**Gráfica 96.** Análisis comparativo de incremento de esfuerzos verticales en el borde calculado mediante la teoría elástica y el software para losa superficial de dimensiones  $18m \times 36m$ .



#### Fuente. Autora del proyecto

**Cuadro 161.** Comparación de los resultados obtenidos en círculo de Mohr para losa superficial de dimensiones  $18m \times 36m$ .

Profundidad	Teoria elastica		Software		Diferencia de norcentaie	Diferencia de norcentaie
(m)	Vertical (kPa)	Horizontal (kPa)	Vetical (kPa)	Horizontal (kPa)	(Vertical)	(Horizontal)
1	10,39	4,457	10,389	4,0835	0,009624639	8,380076284
2	20,78	8,914	20,776	8,3514	0,019249278	6,311420238
3	30,07	20,057	30,062	19,299	0,026604589	3,779229197
4	38,26	25,520	38,246	24,582	0,036591741	3,675548589
5	46,45	30,982	46,429	29,868	0,045209903	3,595636176
6	54,64	36,445	54,61	35,157	0,054904832	3,534092468
7	62,83	41,907	62,791	40,447	0,062072258	3,483904837
8,5	75,115	50,102	75,061	48,387	0,071889769	3,423017045

Fuente. Autora del proyecto

**Cuadro 162.** Comparación de los resultados obtenidos en asentamiento inmediato producido en el centro y borde de la losa superficial de dimensiones  $18m \times 36m$ .

Profundidad	Teoría	elástica	Software		Diferencia de porcentaje -	Diferencia de porcentaje -
(m)	Centro (m)	Borde (m)	Centro (m)	Borde (m)	Centro (%)	Borde (%)
0	0,21536	0,140	0,419166	0,191526	94,6350	36,8043

# **4.4 ELABORAR UNA GUÍA METODOLÓGICA PARA EL USO DEL SOFTWARE** SIGMA/W, EN EL ANÁLISIS DE ESFUERZOS VERTICALES, GRÁFICAS DE CÍRCULO DE MOHR Y ASENTAMIENTOS INMEDIATOS EN CIMENTACIONES SUPERFICIALES.

Para la elaboración de la guía metodológica en el uso del software SIGMA/W del paquete GeoStudio® en lo correspondiente a la determinación de esfuerzos verticales, graficas de círculo de Mohr y deformaciones producidos en cimentaciones superficiales, se realizó una encuesta, para tener estadísticas acerca de diferentes variables como: El conocimiento y uso del software SIGMA/W, el empleo de elementos finitos, manejo del Paquete GeoStudio®, métodos empleados para el cálculo de asentamientos inmediatos, esfuerzos verticales y graficas de círculo de Mohr. Esta encuesta se lleva a cabo con los estudiantes de Geotecnia 2 y docentes profesionales del plan de estudios de Ingeniería civil. Los resultados de las encuestas se pueden ver a en el **Anexo C.** 

La guía metodológica, está compuesta de capítulos correspondientes a la modelación de un cimiento rectangular apoyado sobre perfil de suelo estratificado sin presencia de nivel freático, modelación de una zapata circular apoyado sobre perfil de suelo estratificado con presencia de nivel freático y consideraciones generales del software. El respectivo manual se aprecia en el **Anexo D**.

#### 5 <u>CONCLUSIONES</u>

Las ecuaciones de la teoría elástica permiten analizar diferentes condiciones de carga producidas sobre perfiles de suelo homogéneo o estratificado, en donde, para el cálculo de incremento de esfuerzos verticales para zapatas continuas, es necesario que en la fórmula matemática establecida para el centro del cimiento se adicione la constante  $\pi$  y para la ecuación correspondiente al borde del cimiento se agregue la variable  $\frac{\pi}{2}$ , debido a que en el texto Braja Dass estas ecuaciones se encuentran sin estas variables, en consecuencia, al considerar estos parámetros evita obtener resultados erróneos e incompatibles con los del software.

El software SIGMA/W mediante la fase de "Análisis Insitu", obtiene los diferentes resultados de esfuerzos geoestáticos y graficas de circulo de Mohr, considerando los diferentes parámetros inherentes del suelo y a través de la fase "Análisis Load/Deformatión" determina los incrementos de esfuerzos verticales y asentamientos inmediatos, pero en este análisis no se introduce el peso propio del suelo, debido a que en la fase anterior los análisis correspondientes para este parámetro han sido calculados y para esta etapa de analizar el comportamiento de deformación del suelo, solamente se tiene en cuenta la carga externa, la relación de Poissón y el módulo de elasticidad que son variables pertenecientes a la matriz de rigidez correspondiente al modelo lineal elástico,

La comparación de esfuerzos calculados mediante fórmulas basadas en la teoría elástica y los obtenidos mediante el software basado en elementos finitos SIGMA/W de GeoStudio®, respecto a los esfuerzos producidos por el propio peso del suelo estos se encuentran con una diferencia de porcentaje máximo de 3% y para los esfuerzos correspondientes al círculo de Mohr la diferencia de porcentaje máximo es de 3% para los esfuerzos verticales y para esfuerzos horizontales es de 27% para los esfuerzos verticales la diferencia de porcentaje máximo es de 3% y para esfuerzos verticales por el porcentaje máximo es de 3% y para los esfuerzos verticales y para esfuerzos horizontales es de 27% , de esta manera se evidencia que los esfuerzos producidos por el peso propio del suelo y los esfuerzos verticales pertenecientes al círculo de Mohr se encuentran en un rango aceptable, pero en el caso de esfuerzos horizontales a pesar de que ambos métodos se basan en la relación de Poisson para la obtención de coeficiente lateral de tierra en reposo  $K_o = \frac{v}{1-v}$ , la diferencia es mayor.

Para cimientos rectangulares, circulares y continuos, los incrementos de esfuerzos verticales producidos, se encuentran con diferencias de porcentaje de 469%, 61% y 33% respectivamente en el centro del cimiento y en el borde del cimiento porcentajes respectivos de 447%, 52% y 28%, para suelos estratificados en condición "Areno-Arcilloso", indicando, que las ecuaciones empleadas para cimientos continuos basadas en la teoría elástica en comparación con el método de elementos finitos para el modelo lineal elástico se encuentran con el menor valor y que estas ecuaciones se encuentran más próximas a las establecidas por los elementos finitos, debido a que consideran parámetros semejantes como lo son la base del cimiento y la profundidad.

Las diferencias de porcentajes presentadas para incremento de esfuerzos verticales para cimientos cuadrados y rectangulares presentan valores mayores al 100 % a partir del cambio

de estrato, ya que la teoría elástica mediante el gráfico de Fadum considera la carga externa, profundidad y medidas del cimiento a diferencia del método de elementos finitos que además de considerar la base del cimiento y la carga externa, en este cálculo emplea la relación de Poisson y el módulo de elasticidad.

Los cálculos a asentamientos inmediatos calculados mediante la teoría elástica y el software SIGMA/W, las mayores diferencias de porcentaje se observan en las correspondientes al borde del cimiento, presentando valores de porcentaje de 193% en el cálculo de asentamientos para zapatas rectangulares y 256% para losas superficiales en comparación con los calculados en el centro del cimiento, en donde, el máximo valor es de 50% para los cimientos continuos y de 117% para losas superficiales, debido a que la malla se refina en la actuación del centro del cimiento.

La elaboración de la guía metodológica para el uso del software SIGMA/W, es una herramienta de gran ayuda para el aprendizaje en la modelación y obtención de resultados de asentamientos inmediatos, graficas de círculo de Mohr y esfuerzos verticales, brindando una alternativa rápida y útil en la resolución de problemas geotécnicos, que puede ser empleada por estudiantes, docentes o profesionales del área de geotecnia en ingeniería civil, debido al empleo del método de elementos finitos genera para la academia un factor innovador.

# 6 <u>RECOMENDACIONES</u>

En el uso de las ecuaciones basadas en la teoría elástica y el método de elementos finitos del software SIGMA/W, se requiere tener presente que su finalidad es obtener valores de asentamientos inmediatos, esfuerzos verticales y gráficas de circulo de Mohr, pero en la consideración de algunos parámetros como lo son el módulo de elasticidad y la relación de Poissón, difieren uno de los otros.

En el cálculo de asentamientos inmediatos producidos en suelos granulares, la definición de espesor de las capas se debe realizar de acuerdo a las condiciones de espesor del estrato, específicamente para el caso de losas superficiales producido en el centro y borde de la cimentación y para zapatas continuas producido en el borde del cimiento.

Tener previos conocimientos acerca del método de elementos finitos aplicado a la geotecnia y en consecuencia generar una mayor comprensión en el manejo del software SIGMA/W, de igual forma se pueden utilizar otros software que emplean esta técnica, por ejemplo PLAXIS 2D y 3D, GEO5, CODE BRIGHT, entre otros.

Con la implementación de la guía metodológica se hará más fácil el uso del software SIGMA/W en el desarrollo de los cursos del programa de ingeniería civil que requieran el cálculo de esfuerzos y deformaciones.

Con base a los resultados obtenidos, se considera viable una posterior investigación del software SIGMA/W para obtener valores más críticos en comparación con los llevados a cabo por la teoría elástica, realizando análisis de consolidación en donde por medio de ensayos triaxiales se emplee una relación de Poissón más precisa.

#### **BIBLIOGRAFIA**

BERRY Peter L., REID David. MECANICA DE SUELOS, Mac Graw Hill interamericano S.A, 1993, Santafé de Bogotá. ISBN: 958-600-172-5.

BRAJA M. DAS L., Fundamentos de Ingeniería Geotécnica, Primera edición, Thomson Learning, 2001, México, 585 p., ISBN: 970-600-172-5.
BRAJA M. Das, Principios de Ingeniería de Cimentaciones. 4 ed. Editorial Thomson. 2001, México, D.F, P.251, ISBN: 0-534-95403-0.

Bowles, J. Foundation Analysis and Design, Fifth Edition, Editorial McGraw Hill. 1997, USA. pp. 284-310, ISBN: 0-07-912247-7

# **REFERENCIAS DOCUMENTALES ELECTRONICAS**

Evolución de la Geotecnia. [En línea]. Disponible en internet en:<http://academic.uprm.edu/laccei/index.php/RIDNAIC/article/viewFile/202/207>

Antecedentes de elementos finitos. [En línea]. Disponible en internet en: <a href="http://icc.ucv.cl:8080/geotecnia/18_ciclo_conferencias/2006/01_geomecanica_computaci">http://icc.ucv.cl:8080/geotecnia/18_ciclo_conferencias/2006/01_geomecanica_computaci</a> onal/presentaciones/01_lunes_15_mayo/02_elementos_finitos_ing_geotec/elementos_finito s_ing_teotec.pdf >

Historia de los suelos. [En línea]. Disponible en internet en: <a href="http://www.galeon.com/geomecanica/cap1.pdf">http://www.galeon.com/geomecanica/cap1.pdf</a>>

Asentamientos inmediatos. [En línea]. 2014. Disponible en internet en: <a href="http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf">http://tesis.uson.mx/digital/tesis/docs/10762/Capitulo2.pdf</a>>

 $\label{eq:linear} Esfuerzos debido a cargas de diferentes formas. [En línea]. 2014. Disponible en internet en:<ftp://ftp.unicauca.edu.co/cuentas/.cuentasbajadas29092009/lucruz/docs/Curso%20Fund aciones/Capitulos%20del%20no%20nacido%20Libro/Cap%EDtulo%205%20-%20Distribuci%F3n%20de%20esfuerzos%20en%20el%20suelo%20debido%20a%20carga s.pdf >$ 

Generalidades de Software SIGMA/W. [En línea]. 2014. Disponible en internet en: <a href="http://www.geo-slope.com/products/sigmaw.aspx">http://www.geo-slope.com/products/sigmaw.aspx</a>



**Anexo A.** Memorias de cálculo de asentamientos inmediatos, esfuerzos verticales y gráficos de círculo de Mohr producidos en cimentaciones superficiales.

# Cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Para una zapata de dimensiones 3 m x 6 m que corresponde a un edificio que será utilizado como centro comercial, cuya estructura es en pórticos de concreto reforzado, calcular:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestaticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento (Suelo Cohesivo)

Tipo de espacio

$$\frac{D}{B'} = \frac{2,5 m}{1,5 m} = 1,67 < 10 \ (Espacio Finito)$$

Cálculo del factor de influencia, según Steinbrenner, 1934.

$$I_s = F_1 + (\frac{1 - 2v}{1 - v})F_2$$

Entonces, se tiene que:

$$F_1 = 0,230$$
  
 $F_2 = 0,115$ 

Obteniendo un valor de influencia:

$$I_s = 0,2683$$

Cálculo de q.

$$q = 1000 \, kPa$$

Cálculo de asentamiento inmediato

$$Si = \frac{q * B'}{Es} (1 - v^2) * Is * 4$$

Si = 0,0882 m = 88,233 mm = 8,823 cm

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Nota: Para todos los ejercicios, se omite el cálculo de esfuerzo efectivo debido a que el nivel freático se encuentra a nivel de cimentación y en consecuencia la carga actuante se mantiene constante con el valor de  $1000 \ kPa$ .

Cálculo de  $\sigma'_{zp}$  $\sigma'_{zp} = (1,5 m) \left( 16,59 \frac{kN}{m^3} \right)$ 

$$\sigma'_{zp} = 24,89 \ kPa$$

Cálculo de *I_{zp}* 

$$I_{zp} = 0.5 + 0.1 \sqrt{\frac{\Delta q}{\sigma'_{zp}}}$$

 $I_{zp} = 1,1339$ 

Cálculo de 
$$C_1$$
  
 $C_1 = 1 - 0.5 \left(\frac{\sigma'_o}{\Delta q}\right) \ge 0.5$   
 $C_1 = 1$ 

Cálculo de  $C_2$ 

 $C_2 = 1,0$ ; Para un t=0

# Cálculo del asentamiento inmediato



**Gráfica 97.** Gráfica de Smertchmann producida en el centro de una zapata rectangular de dimensiones  $3m \times 6m$ .

Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$I_{z}^{*}\Delta zi/Es$
2,50	3,00	2,75	0,50	10000	0,819	4,0950E-05
3,00	4,50	3,75	1,50	10000	0,567	8,5050E-05
4,50	б,00	5,25	1,50	10000	0,189	2,8350E-05
						1,544E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{Iz}{E}\right)_i * \Delta Z$$

 $S_i = 0,1544 m = 154,4 mm = 15,44 cm$ 

• Asentamiento en el borde del cimiento (Suelo cohesivo)

#### Tipo de espacio

$$\frac{D}{B} = \frac{2.5 m}{3.0 m} = 0.83 < 10 (Espacio Finito)$$

#### Cálculo del factor de influencia, según Steinbrenner, 1934.

$$I_s = F_1 + (\frac{1 - 2v}{1 - v})F_2$$

Entonces, se tiene que:

$$F_1 = 0,105$$
  
 $F_2 = 0,110$ 

Obteniendo un valor de influencia:

$$I_s = 0,1417$$

Cálculo de q.

$$q = 1000 \, kPa$$

Cálculo de asentamiento inmediato

$$Si = \frac{q * B}{Es} (1 - v^2) * Is$$

Si = 0,0233 m = 23,30 mm = 2,33cm

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de  $\sigma'_{zp}$  $\sigma'_{zp} = (2,5 m) \left( 16, 59 \frac{kN}{m^3} \right) + (0,5 m) \left( 18,44 \frac{kN}{m^3} \right)$ 

$$\sigma'_{zp} = 50,695 \, kPa$$

Cálculo de *I_{zp}* 

 $I_{zp}=0,9441$ 

Cálculo de  $C_1$ 

 $C_1 = 1$ 

Cálculo de C₂

 $C_2 = 1,0$ ; Para un *t*=0

# Cálculo del asentamiento inmediato

**Gráfica 98.** Gráfica de Smertchmann producida en el borde de una zapata rectangular de dimensiones  $3m \times 6m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	4,25	3,375	1,750	10000	0,909	1,5908E-04
4,25	6,375	5,3125	2,125	10000	0,705	1,4981E-04
6,375	8,50	7,4375	2,125	10000	0,481	1,0221E-04
						4,1110E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{Iz}{E}\right)_i * \Delta Z$$

$$S_i = 0,1027 \ m = 102,775 \ mm = 10,278 \ cm$$

Asentamiento total producido en el centro:

 $S_{i Total Centro} = 0,0882 m + 0,1544 m = 0,2426 m$ 

#### Asentamiento total producido en el borde:

 $S_{i Total Borde} = 0,0233 m + 0,1027 m = 0,126 m$ 

## b) Incremento de esfuerzos verticales producidos en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

#### **Esfuerzos verticales CENTRO**



# Esfuerzo a una profundidad de 1m

$$m = \frac{1,5 m}{1m} = 1,5$$
;  $n = \frac{3,0 m}{1,0 m} = 3,0$ 

Entonces, se tiene que:

$$I_z = 0,230$$

Luego, el esfuerzo producido en "A" es

$$\Delta \sigma_A = 920 \ kPa$$

## Esfuerzo a una profundidad de 2m

$$m = \frac{1,5 m}{2,0 m} = 0,75$$
;  $n = \frac{3,0 m}{2,0 m} = 1,5$ 

Entonces, se tiene que:

$$I_z = 0,171$$

Luego, el esfuerzo producido en "B" es

 $\Delta \sigma_B = 684 \ kPa$ 

## Esfuerzo a una profundidad de 3m

$$m = \frac{1,5 m}{3 m} = 0,5$$
 ;  $n = \frac{3,0 m}{3,0 m} = 1,0$ 

Entonces, se tiene que:

$$I_z = 0,121$$

Luego, el esfuerzo producido en "C" es

 $\Delta \sigma_c = 484 \ kPa$ 

# Esfuerzo a una profundidad de 4m

$$m = \frac{1,5 m}{4 m} = 0,375$$
;  $n = \frac{3 m}{4 m} = 0,75$ 

Entonces, se tiene que:

$$I_z = 0,087$$

Luego, el esfuerzo producido en "D" es

 $\Delta \sigma_D = 348 \ kPa$ 

#### Esfuerzo a una profundidad de 5m

$$m = \frac{1.5 m}{5m} = 0.3$$
;  $n = \frac{3.0 m}{5 m} = 0.6$ 

Entonces, se tiene que:

$$I_z = 0,064$$

Luego, el esfuerzo producido en "E" es

 $\Delta \sigma_E = 256 \ kPa$ 

## Esfuerzo a una profundidad de 6m

$$m = \frac{1,5 m}{6 m} = 0,25$$
 ;  $n = \frac{3,0 m}{6 m} = 0,5$ 

Entonces, se tiene que:

$$I_z = 0,047$$

Luego, el esfuerzo producido en "F" es

 $\Delta \sigma_F = 188 \ kPa$ 

# Esfuerzo a una profundidad de 7m

$$m = \frac{1,5 m}{7 m} = 0,21$$
;  $n = \frac{3 m}{7 m} = 0,43$ 

Entonces, se tiene que:

$$I_z = 0,036$$

Luego, el esfuerzo producido en "G" es

 $\Delta \sigma_G = 144 \ kPa$ 

# Esfuerzo a una profundidad de 8,5 m

$$m = \frac{1,5 m}{8,5 m} = 0,18$$
;  $n = \frac{3 m}{8,5 m} = 0,35$ 

Entonces, se tiene que:

$$I_z = 0,026$$

Luego, el esfuerzo producido en "G" es

 $\Delta \sigma_H = 104 \ kPa$ 

**Esfuerzos verticales BORDE** 



# Esfuerzo a una profundidad de 1m

$$m = \frac{3m}{1m} = 3$$
;  $n = \frac{6m}{1m} = 6$ 

Entonces, se tiene que:

$$I_z = 0,247$$

Luego, el esfuerzo producido en "A" es:

$$\Delta \sigma_A = 247 \ kPa$$

# Esfuerzo a una profundidad de 2m

$$m = \frac{3 m}{2 m} = 1,5$$
;  $n = \frac{6 m}{2 m} = 3,0$ 

Entonces, se tiene que:

$$I_z = 0,230$$

Luego, el esfuerzo producido en "B" es:

 $\Delta \sigma_B = 230 \ kPa$ 

# Esfuerzo a una profundidad de 3m

$$m = \frac{3 m}{3 m} = 1,0$$
;  $n = \frac{6 m}{3 m} = 2,0$ 

Entonces, se tiene que:

$$I_z = 0,200$$

Luego, el esfuerzo producido en "C" es:

 $\Delta \sigma_C = 200 \ kPa$ 

# Esfuerzo a una profundidad de 4m

$$m = \frac{3m}{4m} = 0,75$$
;  $n = \frac{6m}{4m} = 1,5$ 

Entonces, se tiene que:

$$I_z = 0,170$$

Luego, el esfuerzo producido en "D" es:

$$\Delta \sigma_D = 170 \, kPa$$

# Esfuerzo a una profundidad de 5m

$$m = \frac{3m}{5m} = 0.6$$
;  $n = \frac{6m}{5m} = 1.2$ 

Entonces, se tiene que:

$$I_z = 0,142$$

Luego, el esfuerzo producido es:

$$\Delta \sigma_E = 142 \ kPa$$

## Esfuerzo a una profundidad de 6m

$$m = \frac{3 m}{6 m} = 0.5$$
;  $n = \frac{6 m}{6 m} = 1.0$ 

Entonces, se tiene que:

$$I_z = 0,122$$

Luego, el esfuerzo producido en "F" es:

 $\Delta \sigma_F = 122 \ kPa$ 

#### Esfuerzo a una profundidad de 7m

 $m = \frac{3 m}{7 m} = 0.43$ ;  $n = \frac{6 m}{7 m} = 0.85$ Entonces, se tiene que:

 $I_z = 0,104$ 

Luego, el esfuerzo producido en "G" es:

 $\Delta \sigma_G = 104 \ kPa$ 

#### Esfuerzo a una profundidad de 8,5m

$$m = \frac{3 m}{8,5 m} = 0,35$$
;  $n = \frac{6 m}{8,5 m} = 0,70$ 

Entonces, se tiene que:

$$I_z = 0,078$$

Luego, el esfuerzo producido en "H" es:

 $\Delta \sigma_H = 78 \ kPa$ 

#### c) Esfuerzos geoestáticos

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

## • Esfuerzos normales

 $\sigma = \gamma z$ 

#### Esfuerzos a una profundidad de 1m

$$\sigma_A = 16,59 \ kPa$$

### Esfuerzo a una profundidad de 2m

 $\sigma_B = 33,18 \ kPa$ 

## Esfuerzo a una profundidad de 3m

 $\sigma_c = 50,695 \ kPa$
## Esfuerzo a una profundidad de 4m

$$\sigma_D = 69,135 \, kPa$$

Esfuerzo a una profundidad de 5m

 $\sigma_E = 87,58 \ kPa$ 

Esfuerzo a una profundidad de 6m

$$\sigma_F = 106,015 \ kPa$$

Esfuerzo a una profundidad de 7m

$$\sigma_G = 124,455 \, kPa$$

Esfuerzo a una profundidad de 8,5m

 $\sigma_{H}=152,115\;kPa$ 

d) Gráfica de circulo de Mohr

## Profundidad de 1m

$$\sigma_{vA} = 16,59 \, kPa$$

Se determina la constante Ko

$$K_o = 0,667$$

Se determina el esfuerzo horizontal actuante

$$\sigma_{HA} = (16,59 \, kPa)(0,667)$$

$$\sigma_{HA} = 11,065 \ kPa$$

Se determina el ángulo  $\theta$  producido

$$\theta = 45 + \frac{\varphi}{2}$$

$$\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$$

## Profundidad de 2m

$$\sigma_{vB} = 33,18 \, kPa$$

Se determina la constante Ko

 $K_o = 0,667$ 

Se determina el esfuerzo horizontal actuante

$$\sigma_{HB} = (33, 18 \, kPa)(0, 667)$$

 $\sigma_{HB} = 22,131 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

### Profundidad de 3m

$$\sigma_{vc} = 50,695 \ kPa$$

Se determina la constante Ko

$$K_o = 0,429$$

Se determina el esfuerzo horizontal actuante

$$\sigma_{HC} = (50,695 \, kPa)(0,429)$$

$$\sigma_{HC} = 21,748 \, kPa$$

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

## Profundidad de 4m

 $\sigma_{vD}=69,135~kPa$ 

Se determina la constante Ko

 $K_o = 0,429$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HD} = (69,135 \ kPa)(0,429)$ 

 $\sigma_{HD} = 29,659 \, kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

### Profundidad de 5m

 $\sigma_{vE} = 87,58 \ kPa$ 

Se determina la constante Ko

 $K_o = 0,429$ 

Se determina el esfuerzo horizontal actuante

$$\sigma_{HE} = (87,58 \, kPa)(0,429)$$

 $\sigma_{HE} = 37,572 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

## Profundidad de 6m

 $\sigma_{vF} = 106,015 \ kPa$ 

Se determina la constante Ko

 $K_o = 0,429$ 

Se determina el esfuerzo horizontal actuante

$$\sigma_{HF} = (106,015kPa)(0,429)$$

 $\sigma_{HE} = 45,480 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

## Profundidad de 7m

$$\sigma_{vG} = 124,455 \, kPa$$

Se determina la constante Ko

$$K_o = 0,429$$

Se determina el esfuerzo horizontal actuante

 $\sigma_{HG} = (124,455 \ kPa)(0,429)$ 

 $\sigma_{HG} = 53,391 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

# Profundidad de 8,5 m

$$\sigma_{vH} = 152,115 \ kPa$$

Se determina la constante Ko

$$K_o = 0,429$$

Se determina el esfuerzo horizontal actuante

 $\sigma_{HH} = (152, 115 \ kPa \ )(0, 429)$ 

 $\sigma_{HH}=65,257\;kPa$ 

Se determina el ángulo  $\theta$  producido

$$\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$$

# Cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de Nivel Freático)

Una columna transmite a una zapata rectangular  $3,5 m \times 7,0 m$  de concreto soportando una carga de 1000 kPa, incluido su propio peso. La zapata se encuentra sobre un depósito de arena (granular) de 6 m de espesor. Se desea calcular:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- **b**) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento (Suelo cohesivo)

Tipo de espacio

$$\frac{D}{B'} = \frac{2.5 m}{1.75m} = 1.43 < 10 \ (Espacio Finito)$$

Cálculo del factor de influencia, según Steinbrenner, 1934.

$$I_s = F_1 + \left(\frac{1-2\nu}{1-\nu}\right)F_2$$

Entonces, se tiene que:

$$F_1 = 0,190$$
  
 $F_2 = 0,110$ 

Obteniendo un valor de influencia:

$$I_s = 0,2267$$

Cálculo de q

$$q = 1000 \, kPa$$

Cálculo del asentamiento

$$S_i = \frac{q * B'}{Es} * I_s * 4$$

 $S_i = 0,0869 m = 86,977 mm = 8,697 cm$ 

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de 
$$\sigma'_{zp}$$
  
 $\sigma'_{zp} = \left(1,75 \ m * 18 \ \frac{kN}{m^3}\right) - \left(1,75 \ m * 9,81 \ \frac{kN}{m^3}\right)$   
 $\sigma'_{zp} = 14,332 \ kPa$ 

Cálculo de  $I_{zp}$ 

 $I_{zp}=1,\!3353$ 

Cálculo de C₁

 $C_1=1 \ge 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$  ; t = 0

## Cálculo del asentamiento producido

**Gráfica 99.** Gráfica de Smertchmann producida en el centro de una zapata rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	3,50	3,00	1,00	10000	1,017	1,0170E-04
3,50	5,25	4,38	1,75	10000	0,668	1,1690E-04
5,25	7,00	6,13	1,75	10000	0,223	3,9025E-05
						2,576E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E_s}\right) * \Delta z$$

$$S_i = 0,2576 m = 257,6 mm = 25,76 cm$$

• Asentamiento en el borde del cimiento (Suelo cohesivo)

# Tipo de espacio

$$\frac{D}{B} = \frac{2,5 m}{3,5 m} = 0,71 < 10 \ (Espacio Finito)$$

### Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_s = F_1 + (\frac{1 - 2v}{1 - v})F_2$$

Entonces, se tiene que:

$$F_1 = 0,080$$
  
 $F_2 = 0,102$ 

Luego, el factor de influencia es:

$$I_s = 0,114$$

Cálculo de q

$$q = 1000 \, kPa$$

Cálculo del asentamiento producido

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s$$

 $S_i = 0,02187 m = 21,870 mm = 2,187 cm$ 

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

# Cálculo de $\sigma'_{zp}$

$$\sigma'_{zp} = \left(2,5\ m*18\ \frac{kN}{m^3}\right) - \left(2,5\ m*9,81\ \frac{kN}{m^3}\right) + \left(1\ m*20,2\ \frac{kN}{m^3}\right) - \left(1\ m*9,81\ \frac{kN}{m^3}\right)$$
$$\sigma'_{zp} = 30,865\ kPa$$

Cálculo de Izp

 $I_{zp}=1,069$ 

Cálculo de C₁

 $C_1 = 0.98 \ge 0.5$ 

Cálculo de  $C_2$ 

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento producido

**Gráfica 100.** Gráfica de Smertchmann producida en el borde de una zapata rectangular de dimensiones  $3,5m \times 7m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$I_{z^{*}\Delta zi/Es}$
2,50	4,25	3,375	1,750	10000,00	1,034	1,8095E-04
4,25	6,375	5,3125	2,125	10000,00	0,884	1,8785E-04
<b>6</b> ,375	8,50	7,4375	2,125	10000,00	0,668	1,4195E-04
						5,1075E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E_s}\right) * \Delta z$$

 $S_i = 0,12769\,m = 127,687\,mm = 12,768\,cm$ 

### Asentamiento total en el centro:

 $S_{i Total Centro} = 0,0869 m + 0,2576m = 0,3445 m$ 

Asentamiento total en el borde:

 $S_{i Total Borde} = 0,02187 m + 0,12769 m = 0,14956 m$ 

# b) Incremento de esfuerzos verticales producidos en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

## **Esfuerzos verticales CENTRO**



### Esfuerzo a una profundidad de 1m

$$m = \frac{1,75 m}{1m} = 1,75 ; n = \frac{3,5 m}{1,0 m} = 3,5$$

Entonces, se tiene que:

$$I_z = 0,234$$

Luego, el esfuerzo producido en "A" es:

$$\Delta \sigma_A = 936 \, kPa$$

### Esfuerzo a una profundidad de 2m

$$m = \frac{1,75 m}{2,0 m} = 0,875$$
;  $n = \frac{3,5 m}{2,0 m} = 1,75$ 

Entonces, se tiene que:

$$I_z = 0,188$$

Luego, el esfuerzo producido en "B" es:

 $\Delta \sigma_B = 752 \ kPa$ 

# Esfuerzo a una profundidad de 3m

$$m = \frac{1,75 m}{3 m} = 0,58$$
;  $n = \frac{3,5 m}{3,0 m} = 1,17$ 

Entonces, se tiene que:

$$I_z = 0,138$$

Luego, el esfuerzo producido en "C" es:

$$\Delta \sigma_c = 552 \ kPa$$

## Esfuerzo a una profundidad de 4m

$$m = \frac{1,75 \ m}{4 \ m} = 0,43 \ ; \ n = \frac{3,5 \ m}{4 \ m} = 0,88$$

Entonces, se tiene que:

$$I_z = 0,104$$

Luego, el esfuerzo producido en "D" es:

$$\Delta \sigma_D = 416 \, kPa$$

# Esfuerzo a una profundidad de 5m

$$m = \frac{1,75 m}{5m} = 0,35 ; n = \frac{3,5 m}{5m} = 0,7$$

Entonces, se tiene que:

$$I_z = 0,077$$

Luego, el esfuerzo producido en "E" es:

 $\Delta \sigma_E = 308 \, kPa$ 

## Esfuerzo a una profundidad de 6m

$$m = \frac{1,75 m}{6 m} = 0,29$$
;  $n = \frac{3,5 m}{6 m} = 0,58$ 

Entonces, se tiene que:

$$I_z = 0,059$$

Luego, el esfuerzo producido en "F" es:

 $\Delta \sigma_F = 236 \ kPa$ 

# Esfuerzo a una profundidad de 7m

$$m = \frac{1,75 m}{7 m} = 0,25$$
;  $n = \frac{3,5 m}{7 m} = 0,5$ 

Entonces, se tiene que:

$$I_z = 0,047$$

Luego, el esfuerzo producido en "G" es:

 $\Delta \sigma_G = 188 \ kPa$ 

# Esfuerzo a una profundidad de 8,5m

$$m = \frac{1,75 m}{8,5 m} = 0,20$$
;  $n = \frac{3,5 m}{8,5 m} = 0,4$ 

Entonces, se tiene que:

$$I_z = 0,033$$

Luego, el esfuerzo producido en "G" es:

$$\Delta \sigma_H = 132 \ kPa$$

### **Esfuerzos verticales BORDE**



# Esfuerzo a una profundidad de 1m

$$m = \frac{3,5 m}{1 m} = 3,5 ; n = \frac{7 m}{1 m} = 7$$

 $I_z = 0,250$ 

Luego, el esfuerzo producido en "A" es:

 $\Delta\sigma_A = 250 \; kPa$ 

# Esfuerzo a una profundidad de 2m

$$m = \frac{3.5 m}{2 m} = 1,75$$
;  $n = \frac{7 m}{2 m} = 3,5$ 

Entonces, se tiene que:

$$I_z = 0,225$$

Luego, el esfuerzo producido en "B" es:

$$\Delta \sigma_B = 225 \ kPa$$

## Esfuerzo a una profundidad de 3m

$$m = \frac{3,5 m}{3 m} = 1,17$$
;  $n = \frac{7 m}{3 m} = 2,33$ 

Entonces, se tiene que:

$$I_z = 0,205$$

Luego, el esfuerzo producido en "C" es:

 $\Delta \sigma_C = 205 \ kPa$ 

# Esfuerzo a una profundidad de 4m

$$m = \frac{3,5 m}{4 m} = 0,875$$
;  $n = \frac{7 m}{4 m} = 1,75$ 

 $I_z = 0,186$ 

Luego, el esfuerzo producido en "D" es:

 $\Delta \sigma_D = 186 \, kPa$ 

# Esfuerzo a una profundidad de 5m

$$m = \frac{3.5 m}{5m} = 0.7$$
;  $n = \frac{7 m}{5 m} = 1.4$ 

Entonces, se tiene que:

 $I_z = 0,164$ 

Luego, el esfuerzo producido es:

$$\Delta \sigma_E = 164 \, kPa$$

# Esfuerzo a una profundidad de 6m

$$m = \frac{3,5 m}{6 m} = 0,6$$
;  $n = \frac{7 m}{6 m} = 1,20$ 

Entonces, se tiene que:

$$I_z = 0,142$$

Luego, el esfuerzo producido en "F" es:

 $\Delta \sigma_F = 142 \ kPa$ 

# Esfuerzo a una profundidad de 7m

$$m = \frac{3,5 m}{7 m} = 0,5$$
;  $n = \frac{7 m}{7 m} = 1,0$ 

 $I_z = 0,122$ 

Luego, el esfuerzo producido en "G" es:

 $\Delta \sigma_G = 122 \ kPa$ 

### Esfuerzo a una profundidad de 8,5m

 $m = \frac{3,5 m}{8,5 m} = 0,4$ ;  $n = \frac{7 m}{8,5 m} = 0,9$ 

Entonces, se tiene que:

 $I_z = 0,099$ 

Luego, el esfuerzo producido en "H" es:

 $\Delta \sigma_H = 99 \ kPa$ 

### c) Esfuerzos geoestáticos

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

• Presión de poros  $u = \gamma_w z$ 

### Esfuerzo a una profundidad de 1m

$$u_{A} = 9,81 \, kPa$$

Esfuerzo a una profundidad de 2m

 $u_B = 19,62 \ kPa$ 

### Esfuerzo a una profundidad de 3m

 $u_c = 29,43 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $u_D = 39,24 \ kPa$ 

Esfuerzo a una profundidad de 5m

$$u_E = 49,05 \, kPa$$

Esfuerzo a una profundidad de 6m

 $u_F = 58,86 \ kPa$ 

Esfuerzo a una profundidad de 7m

$$u_G = 68,67 \, kPa$$

Esfuerzo a una profundidad de 8,5m

 $u_H = 83,385 \ kPa$ 

• Esfuerzos efectivos  $\sigma' = \gamma z - \gamma_w z$ 

Esfuerzo a una profundidad de 1m

$$\sigma'_A = 8,19 \ kPa$$

Esfuerzo a una profundidad de 2m

$$\sigma'_{B} = 16,38 \, kPa$$

Esfuerzo a una profundidad de 3m

$$\sigma'_c = 25,67 \ kPa$$

Esfuerzo a una profundidad de 4m

$$\sigma'_{D} = 36,06 \, kPa$$

Esfuerzo a una profundidad de 5m

 $\sigma'_E = 46,45 \ kPa$ 

Esfuerzo a una profundidad de 6m

$$\sigma'_F = 56,84 \ kPa$$

Esfuerzo a una profundidad de 7m

$$\sigma'_{G} = 67,23 \, kPa$$

Esfuerzo a una profundidad de 8,5m

$$\sigma'_{H} = 82,815 \ kPa$$

• Esfuerzos normales  $\sigma = \gamma z$ 

Esfuerzo a una profundidad de 1m

$$\sigma_A = 18 \, kPa$$

Esfuerzo a una profundidad de 2m

 $\sigma_B = 36 \, kPa$ 

Esfuerzo a una profundidad de 3m

 $\sigma_c = 55,10 \; kPa$ 

Esfuerzo a una profundidad de 4m

$$\sigma_D = 75,3 \ kPa$$

Esfuerzo a una profundidad de 5m

$$\sigma_E = 95,50 \ kPa$$

Esfuerzo a una profundidad de 6m

$$\sigma_F = 115,7 \ kPa$$

Esfuerzo a una profundidad de 7m

$$\sigma_{G} = 135,9 \, kPa$$

Esfuerzo a una profundidad de 8,5m

$$\sigma_H = 166,2 \ kPa$$

d) Gráfica de Circulo de Mohr

### Profundidad de 1m

$$\sigma_{vA} = 8,19 \ kPa$$

Se determina la constante Ko

$$K_o = 0,667$$

Se determina el esfuerzo horizontal actuante

 $\sigma_{HA} = (8,19 \ kPa)(0,667)$ 

$$\sigma_{HA} = 5,463 \ kPa$$

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

### Profundidad de 2m

 $\sigma_{vB} = 16,38 \ kPa$ 

Se determina la constante Ko

$$K_o = 0,667$$

Se determina el esfuerzo horizontal actuante

 $\sigma_{HB} = (16,38 \ kPa)(0,667)$ 

 $\sigma_{HB} = 10,925 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

### Profundidad de 3m

 $\sigma_{vC} = 25,67 \ kPa$ 

Se determina la constante Ko

$$K_o = 0,429$$

Se determina el esfuerzo horizontal actuante

 $\sigma_{HC} = (25,67 \ kPa)(0,429)$ 

 $\sigma_{HC} = 11,012 \; kPa$ 

Se determina el ángulo  $\theta$  producido

$$\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$$

### Profundidad de 4m

$$\sigma_{vD} = 36,06 \, kPa$$

Se determina la constante Ko

 $K_o = 0,429$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HD} = (36,06 \, kPa)(0,429)$ 

 $\sigma_{HD} = 15,470 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

# Profundidad de 5m

 $\sigma_{vE} = 46,45 \ kPa$ 

Se determina la constante Ko

 $K_o = 0,429$ 

Se determina el esfuerzo horizontal actuante

$$\sigma_{HE} = (46,45 \, kPa)(0,429)$$

 $\sigma_{HE} = 19,927 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

#### Profundidad de 6m

$$\sigma_{vF} = 56,84 \ kPa$$

Se determina la constante Ko

 $K_o = 0,429$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HF} = (56,84 \ kPa)(0,429)$ 

 $\sigma_{HF} = 24,384 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

#### Profundidad de 7m

 $\sigma_{vG} = 67,23 \ kPa$ 

Se determina la constante Ko

 $K_o = 0,429$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HG} = (67,23 \ kPa)(0,429)$ 

 $\sigma_{HG} = 28,842 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

### Profundidad de 8,5m

 $\sigma_{vH} = 82,815 \ kPa$ 

Se determina la constante Ko

 $K_o = 0,429$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HH} = (82,815 \ kPa)(0,429)$ 

$$\sigma_{HH} = 35,528 \ kPa$$

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

# Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de Nivel Freático)

Para la cimentación bajo la condición de carga mostrada de dimensiones B = L = 3,0 m. Se desea calcular:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



# a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Calculo de  $\sigma'_{zp}$  $\sigma'_{zp} = \left( 1,5 \ m * 18,44 \ \frac{kN}{m^3} \right)$ 

 $\sigma'_{zp} = 27,66 \ kPa$ 

Cálculo de I_{zp}

$$I_{zp} = 1,1012$$

Cálculo de C₁

 $C_1=1~\geq 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento producido

**Gráfica 101.** Gráfica de Smertchmann producida en el centro de una zapata cuadrada de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	Iz*∆zi/Es
0,00	1,50	0,75	1,50	10000	0,601	9,0150E-05
1,50	2,50	2,00	1,00	10000	0,979	9,7900E-05
						1,8805E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E_s}\right) * \Delta z$$

 $S_i = 0,18805 m = 188,05 mm = 18,805 cm$ 

• Asentamiento en el centro del cimiento (Suelo cohesivo)

## Tipo de espacio

$$D = 2,5 m + 6m$$
$$\frac{D}{B'} = \frac{8,5 m}{1,5 m} = 5,67 < 10 (Espacio Finito)$$

# Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_{s1} = F_1 + (\frac{1-2v}{1-v})F_2$$

Entonces, se tiene que:

$$F_1 = 0,460$$
  
 $F_2 = 0,030$ 

Luego, el factor de influencia, es:

$$I_{s1} = 0,470$$

Ahora analizo, como si el primer estrato fuera arcilla:

$$D = H_1$$

Determinación del tipo de espacio:

$$\frac{D}{B'} = \frac{2,5m}{1,5m} = 1,67 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia

$$I_{s2} = F_1 + (\frac{1-2v}{1-v})F_2$$

$$F_1 = 0,258$$
  
 $F_2 = 0,078$ 

Luego, el factor de influencia es:

$$I_{s2} = 0,2840$$

Entonces, el factor de influencia actuante es:

$$I_s = 0,470 - 0,2840$$
  
 $I_s = 0,186$ 

Cálculo de q

 $q = 1000 \ kPa$ 

Cálculo del asentamiento producido

$$S_i = \frac{q * B'}{E_s} * (1 - v^2) * I_s * 4$$

$$S_i = 0,06116 m = 60,608 mm = 6,0608 cm$$

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de  $\sigma'_{zp}$ 

$$\sigma'_{zp} = \left(2,5\ m*18,44\ \frac{kN}{m^3}\right) + \left(0,5\ m*16,59\ \frac{kN}{m^3}\right)$$

 $\sigma'_{zp} = 54,395 \, kPa$ 

Cálculo de Izp

 $I_{zp} = 0,9287$ 

Cálculo de C₁

 $C_1 = 1,0 \ge 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

# Cálculo del asentamiento producido

**Gráfica 102.** Gráfica de Smertchmann producida en el centro de una zapata cuadrada de dimensiones  $3m \times 3m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
0,00	2,125	1,0625	2,125	10000	0,393	8,3513E-05
2,125	2,50	2,3125	0,375	10000	0,739	2,7713E-05
						1,1123E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E_s}\right) * \Delta z$$

 $S_i = 0,0278 m = 27,808 mm = 2,781 cm$ 

• Asentamiento en el borde del cimiento (Suelo cohesivo)

## Tipo de espacio

$$\frac{D}{B} = \frac{8.5 m}{3.0 m} = 2.83 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_{s1} = F_1 + (\frac{1-2\nu}{1-\nu})F_2$$

 $F_1 = 0,353$ 

 $F_2 = 0,050$ 

Luego, el factor de influencia, es:

$$I_{s1} = 0,3697$$

Ahora analizo, como si el primer estrato fuera arcilla:

$$D = H_1$$

Determinación del tipo de espacio:

$$\frac{D}{B} = \frac{2,5m}{3,0m} = 0,83 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia.

$$I_{s2} = F_1 + (\frac{1-2v}{1-v})F_2$$

Entonces, se tiene que:

$$F_1 = 0,10$$

$$F_2 = 0,082$$

Luego, el factor de influencia es:

$$I_{s2} = 0,1273$$

Entonces, el factor de influencia actuante es:

$$I_s = 0,3697 - 0,1273$$

$$I_s = 0,2424$$

Cálculo de la carga actuante

$$q = 1000 \, kPa$$

### Cálculo del asentamiento

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s$$

 $S_i = 0,0398 m = 39,86 mm = 3,98 cm$ 

## Asentamiento total en el centro:

 $S_{i Total Centro} = 0,18805 m + 0,0606 m = 0,24865 m$ 

### Asentamiento total en el borde:

$$S_{i Total Borde} = 0,0278 m + 0,0398 m = 0,0676 m$$

## b) Incremento de esfuerzos producidos en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

### **Esfuerzos verticales CENTRO**



### Esfuerzo a una profundidad de 1m

$$m = \frac{1,5 m}{1m} = 1,5$$
;  $n = \frac{1,5 m}{1,0 m} = 1,5$ 

Entonces, se tiene que:

$$I_z = 0,218$$

Luego, el esfuerzo producido en "A" es

$$\Delta \sigma_A = 872 \ kPa$$

### Esfuerzo a una profundidad de 2m

$$m = \frac{1.5 m}{2.0 m} = 0.75$$
;  $n = \frac{1.5 m}{2.0 m} = 0.75$ 

$$I_z = 0,138$$

Luego, el esfuerzo producido en "B" es:

 $\sigma_B = 552 \ kPa$ 

# Esfuerzo a una profundidad de 3m

$$m = \frac{1.5 m}{3 m} = 0.5$$
;  $n = \frac{1.5 m}{3.0 m} = 0.5$ 

Entonces, se tiene que:

$$I_z = 0,085$$

Luego, el esfuerzo producido en "C" es:

 $\Delta \sigma_c = 340 \ kPa$ 

# Esfuerzo a una profundidad de 4m

$$m = \frac{1,5 m}{4 m} = 0,4$$
;  $n = \frac{1,5 m}{4 m} = 0,4$ 

Entonces, se tiene que:

$$I_z = 0,061$$

Luego, el esfuerzo producido en "D" es:

$$\Delta \sigma_D = 240 \ kPa$$

## Esfuerzo a una profundidad de 5m

$$m = \frac{1.5 m}{5m} = 0.3$$
;  $n = \frac{1.5 m}{5m} = 0.3$ 

Entonces, se tiene que:

$$I_z = 0,039$$

Luego, el esfuerzo producido en "E" es:

$$\Delta \sigma_E = 156 \, kPa$$

# Esfuerzo a una profundidad de 6m

$$m = \frac{1,5 m}{6 m} = 0,25$$
;  $n = \frac{1,5 m}{6 m} = 0,25$ 

$$I_z = 0,028$$

Luego, el esfuerzo producido en "F" es:

 $\Delta \sigma_F = 112 \ kPa$ 

# Esfuerzo a una profundidad de 7m:

$$m = \frac{1,5 m}{7 m} = 0,21$$
;  $n = \frac{1,5 m}{7 m} = 0,21$ 

Entonces, se tiene que:

$$I_z = 0,022$$

Luego, el esfuerzo producido en "G" es:

 $\Delta \sigma_G = 88 \ kPa$ 

## Esfuerzo a una profundidad de 8,5m

$$m = \frac{1.5 \ m}{8.5 \ m} = 0.17$$
;  $n = \frac{1.5 \ m}{8.5 \ m} = 0.17$ 

Entonces, se tiene que:

$$I_z = 0,013$$

Luego, el esfuerzo producido en "G" es:

 $\Delta \sigma_H = 52 \ kPa$ 

### **Esfuerzos verticales BORDE**



## Esfuerzo a una profundidad de 1m

$$m = \frac{3m}{1m} = 3$$
;  $n = \frac{3m}{1m} = 3$ 

 $I_z = 0,244$ 

Luego, el esfuerzo producido en "A" es:

 $\Delta \sigma_A = 244 \ kPa$ 

# Esfuerzo a una profundidad de 2m

$$m = \frac{3,0 m}{2 m} = 1,5$$
;  $n = \frac{3 m}{2 m} = 1,5$ 

Entonces, se tiene que:

$$I_z = 0,217$$

Luego, el esfuerzo producido en "B" es:

$$\Delta \sigma_B = 217 \ kPa$$

# Esfuerzo a una profundidad de 3m

$$m = \frac{3m}{3m} = 1,0$$
;  $n = \frac{3m}{3m} = 1,0$ 

Entonces, se tiene que:

$$I_z = 0,178$$

Luego, el esfuerzo producido en "C" es:

 $\Delta \sigma_{C} = 178 \ kPa$ 

# Esfuerzo a una profundidad de 4m

$$m = \frac{3 m}{4 m} = 0,75$$
;  $n = \frac{3 m}{4 m} = 0,75$ 

Entonces, se tiene que:

$$I_z = 0,140$$

Luego, el esfuerzo producido en "D" es:

 $\Delta \sigma_D = 140 \ kPa$ 

# Esfuerzo a una profundidad de 5m

$$m = \frac{3 m}{5m} = 0.6$$
;  $n = \frac{3 m}{5 m} = 0.6$ 

Entonces, se tiene que:

$$I_z = 0,108$$

Luego, el esfuerzo producido es:

$$\Delta \sigma_E = 108 \, kPa$$

## Esfuerzo a una profundidad de 6m

$$m = \frac{3 m}{6 m} = 0.5$$
;  $n = \frac{3 m}{6 m} = 0.5$ 

Entonces, se tiene que:

$$I_z = 0,085$$

Luego, el esfuerzo producido en "F" es:

 $\Delta \sigma_F = 85 \ kPa$ 

# Esfuerzo a una profundidad de 7m

$$m = \frac{3 m}{7 m} = 0.4$$
;  $n = \frac{3 m}{7 m} = 0.4$ 

Entonces, se tiene que:

$$I_z = 0,060$$

Luego, el esfuerzo producido en "G" es:

 $\Delta \sigma_G = 60 \ kPa$ 

### Esfuerzo a una profundidad de 8,5m

$$m = \frac{3 m}{8,5 m} = 0,35$$
;  $n = \frac{3 m}{8,5 m} = 0,35$ 

Entonces, se tiene que:

 $I_z = 0,050$ 

Luego, el esfuerzo producido en "H" es:

$$\Delta \sigma_H = 50 \ kPa$$

### c) Esfuerzos geoestáticos

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

• Esfuerzos normales

$$\sigma = \gamma z$$

Esfuerzo a una profundidad de 1m

 $\sigma_A = 18,44 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\sigma_B = 36,88 \ kPa$ 

Esfuerzo a una profundidad de 3m

 $\sigma_c = 54,395 \, kPa$ 

Esfuerzo a una profundidad de 4m

$$\sigma_D = 70,985 \ kPa$$

Esfuerzo a una profundidad de 5m

 $\sigma_E = 87,575 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\sigma_F = 104,165 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\sigma_G = 120,755 \, kPa$ 

## Esfuerzo a una profundidad de 8,5m

$$\sigma_{H} = 145,64 \, kPa$$

d) Grafica de círculo de Mohr

### Profundidad de 1m

$$\sigma_{vA} = 18,44 \ kPa$$

Se determina la constante Ko

$$K_o = 0,428$$

Se determina el esfuerzo horizontal actuante

$$\sigma_{HA} = (18,44 \ kPa)(0,429)$$

 $\sigma_{HA} = 7,911 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

## Profundidad de 2m

$$\sigma_{vB} = 36,88 \, kPa$$

Se determina la constante Ko

$$K_o = 0,428$$

Se determina el esfuerzo horizontal actuante

 $\sigma_{HB} = (36,88 \ kPa)(0,429)$ 

$$\sigma_{HB} = 15,822 \ kPa$$

Se determina el ángulo  $\theta$  producido

$$\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$$

### Profundidad de 3m

 $\sigma_{vc} = 54,\!395 \; kPa$ 

Se determina la constante Ko

 $K_o = 0,667$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HC} = (54,395 \, kPa)(0,667)$ 

 $\sigma_{HC} = 36,281 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

## Profundidad de 4m

$$\sigma_{vD} = 70,985 \, kPa$$

Se determina la constante Ko

 $K_o = 0,667$ 

Se determina el esfuerzo horizontal actuante

$$\sigma_{HD} = (70,985)(0,667)$$

$$\sigma_{HD} = 47,347 \ kPa$$

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

### Profundidad de 5m

 $\sigma_{vE} = 87,575 \ kPa$ 

Se determina la constante Ko

 $K_o = 0,667$ 

Se determina el esfuerzo horizontal actuante

$$\sigma_{HE} = (87,575 \, kPa)(0,667)$$

 $\sigma_{HE} = 58,413 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

### Profundidad de 6m

$$\sigma_{vF} = 104,165 \ kPa$$

Se determina la constante Ko

$$K_o = 0,667$$

Se determina el esfuerzo horizontal actuante

$$\sigma_{HF} = (104, 165 \, kPa)(0, 667)$$

$$\sigma_{HE} = 69,478 \, kPa$$

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

### Profundidad de 7m

 $\sigma_{vG} = 120,755 \ kPa$ 

Se determina la constante Ko

 $K_o = 0,667$
Se determina el esfuerzo horizontal actuante

 $\sigma_{HG} = (120,755 \ kPa \ )(0,667)$ 

 $\sigma_{HG} = 80,544 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

## Profundidad de 8,5m

 $\sigma_{vH} = 145,\!64 \; kPa$ 

Se determina la constante Ko

 $K_o = 0,667$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HH} = (145,\!64\,kPa\,)(0,\!667)$ 

 $\sigma_{HH} = 97,142 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

# Cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Para la cimentación bajo la condición de carga vertical céntrica de 1000 kPa y de dimensiones: B = L = 4,0 m. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



# a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de  $\sigma'_{zp}$ 

$$\sigma'_{zp} = \left(2 \ m * 20, 2 \ \frac{kN}{m^3}\right) - \left(2 \ m * 9, 81 \ \frac{kN}{m^3}\right)$$

 $\sigma'_{zp} = 20,78 \, kPa$ 

Cálculo de *I_{zp}* 

$$I_{zp} = 1,1937$$

Cálculo de C₁

 $C_1 = 1,0 \ge 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento producido

**Gráfica 103.** Gráfica de Smertchmann producida en el centro de una zapata cuadrada de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$I_{z^*\Delta zi/Es}$
0,00	2,00	1,00	2,00	10000	0,647	1,2940E-04
2,00	2,50	2,25	0,50	10000	1,144	5,7200E-05
						1,866E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E_s}\right) * \Delta z$$

 $S_i = 0,1866 \ m = 186,6 \ mm = 18,66 \ cm$ 

## Tipo de espacio

$$D = 2,5 m + 6m$$
  
$$\frac{D}{B'} = \frac{8,5 m}{2,0 m} = 4,25 < 10 (Espacio Finito)$$

## Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_{s1} = F_1 + (\frac{1-2\nu}{1-\nu})F_2$$

Entonces, se tiene que:

$$F_1 = 0,418$$
  
 $F_2 = 0,038$ 

Luego, el factor de influencia es:

$$I_{s1} = 0,4307$$

Ahora analizo, como si el primer estrato fuera arcilla:

$$D = H_1$$

Determinación del tipo de espacio:

$$\frac{D}{B'} = \frac{2,5m}{2,0m} = 1,25 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia

$$I_{s2} = F_1 + (\frac{1-2v}{1-v})F_2$$

Entonces, se tiene que:

$$F_1 = 0,170$$
  
 $F_2 = 0,082$ 

Luego, el factor de influencia es:

$$I_{s2} = 0,1973$$

Entonces, el factor de influencia actuante es:

$$I_s = 0,4307 - 0,1973$$
  
 $I_s = 0,2334$ 

Cálculo de q

 $q = 1000 \ kPa$ 

Cálculo del asentamiento producido

$$S_i = \frac{q * B'}{E_s} * (1 - v^2) * I_s * 4$$

 $S_i = 0,1023 \ m = 102,341 \ mm = 10,234 \ cm$ 

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de 
$$\sigma'_{zp}$$
  
 $\sigma'_{zp} \left( 2,5m * 20,2 \frac{kN}{m^3} \right) - \left( 2,5m * 9,81 \frac{kN}{m^3} \right) + \left( 1,5m * 18 \frac{kN}{m^3} \right) - \left( 1,5m * 9,81 \frac{kN}{m^3} \right)$   
 $\sigma'_{zp} = 38,26 \ kPa$ 

Cálculo de Izp

 $I_{zp} = 1,0112$ 

Cálculo de C₁

 $C_1 = 1,0 \ge 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento producido

**Gráfica 104.** Gráfica de Smertchmann producida en el borde de una zapata cuadrada de dimensiones  $4m \times 4m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	Iz*∆zi/Es
0,00	2,125	1,0625	2,125	10000	0,342	7,2675E-05
2,125	2,50	2,3125	0,375	10000	0,627	2,3513E-05
						9.6188E-05

$$S_i = C_1 * C_2 * \Delta q * \sum_{i=1}^{n} \left(\frac{I_z}{E_s}\right) * \Delta z$$
  
$$S_i = 0,02404 \ m = 24,047 \ mm = 2,405 \ cm$$

• Asentamiento en el borde del cimiento (Suelo cohesivo)

## Tipo de espacio

$$\frac{D}{B} = \frac{8,5 m}{4,0 m} = 2,125 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_{s1} = F_1 + (\frac{1-2v}{1-v})F_2$$

Entonces, se tiene que:

 $F_1 = 0,290$ 

 $F_2 = 0,062$ 

Luego, el factor de influencia es:

$$I_{s1} = 0,3107$$

Ahora analizo, como si el primer estrato fuera arcilla:

$$D = H_1$$

Determinación del tipo de espacio:

$$\frac{D}{B} = \frac{2,5m}{4,0\ m} = 0,625 < 10\ (Espacio\ Finito)$$

Determinación del factor de influencia

$$I_{s2} = F_1 + (\frac{1-2\nu}{1-\nu})F_2$$

Entonces, se tiene que:

$$F_1 = 0,070$$
  
 $F_2 = 0,085$ 

Luego, el factor de influencia es:

$$I_{s2} = 0,0983$$

Entonces, el factor de influencia actuante es:

$$I_s = 0,3107 - 0,0983$$

$$I_s = 0,2124$$

Cálculo de la carga actuante

$$q = 1000 \, kPa$$

## Cálculo del asentamiento

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s$$

 $S_i = 0,04656 m = 46,566 mm = 4,657 cm$ 

## Asentamiento total en el centro:

 $S_{i \, Total \, Centro} = 0,1866 \, m + 0,1023 \, m = 0,2889 \, m$ 

Asentamiento total en el borde:

$$S_{i\,Total\,Borde} = 0,02404\,m + 0,04656\,m = 0,0706\,m$$

#### b) Incremento de esfuerzos verticales producidos en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

### **Esfuerzos verticales CENTRO**



## Esfuerzo a una profundidad de 1m

$$m = \frac{2m}{1m} = 2,0$$
;  $n = \frac{2m}{1m} = 2,0$ 

Entonces, se tiene que:

$$I_z = 0,233$$

Luego, el esfuerzo producido en "A" es:

$$\Delta \sigma_A = 932 \ kPa$$

## Esfuerzo a una profundidad de 2m

$$m = \frac{2,0 \ m}{2,0 \ m} = 1,0$$
;  $n = \frac{2,0 \ m}{2,0 \ m} = 1,0$ 

Entonces, se tiene que:

 $I_z = 0,176$ 

Luego, el esfuerzo producido en "B" es:

 $\Delta \sigma_B = 704 \ kPa$ 

## Esfuerzo a una profundidad de 3m

$$m = \frac{2m}{3m} = 0,67$$
;  $n = \frac{2m}{3m} = 0,67$ 

Entonces, se tiene que:

$$I_z = 0,123$$

Luego, el esfuerzo producido en "C" es:

 $\Delta \sigma_c = 492 \ kPa$ 

## Esfuerzo a una profundidad de 4m

$$m = \frac{2m}{4m} = 0.5$$
;  $n = \frac{2m}{4m} = 0.5$ 

Entonces, se tiene que:

$$I_z = 0,085$$

Luego, el esfuerzo producido en "D" es:

$$\Delta \sigma_D = 340 \ kPa$$

## Esfuerzo a una profundidad de 5m

$$m = \frac{2m}{5m} = 0.4$$
;  $n = \frac{2m}{5m} = 0.4$ 

Entonces, se tiene que:

$$I_z = 0,060$$

Luego, el esfuerzo producido en "E" es:

$$\Delta \sigma_E = 240 \ kPa$$

## Esfuerzo a una profundidad de 6m

$$m = \frac{2m}{6m} = 0,33$$
;  $n = \frac{2m}{6m} = 0,33$ 

Entonces, se tiene que:

 $I_z = 0,044$ 

Luego, el esfuerzo producido en "F" es:

 $\Delta \sigma_F = 176 \ kPa$ 

## Esfuerzo a una profundidad de 7m

$$m = \frac{2m}{7m} = 0,28$$
;  $n = \frac{2m}{7m} = 0,28$ 

Entonces, se tiene que:

$$I_z = 0,032$$

Luego, el esfuerzo producido en "G" es:

 $\Delta \sigma_G = 128 \ kPa$ 

## Esfuerzo a una profundidad de 8,5m

$$m = \frac{2m}{8,5m} = 0,20$$
;  $n = \frac{2m}{8,5m} = 0,20$ 

Entonces, se tiene que:

$$I_z = 0,019$$

Luego, el esfuerzo producido en "G" es:

$$\Delta \sigma_H = 76 \ kPa$$

## **Esfuerzos verticales BORDE**



## Esfuerzo a una profundidad de 1m

$$m = \frac{4 m}{1 m} = 4$$
;  $n = \frac{4 m}{1 m} = 4$ 

Entonces, se tiene que:

$$I_z = 0,249$$

Luego, el esfuerzo producido en "A" es:

$$\Delta \sigma_A = 249 \ kPa$$

## Esfuerzo a una profundidad de 2m

$$m = \frac{4 m}{2 m} = 2$$
;  $n = \frac{4 m}{2 m} = 2$ 

Entonces, se tiene que:

$$I_z = 0,233$$

Luego, el esfuerzo producido en "B" es:

 $\Delta \sigma_B = 233 \ kPa$ 

## Esfuerzo a una profundidad de 3m

$$m = \frac{4 m}{3 m} = 1,33$$
;  $n = \frac{4 m}{3 m} = 1,33$ 

Entonces, se tiene que:

$$I_z = 0,207$$

Luego, el esfuerzo producido en "C" es:

 $\Delta\sigma_{C}=207\;kPa$ 

## Esfuerzo a una profundidad de 4m

$$m = \frac{4 m}{4 m} = 1$$
;  $n = \frac{4 m}{4 m} = 1$ 

Entonces, se tiene que:

$$I_z = 0,179$$

Luego, el esfuerzo producido en "D" es:

$$\Delta \sigma_D = 179 \, kPa$$

## Esfuerzo a una profundidad de 5m

$$m = \frac{4 m}{5m} = 0.8$$
;  $n = \frac{4 m}{5 m} = 0.8$ 

Entonces, se tiene que:

$$I_z = 0,1492$$

Luego, el esfuerzo producido es:

$$\Delta \sigma_E = 149,2 \ kPa$$

## Esfuerzo a una profundidad de 6m

$$m = \frac{4 m}{6 m} = 0,67$$
;  $n = \frac{4 m}{6 m} = 0,67$ 

Entonces, se tiene que:

$$I_z = 0,123$$

Luego, el esfuerzo producido en "F" es:

 $\Delta \sigma_F = 123 \ kPa$ 

## Esfuerzo a una profundidad de 7m

$$m = \frac{4 m}{7 m} = 0,57$$
;  $n = \frac{4 m}{7 m} = 0,57$ 

Entonces, se tiene que:

$$I_z = 0,100$$

Luego, el esfuerzo producido en "G" es:

$$\Delta \sigma_G = 100 \ kPa$$

## Esfuerzo a una profundidad de 8,5m

$$m = \frac{4 m}{8,5 m} = 0,47$$
;  $n = \frac{4 m}{8,5 m} = 0,47$ 

Entonces, se tiene que:

$$I_z = 0,077$$

Luego, el esfuerzo producido en "H" es:

 $\Delta \sigma_H = 77 \ kPa$ 

#### c) Esfuerzos geoestáticos

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

## • Esfuerzos normales

 $\sigma=\gamma z$ 

## Esfuerzo a una profundidad de 1m

$$\sigma_A = 20,2 \ kPa$$

#### Esfuerzo a una profundidad de 2m

$$\sigma_B = 40,4 \ kPa$$

Esfuerzo a una profundidad de 3m

$$\sigma_c = 59,5 \ kPa$$

Esfuerzo a una profundidad de 4m

$$\sigma_D = 77,5 \ kPa$$

Esfuerzo a una profundidad de 5m

$$\sigma_E = 95,5 \ kPa$$

Esfuerzo a una profundidad de 6m

$$\sigma_{F} = 113,5 \ kPa$$

Esfuerzo a una profundidad de 7m

$$\sigma_{G} = 131,5 \ kPa$$

Esfuerzo a una profundidad de 8,5m

$$\sigma_{H} = 158,5 \ kPa$$

• **Presión de poros**  $u = \gamma_w z$ 

Esfuerzo a una profundidad de 1m

$$u_A = 9,81 \, kPa$$

Esfuerzo a una profundidad de 2m

$$u_B = 19,62 \ kPa$$

Esfuerzo a una profundidad de 3m

 $u_c = 29,43 \ kPa$ 

Esfuerzo a una profundidad de 4m

$$u_D = 39,24 \, kPa$$

Esfuerzo a una profundidad de 5m

$$u_E = 49,05 \, kPa$$

Esfuerzo a una profundidad de 6m

$$u_F = 58,86 \, kPa$$

#### Esfuerzo a una profundidad de 7m

 $u_G = 68,67 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $u_H = 83,385 \ kPa$ 

• Esfuerzos efectivos  $\sigma' = \gamma z - \gamma_w z$ 

Esfuerzo a una profundidad de 1m

$$\sigma'_A = 10,39 \ kPa$$

Esfuerzo a una profundidad de 2m

$$\sigma'_B = 20,78 \ kPa$$

Esfuerzo a una profundidad de 3m

$$\sigma'_c = 30,07 \ kPa$$

Esfuerzo a una profundidad de 4m

$$\sigma'_{D} = 38,26 \, kPa$$

Esfuerzo a una profundidad de 5m

$$\sigma'_E = 46,45 \, kPa$$

Esfuerzo a una profundidad de 6m

$$\sigma'_F = 54,64 \ kPa$$

Esfuerzo a una profundidad de 7m

 $\sigma'_{G} = 62,83 \, kPa$ 

Esfuerzo a una profundidad de 8,5m

$$\sigma'_{H} = 75,115 \ kPa$$

d) Gráfica de círculo de Mohr

#### Profundidad de 1m

 $\sigma_{vA} = 10,39 \ kPa$ 

Se determina la constante Ko

 $K_o = 0,429$ 

Se determina el esfuerzo horizontal actuante

$$\sigma_{HA} = (10,39 \, kPa)(0,429)$$

 $\sigma_{HA} = 4,457 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

## Profundidad de 2m

 $\sigma_{vB} = 20,78 \ kPa$ 

Se determina la constante Ko

$$K_o = 0,429$$

Se determina el esfuerzo horizontal actuante

$$\sigma_{HB} = (20,78 \, kPa)(0,429)$$

 $\sigma_{HB} = 8,915 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 61^{\circ} \rightarrow 2\theta = 122^{\circ}$ 

## Profundidad de 3m

$$\sigma_{vC} = 30,07 \ kPa$$

Se determina la constante Ko

 $K_o = 0,667$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HC} = (30,07 \ kPa)(0,667)$ 

 $\sigma_{HC} = 20,057 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

## Profundidad de 4m

 $\sigma_{vD} = 38,26 \ kPa$ 

Se determina la constante Ko

$$K_o = 0,667$$

Se determina el esfuerzo horizontal actuante

 $\sigma_{HD} = (38,26 \, kPa)(0,667)$ 

 $\sigma_{HD}=25{,}520~kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

#### Profundidad de 5m

 $\sigma_{vE} = 46,45 \ kPa$ 

Se determina la constante Ko

$$K_o = 0,667$$

Se determina el esfuerzo horizontal actuante

 $\sigma_{HE} = (46,45 \ kPa)(0,667)$ 

 $\sigma_{HE} = 30,982 \ kPa$ 

Se determina el ángulo  $\theta$  producido

$$\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$$

#### Profundidad de 6m

$$\sigma_{vF} = 54,64 \, kPa$$

Se determina la constante Ko

 $K_o = 0,667$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HF} = (54,64 \ kPa)(0,667)$ 

 $\sigma_{HF} = 36,445 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

## Profundidad de 7m

 $\sigma_{vG} = 62,83 \ kPa$ 

Se determina la constante Ko

 $K_o = 0,667$ 

Se determina el esfuerzo horizontal actuante

$$\sigma_{HG} = (62,83 \, kPa)(0,667)$$

 $\sigma_{HG} = 41,907 \ kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

#### Profundidad de 8,5m

 $\sigma_{vH}=75,\!115\;kPa$ 

Se determina la constante Ko

 $K_o = 0,667$ 

Se determina el esfuerzo horizontal actuante

 $\sigma_{HH} = (75,115 \ kPa)(0,667)$ 

 $\sigma_{HH}=50,102\;kPa$ 

Se determina el ángulo  $\theta$  producido

 $\theta = 60^{\circ} \rightarrow 2\theta = 120^{\circ}$ 

# Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Se cimentara una edificación de 3 pisos sobre el perfil de suelo indicado en la figura. Para este perfil y los datos dados, determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



#### a) Asentamiento inmediato producido en el centro y borde del cimiento

Asentamiento en el centro del cimiento (Suelo cohesivo) ٠

#### Tipo de espacio

$$\frac{D}{B} = \frac{2,5m}{3,0 m} = 0,83 \text{ (Espacio Finito)}$$

#### Determinación del factor de influencia, según Terzaghi, 1943.

$$\frac{D}{R} = 5 \rightarrow I_s = 1,30$$
;  $\frac{D}{R} = \frac{2}{3} \rightarrow I_s = 0,65$ 

Interpolando los datos anteriores, se obtiene el factor de influencia:

$$\frac{D}{R} = 1,67 \rightarrow I_s = 0,8005$$

#### Cálculo de la carga

$$q = 1000 \, kPa$$

#### Cálculo del asentamiento producido

$$S_i = \frac{q * R}{E_s} * I_s$$

 $S_i = 0,07834 m = 78,348 mm = 7,835 cm$ 

Asentamiento en el centro del cimiento - Suelo granular, empleando el método del • factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

## Cálculo de $\sigma'_{zp}$ $\sigma'_{zp} = \left(1,5 \ m * 16,59 \ \frac{kN}{m^3}\right)$

$$\sigma_{zp} = (1,5 m + 10,5)^{2} m^{2}$$

$$\sigma'_{zp} = 24,885 \ kPa$$

Cálculo de Izp

 $I_{zp} = 1,1339$ 

Cálculo de C₁

 $C_1 = 1,0$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento producido

Gráfica 105. Gráfica de Smertchmann producida en el centro de una zapata circular de diámetro 3m.



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	3,00	2,750	0,50	10000	0,819	4,0950E-05
3,00	4,50	3,750	1,50	10000	0,567	8,5050E-05
4,50	6,00	5,250	1,50	10000	0,189	2,8350E-05
						1,5435E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,1543 \ m = 154,35 \ mm = 15,435 \ cm$ 

• Asentamiento en el borde del cimiento (Suelo cohesivo)

## Tipo de espacio

$$\frac{D}{B} = \frac{2,5 m}{3,0 m} = 1,0 < 10 (Espacio Finito)$$

Determinación del factor de influencia, según Terzaghi, 1943.

$$\frac{D}{R} = 5 \rightarrow I_s = 0,76$$
$$\frac{D}{R} = \frac{2}{3} \rightarrow I_s = 0,25$$

Al interpolar los datos anteriores, se obtiene el factor de influencia:

$$\frac{D}{R} = 1,67 \rightarrow I_s = 0,368$$

## Cálculo de la carga actuante

$$\Delta q = 1000 \, kPa$$

## Cálculo del asentamiento producido

$$S_i = \frac{q * R}{Es} * I_s$$

$$S_i = 0,0360 \ m = 36,018 \ mm = 3,602 \ cm$$

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de 
$$\sigma'_{zp}$$
  
 $\sigma'_{zp} = \left(3 \ m * 16,59 \ \frac{kN}{m^3}\right)$ 

 $\sigma'_{zp} = 49,77 \, kPa$ 

Cálculo de  $I_{zp}$ 

$$I_{zp} = 0,9482$$

Cálculo de C₁

 $C_1 = 1,0$ 

## Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento

**Gráfica 106.** Gráfica de Smertchmann producida en el borde de una zapata circular de diámetro 3m.



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	4,25	3,375	1,750	10000	0,909	1,5908E-04
4,25	6,375	5,3125	2,125	10000	0,705	1,4981E-04
6,375	<u>8,50</u>	7,4375	2,125	10000	0,481	1,0221E-04
						4,1110E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E_s}\right)_i * \Delta z$$

 $S_i = 0,1028 \ m = 102,775 \ mm = 10,278 \ cm$ 

## Asentamiento Total producido en el centro:

 $S_{i Total Centro} = 0,07834 m + 0,1543 m = 0,23264 m$ 

## Asentamiento Total producido en el borde:

 $S_{i Total Borde} = 0,0360 m + 0,1028 m = 0,1388 m$ 

## b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

## **Esfuerzos verticales CENTRO**



$$\Delta \sigma_z = q * \left[ 1 - \frac{1}{\left[ \left( \frac{R}{z} \right)^2 + 1 \right]^{\frac{3}{2}}} \right]$$

Esfuerzo a una profundidad de 1m

$$\Delta \sigma_A = 829,32 \ kPa$$

Esfuerzo a una profundidad de 2m

$$\Delta \sigma_B = 488 \, kPa$$

Esfuerzo a una profundidad de 3m

$$\Delta \sigma_c = 284,46 \, kPa$$

Esfuerzo a una profundidad de 4m

$$\Delta \sigma_D = 179,10 \ kPa$$

Esfuerzo a una profundidad de 5m

$$\Delta \sigma_E = 121,26 \ kPa$$

Esfuerzo a una profundidad de 6m

$$\Delta \sigma_F = 86,92 \ kPa$$

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 65,13 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 44,96 \ kPa$ 

**Esfuerzos verticales BORDE** 



Nota: Los valores del factor de influencia, son calculados, según Foster y Ahlvin, 1954.

## Esfuerzo a una profundidad de 1m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{1m}{1,5m} = 0,67$ 

Entonces, el factor de influencia es:

$$I_z = 0,40$$

Luego, el esfuerzo producido en el punto "A" es:

 $\Delta \sigma_A = 400 \ kPa$ 

#### Esfuerzo a una profundidad de 2m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{2m}{1,5m} = 1,33$ 

Entonces, el factor de influencia es:

 $I_z = 0,300$ 

Luego, el esfuerzo producido en el punto "B" es:

 $\Delta \sigma_B = 300 \ kPa$ 

## Esfuerzo a una profundidad de 3m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{3m}{1,5m} = 2$ 

Entonces, el factor de influencia es:

$$I_z = 0,210$$

Luego, el esfuerzo producido en el punto "C" es:

 $\Delta \sigma_c = 210 \ kPa$ 

## Esfuerzo a una profundidad de 4m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{4m}{1,5m} = 2,67$ 

Entonces, el factor de influencia es:

$$I_z = 0,148$$

Luego, el esfuerzo producido en el punto "D" es:

$$\Delta \sigma_D = 148 \, kPa$$

## Esfuerzo a una profundidad de 5m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{5m}{1,5m} = 3,33$ 

Entonces, el factor de influencia es:

$$I_z = 0,108$$

Luego, el esfuerzo producido en el punto "E" es:

$$\Delta \sigma_E = 108 \, kPa$$

## Esfuerzo a una profundidad de 6m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{6m}{1,5m} = 4$ 

Entonces, el factor de influencia es:

$$I_z = 0,078$$

Luego, el esfuerzo producido en el punto "F" es:

 $\Delta \sigma_F = 78 \ kPa$ 

## Esfuerzo a una profundidad de 7m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{7m}{1,5m} = 4,67$ 

Entonces, el factor de influencia es:

$$I_z = 0,058$$

Luego, el esfuerzo producido en el punto "G" es:

$$\Delta \sigma_G = 58 \ kPa$$

## Esfuerzo a una profundidad de 8,5m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{8,5 m}{1,5m} = 5,67$ 

Entonces, el factor de influencia es:

$$I_z = 0,041$$

Luego, el esfuerzo producido en el punto "G" es:

 $\Delta \sigma_H = 41 \ kPa$ 

Nota: Los respectivos cálculos de esfuerzos geoestáticos y gráficos de círculo de Mohr, corresponden a los valores obtenidos para el ejercicio de "Cimiento rectangular sobre perfil de suelo estratificado (Sin presencia de nivel freático).

## Cimiento circular sobre perfil de suelo estratificado (Con presencia de nivel freático)

Se tiene una zapata circular de D = 3,5 m,que se empleara como cimentación de una edificación de 5 pisos. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Gráfica de circulo de Mohr debido al peso propio del suelo



a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento (Suelo cohesivo)

Tipo de espacio

$$\frac{D}{B} = \frac{2.5 m}{3.5 m} = 0.71 < 10 (Espacio Finito)$$

Determinación del factor de influencia, según Terzaghi, 1943.

$$\frac{D}{R} = 5 \rightarrow I_s = 1,30$$
$$\frac{D}{R} = \frac{2}{3} \rightarrow I_s = 0,65$$

Al interpolar, los datos anteriores, se obtiene un valor de factor de influencia igual a:

$$\frac{D}{R} = 1,4286 \rightarrow I_s = 0,7642$$

#### Cálculo de la carga actuante

$$q = 1000 \ kPa$$

#### Cálculo del asentamiento producido

$$S_i = \frac{q * R}{E_s} * I_s$$

$$S_i = 0,0872 \ m = 87,262 \ mm = 8,726 \ cm$$

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de  $\sigma'_{zp}$ 

$$\sigma'_{zp} = \left(1,75 \ m * 18 \ \frac{kN}{m^3}\right) - \left(1,75 \ m * 9,81 \ \frac{kN}{m^3}\right)$$
$$\sigma'_{zp} = 14,332 \ kPa$$

Cálculo de  $I_{zp}$   $I_{zp} = 1,3353$ Cálculo de  $C_1$   $C_1 = 1,0 \ge 0,5$ Cálculo de  $C_2$ 

## $C_2 = 1,0; t = 0s$

## Cálculo del asentamiento producido

Gráfica 107. Gráfica de Smertchmann producida en el centro de una zapata circular de diámetro 3,5*m*.



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	3,50	3,000	1,00	10000	1,017	1,0170E-04
3,50	5,25	4,375	1,75	10000	0,668	1,1690E-04
5,25	7,00	6,125	1,75	10000	0,223	3,9025E-05
						2,576E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

$$S_i = 0,2576 \ m = 257,6 \ mm = 25,76 \ cm$$

• Asentamiento en el borde del cimiento (Suelo cohesivo)

## Tipo de espacio

$$\frac{D}{B} = \frac{2,5 m}{3,5 m} = 0,71 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia, según Terzaghi, 1943.

$$\frac{D}{R} = 5 \rightarrow I_s = 0,76$$
$$\frac{D}{R} = \frac{2}{3} \rightarrow I_s = 0,25$$

Al interpolar los datos anteriores, se obtiene un valor de influencia que es:

$$\frac{D}{R} = \frac{2.5}{1.75} \rightarrow I_s = 0.3396$$

Cálculo de la carga actuante

$$q = 1000 \, kPa$$

Cálculo del asentamiento producido

$$S_i = \frac{q * R}{E_s} * I_s$$

$$S_i = 0,03877 m = 38,778 mm = 3,877 cm$$

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

## Cálculo de $\sigma'_{zp}$

$$\sigma'_{zp} = \left(2,5 \ m * 18 \ \frac{kN}{m^3}\right) - \left(2,5 \ m * 9,81 \ \frac{kN}{m^3}\right) + \left(1 \ m * 20,2 \ \frac{kN}{m^3}\right) - \left(1 \ m * 9,81 \ \frac{kN}{m^3}\right)$$
$$\sigma'_{zp} = 30,865 \ kPa$$

Cálculo de Izp

 $I_{zp} = 1,0692 \ kPa$ 

Cálculo de C₁

 $C_1=1,0\geq 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento producido

Gráfica 108. Gráfica de Smertchmann producida en el borde de una zapata circular de diámetro 3m.



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	4,25	3,375	1,750	10000	1,035	1,8113E-04
4,25	6,375	5,3125	2,125	10000	0,885	1,8806E-04
6,375	8,50	7,4375	2,125	10000	0,668	1,4195E-04
						5,1114E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,1278 \ m = 127,785 \ mm = 12,778 \ cm$ 

#### Asentamiento total producido en el centro:

 $S_{i Total Centro} = 0,0872 m + 0,2576 m = 0,3448 m$ 

#### Asentamiento total producido en el borde:

 $S_{i Total Borde} = 0,03877 m + 0,1278 m = 0,16657 m$ 

#### b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

#### **Esfuerzos verticales CENTRO**



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 877, 87 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 573,76 \, kPa$ 

Esfuerzo a una profundidad de 3m

 $\Delta \sigma_c = 355,52 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 231,03 \ kPa$ 

## Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 159, 15 k P a$ 

#### Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 115,26 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 86,92 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 60,37 \ kPa$ 

**Esfuerzos verticales BORDE** 



Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

## Esfuerzo a una profundidad de 1m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{1m}{1,75m} = 0,57$ 

Entonces, el factor de influencia es:

$$I_z = 0,405$$

Luego, el esfuerzo producido en el punto "A" es:

 $\Delta \sigma_A = 405 \ kPa$ 

## Esfuerzo a una profundidad de 2m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{2m}{1,75m} = 1,14$ 

Entonces, el factor de influencia es:

$$I_z = 0,310$$

Luego, el esfuerzo producido en el punto "B" es:

 $\Delta \sigma_B = 310 \ kPa$ 

#### Esfuerzo a una profundidad de 3m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{3m}{1,75m} = 1,71$ 

Entonces, el factor de influencia es:

$$I_z = 0,240$$

Luego, el esfuerzo producido en el punto "C" es:

$$\Delta \sigma_c = 240 \ kPa$$

#### Esfuerzo a una profundidad de 4m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{4m}{1,75m} = 2,28$ 

Entonces, el factor de influencia es:

$$I_z = 0,190$$

Luego, el esfuerzo producido en el punto "D" es:

 $\Delta \sigma_D = 180 \ kPa$ 

## Esfuerzo a una profundidad de 5m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{5m}{1,75m} = 2,86$ 

Entonces, el factor de influencia es:

$$I_z = 0,135$$

Luego, el esfuerzo producido en el punto "E" es:

 $\Delta \sigma_E = 135 \ kPa$ 

#### Esfuerzo a una profundidad de 6m

Se tiene que:
$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{6m}{1,75m} = 3,43$ 

Entonces, el factor de influencia es:

$$I_z = 0,100$$

Luego, el esfuerzo producido en el punto "F" es:

 $\Delta \sigma_F = 100 \ kPa$ 

## Esfuerzo a una profundidad de 7m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{7m}{1,75m} = 4$ 

Entonces, el factor de influencia es:

$$I_z = 0,079$$

Luego, el esfuerzo producido en el punto "G" es:

$$\Delta \sigma_G = 79 \ kPa$$

## Esfuerzo a una profundidad de 8,5m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{8,5 m}{1,5m} = 4,86$ 

Entonces, el factor de influencia es:

$$I_z = 0,056$$

Luego, el esfuerzo producido en el punto "G" es:

$$\Delta \sigma_H = 56 \ kPa$$

Nota: Los cálculos correspondientes a esfuerzos geoestáticos y gráficos de círculo de Mohr, se pueden apreciar en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

## Cimiento circular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Una columna transmite a una zapata circular una carga de 1000 kPa, sin incluir su propio peso. Se desea calcular el asentamiento elástico que sufre la zapata. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



# a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de  $\sigma'_{zp}$ 

$$\sigma'_{zp} = \left(2\ m*18,44\frac{kN}{m^3}\right)$$

 $\sigma'_{zp} = 36,88 \, kPa$ 

Cálculo de  $I_{zp}$ 

 $I_{zp} = 1,0207$ 

Cálculo de C₁

 $C_1 = 1,0 \ge 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s



Gráfica 109. Gráfica de Smertchmann producida en el centro de una zapata circular de diámetro 4m.

Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$I_{z}^{*}\Delta zi/Es$
0,00	2,00	1,00	2,00	10000	0,560	1,1200E-04
2,00	2,50	2,25	0,50	10000	0,978	4,8900E-05
						1,609E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

$$S_i = 0,1609 m = 160,9 mm = 16,09 cm$$

• Asentamiento en el centro del cimiento (Suelo cohesivo)

D = 2,5 + 6m

D = 8,5 m

Tipo de espacio

$$\frac{D}{B} = \frac{8,5 m}{4,0 m} = 2,13 < 10 (Espacio Finito)$$

#### Determinación del factor de influencia, según Terzaghi, 1943.

$$\frac{D}{R} = 5 \rightarrow I_s = 1,30$$

$$\frac{D}{R} = \frac{2}{3} \rightarrow I_s = 0,65$$

Al interpolar los datos anteriores, obtengo que el valor del factor de influencia es:

$$\frac{D}{R} = \frac{8,5}{2,0} \to I_{s1} = 1,1875$$

Analizo el primer estrato como si fuera arcilla

$$D = H_1$$

Tipo de espacio

$$\frac{D}{B} = \frac{2,5 m}{4,0 m} = 0,625 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia

$$\frac{D}{R} = 5 \quad \rightarrow I_s = 1,30$$
$$\frac{D}{R} = \frac{2}{3} \quad \rightarrow I_s = 0,65$$

Al interpolar los datos anteriores, obtengo que el valor del factor de influencia es:

$$\frac{D}{R} = \frac{2,5}{2,0} \to I_{s2} = 0,7375$$

Luego, el factor de influencia total es:

$$I_s = 1,1875 - 0,7375$$

$$I_s = 0,450$$

## Cálculo de la carga actuante

$$q = 1000 \, kPa$$

$$S_i = \frac{q * R}{E_s} * I_s$$

 $S_i = 0,0587 m = 58,724 mm = 5,87 cm$ 

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de  $\sigma'_{zp}$ 

$$\sigma'_{zp} = \left(2,5 \ m * 18,44 \ \frac{kN}{m^3}\right) + \left(1,5 \ m * 16,59 \ \frac{kN}{m^3}\right)$$

 $\sigma'_{zp} = 70,985 \, kPa$ 

Cálculo de Izp

 $I_{zp} = 0,8753$ 

Cálculo de C₁

$$C_1 = 1,0 \ge 0,5$$

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s



Gráfica 110. Gráfica de Smertchmann producida en el borde de una zapata circular de diámetro 4m.

Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
0,00	2,125	1,0625	2,125	10000	0,306	6,5025E-05
2,125	2,50	2,3125	0,375	10000	0,548	2,0550E-05
						8,5575E-05

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,0214 m = 21,394 mm = 2,140 cm$ 

• Asentamiento en el borde del cimiento (Suelo cohesivo)

D = 2,5 m + 6m = 8,5 m

Tipo de espacio

$$\frac{D}{B} = \frac{8,5 m}{4,0 m} = 2,13 < 10 \ (Espacio Finito)$$

#### Determinación del factor de influencia, según Terzaghi, 1943.

$$\frac{D}{R} = 5 \rightarrow I_s = 0.76$$

$$\frac{D}{R} = \frac{2}{3} \rightarrow I_s = 0,25$$

Al interpolar los datos anteriores, obtengo que el valor del factor de influencia es:

$$\frac{D}{R} = \frac{8,5}{2,0} \to I_{s1} = 0,6717$$

Analizo el primer estrato como si fuera arcilla

$$D = H_1$$

Tipo de espacio

$$\frac{D}{B} = \frac{2,5 m}{4,0 m} = 0,625 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia

$$\frac{D}{R} = 5 \quad \rightarrow I_s = 0.76$$
$$\frac{D}{R} = \frac{2}{3} \quad \rightarrow I_s = 0.25$$

Al interpolar los datos anteriores, obtengo que el valor del factor de influencia es:

$$\frac{D}{R} = \frac{2,5}{2,0} \to I_{s2} = 0,3186$$

Luego, el factor de influencia total es:

$$I_s = 0,6717 - 0,3186$$

 $I_s = 0,3531$ 

### Cálculo de la carga actuante

 $q = 1000 \ kPa$ 

$$S_i = \frac{q * R}{E_s} * I_s$$

 $S_i = 0,0461 \ m = 46,080 \ mm = 4,608 \ cm$ 

#### Asentamiento total en el centro:

 $S_{i Total Centro} = 0,1609 m + 0,0587 m = 0,2196 m$ 

#### Asentamiento total en el borde:

 $S_{i Total Borde} = 0,0214 m + 0,0461 m = 0,0675 m$ 

## b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

#### **Esfuerzos verticales CENTRO**



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 910,56 \ kPa$ 

## Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 646,45 \ kPa$ 

#### Esfuerzo a una profundidad de 3m

 $\Delta \sigma_c = 423,97 \ kPa$ 

#### Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 284,458 \ kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 199,59 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 146,19 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 111,04 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 77,65 \ kPa$ 

**Esfuerzos verticales BORDE** 



Nota: Los valores del factor de influencia, son calculados, según Foster y Ahlvin, 1954.

#### Esfuerzo a una profundidad de 1m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{1m}{2m} = 0,50$ 

Entonces, el factor de influencia es:

 $I_z = 0,410$ 

Luego, el esfuerzo producido en el punto "A" es:

 $\Delta \sigma_A = 410 \ kPa$ 

#### Esfuerzo a una profundidad de 2m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{2m}{2m} = 1$ 

Entonces, el factor de influencia es:

$$I_z = 0,340$$

Luego, el esfuerzo producido en el punto "B" es:

 $\Delta \sigma_B = 340 \ kPa$ 

#### Esfuerzo a una profundidad de 3m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{3m}{2m} = 1,5$ 

Entonces, el factor de influencia es:

$$I_z = 0,275$$

Luego, el esfuerzo producido en el punto "C" es:

$$\Delta \sigma_C = 275 \ kPa$$

#### Esfuerzo a una profundidad de 4m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{4m}{2m} = 2$ 

Entonces, el factor de influencia es:

$$I_z = 0,210$$

Luego, el esfuerzo producido en el punto "D" es:

 $\Delta \sigma_D = 210 \ kPa$ 

#### Esfuerzo a una profundidad de 5m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{5m}{2m} = 2,25$ 

Entonces, el factor de influencia es:

$$I_z = 0,158$$

Luego, el esfuerzo producido en el punto "E" es:

 $\Delta \sigma_E = 158 \, kPa$ 

#### Esfuerzo a una profundidad de 6m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{6m}{2m} = 3$ 

Entonces, el factor de influencia es:

$$I_z = 0,120$$

Luego, el esfuerzo producido en el punto "F" es:

 $\Delta \sigma_F = 120 \ kPa$ 

#### Esfuerzo a una profundidad de 7m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{7m}{2m} = 3,5$ 

Entonces, el factor de influencia es:

$$I_z = 0,098$$

Luego, el esfuerzo producido en el punto "G" es:

$$\Delta \sigma_G = 98 \, kPa$$

#### Esfuerzo a una profundidad de 8,5m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{8,5 m}{2m} = 4,25$ 

Entonces, el factor de influencia es:

$$I_z = 0,072$$

Luego, el esfuerzo producido en el punto "G" es:

 $\Delta \sigma_H = 72 \ kPa$ 

Nota: Los cálculos correspondientes a esfuerzos geoestáticos y gráficos de círculo de Mohr se aprecian en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

## Cimiento circular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

Se desea calcular el asentamiento inmediato de una cimentación circular, con una carga vertical céntrica de 1000 kPa. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



# a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

## Cálculo de $\sigma'_{zp}$

$$\sigma'_{zp} = \left(2,25 \ m * 20,2 \ \frac{kN}{m^3}\right) - \left(2,25 \ m * 9,81 \ \frac{kN}{m^3}\right)$$

 $\sigma'_{zp} = 23,377 \ kPa$ 

Cálculo de  $I_{zp}$ 

$$I_{zp} = 1,1540$$

Cálculo de C₁

$$C_1 = 1,0 \ge 0,5$$

Cálculo de C₂

$$C_2 = 1,0$$
;  $t = 0s$ 



Gráfica 111. Gráfica de Smertchmann producida en el centro de una zapata circular de diámetro 4,5*m*.

Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
0,00	2,25	1,125	2,25	10000	0,624	1,4040E-04
2,25	2,50	2,250	0,25	10000	1,147	2,8675E-05
						1,691E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,1691 m = 169,1 mm = 16,91 cm$ 

• Asentamiento en el centro del cimiento (Suelo cohesivo)

D = 2,5 m + 6 m

D = 8,5 m

Tipo de espacio

$$\frac{D}{B} = \frac{8,5 m}{4,5 m} = 1,89 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia, según Terzaghi, 1943.

$$\frac{D}{R} = 5 \rightarrow I_s = 1,30$$

$$\frac{D}{R} = \frac{2}{3} \rightarrow I_s = 0,65$$

Al interpolar los datos anteriores, obtengo que el valor del factor de influencia es:

$$\frac{D}{R} = \frac{8,5}{2,25} \to I_{s1} = 1,1167$$

Analizo el primer estrato como si fuera arcilla

 $D = H_1$ 

Tipo de espacio

 $\frac{D}{B} = \frac{2,5 \text{ m}}{4,5 \text{ m}} = 0,56 < 10 \text{ (Espacio Finito)}$ Determinación del factor de influencia

$$\frac{D}{R} = 5 \quad \rightarrow I_s = 1,30$$
$$\frac{D}{R} = \frac{2}{3} \quad \rightarrow I_s = 0,65$$

Al interpolar los datos anteriores, obtengo que el valor del factor de influencia es:

$$\frac{D}{R} = \frac{2,5}{2,25} \to I_{s2} = 0,7167$$

Luego, el factor de influencia total es:

$$I_s = 1,1167 - 0,7167$$

 $I_s = 0,40$ 

#### Cálculo de la carga actuante

$$q = 1000 \ kPa$$

$$S_i = \frac{q * R}{E_s} * I_s$$

 $S_i = 0,0587 m = 58,725 mm = 5,872 cm$ 

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

## Cálculo de $\sigma'_{zp}$

$$\sigma'_{zp} = \left(2,5m * 20,2 \ \frac{kN}{m^3}\right) - \left(2,5m * 9,81 \ \frac{kN}{m^3}\right) + \left(2m * 18,44 \ \frac{kN}{m^3}\right) - \left(2m * 9,81 \ \frac{kN}{m^3}\right)$$

 $\sigma'_{zp} = 43,235 \, kPa$ 

Cálculo de Izp

 $I_{zp} = 0,9809$ 

Cálculo de C₁

$$C_1 = 1,0 \ge 0,5$$

## Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s





Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
0,00	2,125	1,0625	2,125	10000	0,306	6,5025E-05
2,125	2,50	2,3125	0,375	10000	0,553	2,0738E-05
						8,5763E-05

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,0214 m = 21,441 mm = 2,144 cm$ 

• Asentamiento en el borde del cimiento (Suelo cohesivo)

D = 2,5 m + 6mD = 8,5 m

### Tipo de espacio

$$\frac{D}{B} = \frac{8,5 m}{4,5 m} = 1,89 < 10 \ (Espacio Finito)$$

#### Determinación del factor de influencia, según Terzaghi, 1943.

$$\frac{D}{R} = 5 \rightarrow I_s = 0,76$$

$$\frac{D}{R} = \frac{2}{3} \rightarrow I_s = 0,25$$

Al interpolar los datos anteriores, obtengo que el valor del factor de influencia es:

$$\frac{D}{R} = \frac{8,5}{2,25} \to I_{s1} = 0,6161$$

Analizo el primer estrato como si fuera arcilla

$$D = H_1$$

Tipo de espacio

$$\frac{D}{B} = \frac{2,5 m}{4,5 m} = 0,56 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia

$$\frac{D}{R} = 5 \quad \rightarrow I_s = 0,76$$
$$\frac{D}{R} = \frac{2}{3} \quad \rightarrow I_s = 0,25$$

Al interpolar los datos anteriores, obtengo que el valor del factor de influencia es:

$$\frac{D}{R} = \frac{2.5}{2.25} \to I_{s2} = 0.3023$$

Luego, el factor de influencia total es:

$$I_s = 0,6161 - 0,3023$$

$$I_s = 0,3138$$

## Cálculo de la carga actuante

$$q = 1000 \, kPa$$

$$S_i = \frac{q * R}{E_s} * (1 - v^2) * I_s$$

 $S_i = 0,0461 m = 46,070 mm = 4,607 cm$ 

Asentamiento total en el centro:

 $S_{i Total Centro} = 0,1691 m + 0,0587 m = 0,2278 m$ 

#### Asentamiento total en el borde:

 $S_{i Total Borde} = 0,0214 m + 0,0461 m = 0,0675 m$ 

#### b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

#### **Esfuerzos verticales CENTRO**



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 933,01 \ kPa$ 

#### Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 706,76 \ kPa$ 

#### Esfuerzo a una profundidad de 3m

 $\Delta \sigma_c = 488 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 337,91 \, kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 241,64 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 179,11 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 137,12 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 96,60 \ kPa$ 

**Esfuerzos verticales BORDE** 



Nota: Los valores del factor de influencia, son calculados, según Foster y Ahlvin, 1954.

#### Esfuerzo a una profundidad de 1m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{1m}{2,25 m} = 0,44$ 

Entonces, el factor de influencia es:

 $I_z = 0,430$ 

Luego, el esfuerzo producido en "A" es:

$$\Delta \sigma_A = 430 \ kPa$$

### Esfuerzo a una profundidad de 2m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{2m}{2,25m} = 0,90$ 

Entonces, el factor de influencia es:

$$I_z = 0,360$$

Luego, el esfuerzo producido en el punto "B" es:

$$\Delta \sigma_B = 360 \ kPa$$

## Esfuerzo a una profundidad de 3m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{3m}{2,25m} = 1,33$ 

Entonces, el factor de influencia es:

$$I_z = 0,300$$

Luego, el esfuerzo producido en el punto "C" es:

$$\Delta \sigma_C = 300 \ kPa$$

## Esfuerzo a una profundidad de 4m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{4m}{2,25 m} = 1,78$ 

Entonces, el factor de influencia es:

$$I_z = 0,240$$

Luego, el esfuerzo producido en el punto "D" es:

$$\Delta \sigma_D = 240 \ kPa$$

### Esfuerzo a una profundidad de 5m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{5m}{2,25 m} = 2,22$ 

Entonces, el factor de influencia es:

$$I_z = 0,190$$

Luego, el esfuerzo producido en el punto "E" es:

 $\Delta \sigma_E = 190 \ kPa$ 

### Esfuerzo a una profundidad de 6m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{6m}{2,25 m} = 2,67$ 

Entonces, el factor de influencia es:

$$I_z = 0,150$$

Luego, el esfuerzo producido en el punto "F" es:

 $\Delta \sigma_F = 150 \ kPa$ 

#### Esfuerzo a una profundidad de 7m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{7m}{2,25 m} = 3,11$ 

Entonces, el factor de influencia es:

$$I_z = 0,120$$

Luego, el esfuerzo producido en el punto "G" es:

$$\Delta \sigma_G = 120 \ kPa$$

## Esfuerzo a una profundidad de 8,5m

Se tiene que:

$$\frac{r}{R} = 1$$
;  $\frac{z}{R} = \frac{8,5 m}{2,25 m} = 3,8$ 

Entonces, el factor de influencia es:

$$I_z = 0,085$$

Luego, el esfuerzo producido en el punto "G" es:

$$\Delta \sigma_H = 85 \ kPa$$

Nota: Los cálculos correspondientes a esfuerzos geoestáticos y gráficos de círculo de Mohr se pueden ver en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

## Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Se tiene una zapata continua de dimensiones 2 m x 20 m, calcular el asentamiento elástico de la zapata. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- **b**) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento (Suelo cohesivo)

Tipo de espacio

$$\frac{D}{B'} = \frac{2,5 m}{1,0 m} = 2,5 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_s = F_1 + \left(\frac{1-2\nu}{1-\nu}\right)F_2$$

Entonces, tengo que:

$$F_1 = 0,340$$

 $F_2 = 0,150$ 

Luego, el factor de influencia es:

$$I_{\rm s} = 0,390$$

Cálculo de q

$$q = 1000 kPa$$

Cálculo del asentamiento

$$S_i = \frac{q * B'}{Es} * (1 - v^2) * I_s * 4$$

 $S_i = 0,0855 \ m = 85,503 \ mm = 8,550 \ cm$ 

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de  $\sigma'_{zp}$ 

$$\sigma'_{zp} = \left(2 \ m * 16,59 \ \frac{kN}{m^3}\right)$$
$$\sigma'_{zp} = 33,18 \ kPa$$

Cálculo de Izp

 $I_{zp}=1,\!0489$ 

Cálculo de C₁

 $C_1=1,0\geq 0,5$ 

Cálculo de  $C_2$ 

 $C_2 = 1,0$ ; t = 0s

#### Cálculo del asentamiento producido

**Gráfica 113.** Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones  $2m \times 20m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	4,00	3,25	1,50	10000	0,830	1,2450E-04
4,00	6,00	5,00	2,00	10000	0,524	1,0480E-04
6,00	8,00	7,00	2,00	10000	0,175	3,5000E-05
						2,6430E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

$$S_i = 0,2643 m = 264,3 mm = 26,43 cm$$

• Asentamiento en el borde del cimiento (Suelo cohesivo)

## Tipo de espacio

$$\frac{D}{B} = \frac{2.5 m}{2.0 m} = 1.25 < 10$$
 (*Espacio Finito*)

#### Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_s = F_1 + \left(\frac{1-2\nu}{1-\nu}\right)F_2$$

Entonces, tengo que:

$$F_1 = 0,170$$

$$F_2 = 0,142$$

Luego, el factor de influencia es:

$$I_{s} = 0,2173$$

Cálculo de q

$$q = 1000 \, kPa$$

Cálculo del asentamiento

$$S_i = \frac{q * B}{Es} * (1 - v^2) * I_s$$

 $S_i = 0,02382 m = 23,820 mm = 2,382 cm$ 

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

## Cálculo de $\sigma'_{zp}$

$$\sigma'_{zp} = \left(2,5 \ m * 16,59 \ \frac{kN}{m^3}\right) + \left(1,5 \ m * 18,44 \ \frac{kN}{m^3}\right)$$
$$\sigma'_{zp} = 69,135 \ kPa$$

Cálculo de Izp

 $I_{zp} = 0,8803$ 

Cálculo de C₁

 $C_1=1,0\geq 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento producido

**Gráfica 114.** Gráfica de Smertchmann producida en el borde de una zapata continúa de dimensiones  $2m \times 20m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	4,25	3,375	1,750	10000	0,774	1,3545E-04
4,25	6,375	5,3125	2,125	10000	0,780	1,6575E-04
6,375	8,50	7,4375	2,125	10000	0,617	1,3111E-04
						4,3231E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z / 4$$

 $S_i = 0,108 m = 108,077 mm = 10,808 cm$ 

## Asentamiento total producido en el centro del cimiento:

 $S_{i \, Total \, Centro} = 0,0855 \, m + 0,2643 \, m = 0,3498 \, m$ 

#### Asentamiento total producido en el borde del cimiento:

 $S_{i Total Borde} = 0,02382 m + 0,108 m = 0,13182 m$ 

#### b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

#### **Esfuerzos verticales CENTRO**



$$\Delta \sigma_z = \frac{q}{\pi} * \left[ \tan^{-1} \left( \frac{z}{x-b} \right) - \tan^{-1} \left( \frac{z}{x+b} \right) - \frac{2bz(x^2 - z^2 - b^2)}{(x^2 + z^2 - b^2)^2 + 4b^2 z^2} + \pi \right]$$

Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 818,310 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 549,815 \ kPa$ 

Esfuerzo a una profundidad de 3m

 $\Delta \sigma_{c} = 395,818 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 305,751 \ kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 248,093 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 203,282 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 179,461 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 148,427 \ kPa$ 

**Esfuerzos verticales BORDE** 



$$\Delta \sigma_z = \frac{q}{\pi} * \left[ \tan^{-1} \left( \frac{z}{x-b} \right) - \tan^{-1} \left( \frac{z}{x+b} \right) - \frac{2bz(x^2 - z^2 - b^2)}{(x^2 + z^2 - b^2)^2 + 4b^2 z^2} + \frac{\pi}{2} \right]$$

Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 479,740 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta\sigma_B = 409,155 \; kPa$ 

Esfuerzo a una profundidad de 3m

 $\Delta\sigma_{C}=334,080\;kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 274,907 \ kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta\sigma_{\! E} = 230,881 \, kPa$ 

## Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 197,910 \ kPa$ 

## Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 172,667 \ kPa$ 

### Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 152,876 \ kPa$ 

Nota: Los respectivos cálculos de esfuerzos geoestáticos y gráficos de círculo de Mohr se aprecian en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

## Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

Se desea calcular el asentamiento inmediato producido en el cimiento de dimensiones:  $3m \times 30 m$ . Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Gráfica de circulo de Mohr debido al peso propio del suelo



a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento (Suelo cohesivo)

Tipo de espacio

$$\frac{D}{B'} = \frac{2,5 m}{1,5 m} = 1,67 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_s = F_1 + \left(\frac{1-2\nu}{1-\nu}\right)F_2$$

Entonces, tengo que:

$$F_1 = 0,227$$

 $F_2 = 0,150$ 

Luego, el factor de influencia es:

$$I_s = 0,277$$

Cálculo de q

$$q = 1000 \, kPa$$

Cálculo del asentamiento

$$S_i = \frac{q * B'}{Es} * (1 - v^2) * I_s * 4$$

 $S_i = 0,09109 m = 91,094 mm = 9,110 cm$ 

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de  $\sigma'_{zp}$ 

$$\sigma'_{zp} = \left(2,5m * 18 \ \frac{kN}{m^3}\right) - \left(2,5m * 9,81 \ \frac{kN}{m^3}\right) + \left(0,5m * 20,2 \ \frac{kN}{m^3}\right) - \left(0,5m * 9,81 \ \frac{kN}{m^3}\right)$$

 $\sigma'_{zp} = 25,67 \ kPa$ 

Cálculo de *I_{zp}* 

 $I_{zp}=1,\!1241$ 

Cálculo de C₁

 $C_1=1,0\geq 0,5$ 

Cálculo de  $C_2$ 

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento producido

**Gráfica 115.** Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones  $3m \times 30m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	4,25	3,3750	1,750	10000	1,077	1,8848E-04
4,25	6,375	5,3125	2,125	10000	0,835	1,7744E-04
6,375	8,50	7,4375	2,125	10000	0,570	1,2113E-04
						4,870E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

$$S_i = 0,487 m = 487 mm = 48,7 cm$$

• Asentamiento en el borde del cimiento (Suelo cohesivo)

## Tipo de espacio

$$\frac{D_f}{B} = \frac{2.5 m}{3.0 m} = 0.83 < 10$$
 (Espacio Finito)

#### Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_s = F_1 + \left(\frac{1-2\nu}{1-\nu}\right)F_2$$

Entonces, tengo que:

$$F_1 = 0,090$$

$$F_2 = 0,130$$

Luego, el factor de influencia es:

$$I_{\rm s} = 0,1333$$

Cálculo de q

$$q = 1000 \, kPa$$

Cálculo del asentamiento

$$S_i = \frac{q * B'}{Es} * (1 - v^2) * I_s$$

 $S_i = 0,02191 m = 21,918 mm = 2,19 cm$ 

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

## Cálculo de $\sigma'_{zp}$

$$\sigma'_{zp} = \left(2,5m * 18 \ \frac{kN}{m^3}\right) - \left(2,5m * 9,81 \ \frac{kN}{m^3}\right) + \left(3,5m * 20,2 \ \frac{kN}{m^3}\right) - \left(3,5m * 9,81 \ \frac{kN}{m^3}\right)$$
  
$$\sigma'_{zp} = 56,84 \ kPa$$

Cálculo de  $I_{zp}$ 

 $I_{zp} = 0,9194$
Cálculo de C₁

 $C_1=1,0\geq 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

### Cálculo del asentamiento producido

**Gráfica 116.** Gráfica de Smertchmann producida en el borde de una zapata continúa de dimensiones  $3m \times 30m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
2,50	4,25	3,375	1,750	10000	0,605	1,0588E-04
4,25	6,375	5,3125	2,125	10000	0,837	1,7786E-04
6,375	8,50	7,4375	2,125	10000	0,846	1,7978E-04
						4,6351E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,\!1158\,m = 115,\!878mm = 11,\!588\,cm$ 

### Asentamiento producido en el centro de cimiento:

 $S_{i Total Centro} = 0,09109 m + 0,487 m = 0,5781 m$ 

#### Asentamiento producido en el borde del cimiento:

 $S_{i Tital Borde} = 0,02191 m + 0,1158 m = 0,13771 m$ 

### b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

### **Esfuerzos verticales CENTRO**



## Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 919,490 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 715,243 \ kPa$ 

Esfuerzo a una profundidad de 3m

 $\Delta \sigma_{C} = 549,815 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 437,700 \ kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 360,764 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta\sigma_F = 305,751 \, kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 264,816 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta\sigma_{\! H}=220,\!151\,kPa$ 

**Esfuerzos verticales BORDE** 



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 493,076 kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 459,745 \ kPa$ 

Esfuerzo a una profundidad de 3m

 $\Delta \sigma_{C} = 409,155 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta\sigma_D = 357,\!621 \; kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta\sigma_{\! E}=312,\!452\;kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 274,907 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta\sigma_G=244,131\;kPa$ 

# Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 207,901 \ kPa$ 

Nota: Los respectivos cálculos de esfuerzos geoestáticos y gráficos de círculo de Mohr se aprecian en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

# Cimiento continúo apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Se tiene el siguiente cimiento continuo de 5 m x 50 m y se pide calcular el asentamiento inmediato producido en la zapata. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



# a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

# Cálculo de $\sigma'_{zp}$

$$\sigma'_{zp} = \left(2,5 \ m * 18,44 \ \frac{kN}{m^3}\right) + \left(2,5 \ m * 16,59 \ \frac{kN}{m^3}\right)$$
$$\sigma'_{zp} = 87,58 \ kPa$$

Cálculo de *I_{zp}* 

$$I_{zp} = 0,8380$$

Cálculo de C₁

$$C_1 = 1,0 \ge 0,5$$

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

# Cálculo del asentamiento producido

**Gráfica 117.** Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones  $5m \times 50m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
0,00	2,125	1,0625	2,125	10000	0,336	7,1400E-05
2,125	2,50	2,3125	0,375	10000	0,495	1,8563E-05
						8,996E-05

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,0899 m = 89,96 mm = 8,996 cm$ 

## Tipo de espacio

$$D = 2,5 m + 6m$$

D = 8,5 m

$$\frac{D}{B'} = \frac{8,5 m}{2,5 m} = 3,4 > 10$$
 (Espacio finito)

### Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_{s1} = F_1 + (\frac{1-2v}{1-v})F_2$$

Entonces, tengo que:

$$F_1 = 0,425$$
  
 $F_2 = 0,150$ 

Luego, el factor de influencia es:

$$I_{s1} = 0,475$$

Ahora, analizo como si el primer estrato fuera arcilla

 $D = H_1$ 

Determinación del tipo de espacio:

$$\frac{D}{B'} = \frac{2,5 m}{2,5 m} = 1,0 < 10 \ (\ Espacio \ Finito)$$

Determinación del factor de influencia

$$I_{s2} = F_1 + (\frac{1-2\nu}{1-\nu})F_2$$

Entonces, se tiene que:

$$F_1 = 0,130$$
  
 $F_2 = 0,130$ 

Luego, el factor de influencia es:

$$I_{s2} = 0,1733$$

Entonces, el factor de influencia actuante es:

$$I_s = 0,4750 - 0,1733$$
  
 $I_s = 0,3017$ 

Calculo de la carga actuante

$$q = 1000 \ kPa$$

Cálculo del asentamiento

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s * 4$$

$$S_i = 0,1654 m = 165,361 mm = 16,536 cm$$

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

Cálculo de  $\sigma'_{zp}$ 

$$\sigma'_{zp} = \left(2,5 \ m * 18,44 \ \frac{kN}{m^3}\right) + \left(6 \ m * 16,59 \ \frac{kN}{m^3}\right)$$
$$\sigma'_{zp} = 145,64 \ kPa$$

Cálculo de I_{zp}

$$I_{zp} = 0,7620$$

Cálculo de C₁

$$C_1 = 1,0 \ge 0,5$$

# Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

# Cálculo del asentamiento producido

**Gráfica 118.** Gráfica de Smertchmann producida en el borde de una zapata continúa de dimensiones  $5m \times 50m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
0,00	2,125	1,0625	2,125	10000	0,284	6,0350E-05
2,125	2,50	2,3125	0,375	10000	0,351	1,3163E-05
						7,3513E-05

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,0184 \ m = 18,378 \ mm = 1,837 \ cm$ 

• Asentamiento en el borde del cimiento (Suelo cohesivo)

$$D = 2,5 m + 6m$$

D = 8,5 m

# Tipo de espacio

$$\frac{D}{B} = \frac{8,5 m}{5 m} = 1,7 < 10 \quad (Espacio finito)$$

# Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_{s1} = F_1 + (\frac{1-2v}{1-v})F_2$$

Entonces, se tiene que:

$$F_1 = 0,225$$

$$F_2 = 0,150$$

Luego, el factor de influencia es:

$$I_{s1} = 0,275$$

Ahora, analizo como si el primer estrato fuera arcilla

$$D = H_1$$

Determinación del tipo de espacio:

$$\frac{D}{B} = \frac{2,5 m}{5,0 m} = 0,5 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia

$$I_{s2} = F_1 + (\frac{1-2v}{1-v})F_2$$

Entonces, se tiene que:

$$F_1 = 0,045$$
  
 $F_2 = 0,090$ 

Luego, el factor de influencia es:

$$I_{s2} = 0,075$$

Entonces, el factor de influencia actuante es:

$$I_s = 0,275 - 0,075$$
  
 $I_s = 0,200$ 

Cálculo de la carga actuante

 $q = 1000 \, kPa$ 

Cálculo del asentamiento

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s$$

 $S_i = 0,0548 \ m = 54,810 \ mm = 5,481 \ cm$ 

# Asentamiento producido en el centro de cimiento:

 $S_{i Total Centro} = 0,0899 m + 0,1654 m = 0,2553 m$ 

Asentamiento producido en el borde del cimiento:

 $S_{i\,Tital\,Borde} = 0,0184\,m + 0,0548\,m = 0,0732\,m$ 

## b) Incremento de esfuerzos verticales producidos en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

#### **Esfuerzos verticales CENTRO**



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 977,286 \ kPa$ 

#### Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 880,992 \ kPa$ 

#### Esfuerzo a una profundidad de 3m

 $\Delta \sigma_{C} = 755,376 \, kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta\sigma_D=641,736~kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 549,815 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta\sigma_F = 477,351 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 420,020 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 354,440 \ kPa$ 

**Esfuerzos verticales BORDE** 



Esfuerzo a una profundidad de 1m

 $\Delta\sigma_{\!A}=498,\!381\;kPa$ 

#### Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 488,643 \ kPa$ 

### Esfuerzo a una profundidad de 3m

 $\Delta \sigma_C = 468,410 \ kPa$ 

## Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 440,496 \ kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 409,155 \ kPa$ 

## Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 377,688 \ kPa$ 

## Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 347,983 \ kPa$ 

## Esfuerzo a una profundidad de 8,5m

 $\Delta\sigma_{H} = 308,360 \ kPa$ 

Nota: Los cálculos de esfuerzos geoestáticos y gráficos de círculo de Mohr se observan en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

# Cimiento continúo apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático)

Se pide calcular el asentamiento inmediato producido por el cimiento de dimensiones 4 m x 40 m, el cual será empleado para soportar una estructura de 6 pisos. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



# a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

# Cálculo de $\sigma'_{zp}$

$$\sigma'_{zp} = \left(2,5m * 20,2 \ \frac{kN}{m^3}\right) - \left(2,5m * 9,81 \ \frac{kN}{m^3}\right) + \left(1,5m * 18 \ \frac{kN}{m^3}\right) - \left(1,5m * 9,81 \ \frac{kN}{m^3}\right)$$
  
$$\sigma'_{zp} = 38,26 \ kPa$$

Cálculo de *I_{zp}* 

$$I_{zp} = 1,0112$$

Cálculo de C₁

$$C_1 = 1,0 \ge 0,5$$

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

# Cálculo del asentamiento producido

**Gráfica 119.** Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones  $4m \times 40m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	$Iz^*\Delta zi/Es$
0,00	2,125	1,0625	2,125	10000	0,415	8,8188E-05
2,125	2,50	2,3125	0,375	10000	0,669	2,5088E-05
						1,1328E-04

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,11328 m = 113,28 mm = 11,328 cm$ 

• Asentamiento en el centro del cimiento (Suelo cohesivo)

$$D = 2,5 m + 6m$$

D = 8,5 m

Tipo de espacio

$$\frac{D}{B'} = \frac{8,5 m}{2,0 m} = 4,25 < 10$$
 (Espacio infinito)

# Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_{s1} = F_1 + (\frac{1 - 2v}{1 - v})F_2$$

Entonces, tengo que:

$$F_1 = 0,485$$

 $F_2 = 0,148$ 

Luego, el factor de influencia es:

$$I_{s1} = 0,5343$$

Ahora, analizo como si el primer estrato fuera arcilla

 $D = H_1$ 

Determinación del tipo de espacio:

$$\frac{D}{B'} = \frac{2,5 m}{2,0 m} = 1,25 < 10 \ (Espacio Finito)$$

# Determinación del factor de influencia

$$I_{s2} = F_1 + (\frac{1-2\nu}{1-\nu})F_2$$

Entonces, tengo que:

$$F_1 = 0,170$$

$$F_2 = 0,140$$

Luego, el factor de influencia es:

$$I_{s2} = 0,2167$$

Entonces, el factor de influencia actuante es:

$$I_s = 0,5343 - 0,2167$$

$$I_s = 0,3176$$

Cálculo de la carga actuante

$$q = 1000 \ kPa$$

Cálculo del asentamiento

$$S_i = \frac{q * B'}{E_s} * (1 - v^2) * I_s * 4$$

$$S_i = 0,1392 m = 139,261 mm = 13,926 cm$$

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

# Cálculo de $\sigma'_{zp}$

$$\sigma'_{zp} = \left(2,5m * 20,2 \frac{kN}{m^3}\right) - \left(2,5m * 9,81 \frac{kN}{m^3}\right) + \left(5,5m * 18 \frac{kN}{m^3}\right) - \left(5,5m * 9,81 \frac{kN}{m^3}\right)$$
  
$$\sigma'_{zp} = 71,02 \ kPa$$

Cálculo de *I_{zp}* 

 $I_{zp} = 0,8752$ 

Cálculo de C₁

 $C_1=1,0\geq 0,5$ 

Cálculo de C₂

 $C_2 = 1,0$ ; t = 0s

## Cálculo del asentamiento producido

**Gráfica 120.** Gráfica de Smertchmann producida en el centro de una zapata continúa de dimensiones  $4m \times 40m$ .



Fuente. Autora del proyecto

Zi	Zf	Zm	$\Delta Zi$	Es	Iz	Iz*∆zi/Es
0,00	2,125	1,0625	2,125	10000	0,290	6,1625E-05
2,125	2,50	2,3125	0,375	10000	0,395	1,4813E-05
						7,6438E-05

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

 $S_i = 0,0191 m = 19,110 mm = 1,911 cm$ 

• Asentamiento en el borde del cimiento (Suelo cohesivo)

D = 2,5m + 6m

D = 8,5 m

# Tipo de espacio

$$\frac{D}{B} = \frac{8,5 \ m}{4,0 \ m} = 2,13 < 10$$
 (Espacio nfinito)

Determinación del factor de influencia, según Steinbrenner, 1934.

$$I_{s2} = F_1 + (\frac{1-2v}{1-v})F_2$$

Entonces, tengo que:

$$F_1 = 0,290$$

$$F_2 = 0,150$$

Luego, el factor de influencia es:

$$I_{s2} = 0,340$$

Ahora, analizo como si el primer estrato fuera arcilla

$$D = H_1$$

Determinación del tipo de espacio:

$$\frac{D}{B} = \frac{2.5 m}{4.0 m} = 0.63 < 10 \ (Espacio Finito)$$

Determinación del factor de influencia

$$I_{s2} = F_1 + (\frac{1-2\nu}{1-\nu})F_2$$

Entonces, tengo que:

$$F_1 = 0,058$$
  
 $F_2 = 0,113$ 

Luego, el factor de influencia es:

$$I_{s2} = 0,096$$

Entonces, el factor de influencia actuante es:

$$I_s = 0,340 - 0,096$$
  
 $I_s = 0,244$ 

Cálculo de la carga actuante

 $q = 1000 \, kPa$ 

Cálculo del asentamiento

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s$$

 $S_i = 0,0535 m = 53,494 mm = 5,349 cm$ 

## Asentamiento producido en el centro de cimiento:

 $S_{i Total Centro} = 0,11328 m + 0,1356 m = 0,24888 m$ 

Asentamiento producido en el borde del cimiento:

 $S_{i \, Tital \, Borde} = 0,0191 \, m + 0,0535 \, m = 0,0726 \, m$ 

# b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

#### **Esfuerzos verticales CENTRO**



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 959,481 \ kPa$ 

## Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 818,310 \ kPa$ 

#### Esfuerzo a una profundidad de 3m

 $\Delta \sigma_{C} = 668,159 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 549,815 \ kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta\sigma_E = 461,762 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 395,819 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta\sigma_G=345,335\;kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 289,052 \ kPa$ 

**Esfuerzos verticales BORDE** 



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 496,917 \ kPa$ 

# Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 479,740 \ kPa$ 

## Esfuerzo a una profundidad de 3m

 $\Delta \sigma_C = 447,956 \ kPa$ 

## Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 409,155 \ kPa$ 

# Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 370,050 \ kPa$ 

## Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 334,080 \ kPa$ 

## Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 302,367 \ kPa$ 

## Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 262,641 \ kPa$ 

Nota: Los correspondientes cálculos de esfuerzos geoestáticos y gráficos de círculo de Mohr se aprecian en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

# Losa de Cimentación superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Se tiene una losa superficial de dimensiones 15 m x 30 m, que será utilizada para soportar una estructura en concreto de 5 pisos. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



# a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

Nota: En el cálculo de asentamientos inmediatos e incremento de esfuerzos verticales para las diferentes losas se lleva a cabo el procedimiento considerado para cimientos rectangulares y cuadrados.

• Asentamiento en el centro del cimiento (Suelo cohesivo)

$$S_i = \frac{q * B'}{Es} * (1 - v^2) * I_s * 4$$

 $S_i = 0,1068 \ m = \ 106,879 \ mm = \ 10,68 \ cm$ 

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E_s}\right) * \Delta z$$

$$S_i = 0,3564 m = 356,4 mm = 35,64 cm$$

• Asentamiento en el borde del cimiento (Suelo cohesivo)

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s$$

$$S_i = 0,03699 m = 36,99 mm = 3,70 cm$$

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E_s}\right) * \Delta z$$

$$S_i = 0,0512 \ m = 51,15 \ mm = 5,115 \ cm$$

#### Asentamiento total en el centro:

 $S_{i Total Centro} = 0,1068 m + 0,3564 m = 0,4632 m$ 

#### Asentamiento total en el borde:

 $S_{i\,Total\,Borde} = 0,0370\,m + 0,0512\,m = 0,0882\,m$ 

## b) Incremento de esfuerzos verticales producidos en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

**Esfuerzos verticales CENTRO** 



## Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 1000 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 1000 \ kPa$ 

Esfuerzo a una profundidad de 3m

$$\Delta \sigma_c = 984 \, kPa$$

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 956 \, kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 912 \ kPa$ 

Esfuerzo a una profundidad de 6m

$$\Delta \sigma_F = 872 \ kPa$$

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 816 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 752 \ kPa$ 

**Esfuerzos verticales BORDE** 



Esfuerzo a una profundidad de 1m

$$\Delta \sigma_A = 250 \ kPa$$

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 250 \ kPa$ 

Esfuerzo a una profundidad de 3m

$$\Delta \sigma_C = 249 \ kPa$$

Esfuerzo a una profundidad de 4m

$$\Delta \sigma_D = 248 \, kPa$$

Esfuerzo a una profundidad de 5m

$$\Delta \sigma_E = 246,7 \ kPa$$

Esfuerzo a una profundidad de 6m

$$\Delta \sigma_F = 244 \ kPa$$

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 240 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

$$\Delta \sigma_H = 239 \ kPa$$

Nota: Los cálculos de esfuerzos geoestáticos y gráficos de círculo de Mohr se pueden ver en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

# Losa de Cimentación superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático)

Se tiene una losa superficial de dimensiones 19 x 19 m, que se empleara para soportar una estructura en concreto de 6 pisos. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo



a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento (Suelo cohesivo)

$$S_i = \frac{q * B'}{Es} * I_s * 4$$

 $S_i = 0,1110 \ m = 111,011 \ mm = 11,101 \ cm$ 

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

$$S_i = C_1 * C_2 * \Delta q * \sum (\frac{I_z}{E_s}) * \Delta z$$

 $S_i = 0,3196 m = 319,6 mm = 31,96 cm$ 

• Asentamiento en el borde del cimiento (Suelo cohesivo)

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s$$

$$S_i = 0,03822 m = 38,22 mm = 3,82 cm$$

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

$$S_i = C_1 * C_2 * \Delta q * \sum (\frac{I_z}{E_s}) * \Delta z$$

 $S_i = 0,0475 m = 47,513 mm = 4,751cm$ 

#### Asentamiento total en el centro:

 $S_{i Total Centro} = 0,1110 m + 0,3196 m = 0,4306 m$ 

### Asentamiento total en el borde:

 $S_{i Total Borde} = 0,03822 m + 0,0475 m = 0,08572 m$ 

### b) Incremento de esfuerzos verticales producidos en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

### **Esfuerzos verticales CENTRO**



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 1000 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 996 \, kPa$ 

Esfuerzo a una profundidad de 3m

$$\Delta \sigma_C = 988 \, kPa$$

Esfuerzo a una profundidad de 4m

$$\Delta \sigma_D = 960 \, kPa$$

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 928 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 872 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 816 \, kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 728 \ kPa$ 

**Esfuerzos verticales BORDE** 



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 250 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 250 \ kPa$ 

Esfuerzo a una profundidad de 3m

 $\Delta \sigma_c = 250 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 249 \ kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 248 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 247 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 245 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\sigma_H = 241 \ kPa$ 

Nota: Los correspondientes cálculos de esfuerzos geoestáticos y gráficos de círculo de Mohr se observan en el ejercicio de cimiento rectangular apoyado sobre perfil de suelo estratificado (Con presencia de nivel freático).

# Losa superficial apoyada sobre perfil de suelo estratificado (Sin presencia de nivel freático)

Se tiene una losa superficial de dimensiones  $26 m \times 26 m$ , que será utilizada para soportar una estructura en concreto de 8 pisos. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestáticos
- d) Gráfica de circulo de Mohr debido al peso propio del suelo



# a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{l_z}{E}\right)_i * \Delta z$$

 $S_i = 0,0410 \ m = 41,035 \ mm = 4,1035 \ cm$ 

• Asentamiento en el centro del cimiento (Suelo cohesivo)

$$S_i = \frac{q * B'}{E_s} * (1 - v^2) * I_s * 4$$

$$S_i = 0,14706 m = 147,066 m = 14,706 cm$$

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

$$S_i = 8,267 \ x 10^{-3} \ m = 8,267 \ mm = 0,8267 \ cm$$

• Asentamiento en el borde del cimiento (Suelo cohesivo)

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s$$

 $S_i = 0,0380 \ m = 37,906 \ mm = 3,791 \ cm$ 

### Asentamiento total en el centro:

 $S_{i Total Centro} = 0,0410 m + 0,1433 m = 0,1843 m$ 

## Asentamiento total en el borde:

 $S_{i Total Borde} = 8,267 \ x 10^{-3} \ m + 0,0443 \ m = 0,0526 \ m$ 

## b) Incremento de esfuerzos verticales producidos en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

## **Esfuerzo verticales CENTRO**



Esfuerzo a una profundidad de 1m

$$\Delta \sigma_A = 1000 \ kPa$$

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 1000 \ kPa$ 

Esfuerzo a una profundidad de 3m

$$\Delta \sigma_c = 996 \, kPa$$

Esfuerzo a una profundidad de 4m

$$\Delta \sigma_D = 988 \, kPa$$

Esfuerzo a una profundidad de 5m

$$\Delta \sigma_E = 976 \, kPa$$

Esfuerzo a una profundidad de 6m

$$\Delta \sigma_F = 944 \ kPa$$

Esfuerzo a una profundidad de 7m

$$\Delta \sigma_G = 924 \ kPa$$

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 872 \ kPa$ 

**Esfuerzos verticales BORDE** 



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 250 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 250 \ kPa$ 

Esfuerzo a una profundidad de 3m

 $\Delta \sigma_c = 250 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 250 \ kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 249 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 248,5 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 248 \ kPa$ 

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 247 \ kPa$ 

Nota: Los cálculo de esfuerzos geoestáticos y gráficos de círculo de Mohr se aprecian en el ejercicio de cimiento cuadrado apoyado sobre perfil de suelo estratificado (Sin presencia de nivel freático).

# Losa superficial apoyada sobre perfil de suelo estratificado (Con presencia de nivel freático)

Se tiene una losa superficial de dimensiones 18 m x 36 m, que se empleara para soportar una estructura en concreto de 7 pisos. Determinar:

- a) Asentamiento inmediato producido en el centro y borde del cimiento
- b) Incremento de esfuerzo vertical producido en el centro y borde del cimiento
- c) Esfuerzos geoestaticos
- d) Grafica de circulo de Mohr debido al peso propio del suelo

1000 kPa NF 18 x 36 m Suelo I (Granular) Arena Limosa - Sm num= 20.2 kNm3 5  $E = 10000 \ kPa$ v = 0,3Suelo 2 (Cohesivo) Arcillo Arenoso - CH hum=18 kN/m3  $E = 15325,74 \, kPa$ v = 0,4
# a) Asentamiento inmediato producido en el centro y borde del cimiento utilizando soluciones basadas en la teoría elástica.

• Asentamiento en el centro del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{l_z}{E}\right)_i * \Delta z$$

 $S_i = 0,05156 m = 51,56 mm = 5,156 cm$ 

• Asentamiento en el centro del cimiento (Suelo cohesivo)

$$S_i = \frac{q * B'}{E_s} * (1 - v^2) * I_s * 4$$

 $S_i = 0,1638 m = 163,772 mm = 16,377 cm$ 

• Asentamiento en el borde del cimiento - Suelo granular, empleando el método del factor de influencia de la información unitaria de Schmertmann-Hartman (1978).

$$S_i = C_1 * C_2 * \Delta q * \sum \left(\frac{I_z}{E}\right)_i * \Delta z$$

$$S_i = 0,0957 m = 95,675 mm = 9,568 cm$$

• Asentamiento en el borde del cimiento (Suelo cohesivo)

$$S_i = \frac{q * B}{E_s} * (1 - v^2) * I_s$$

 $S_i = 0,0443 \ m = 44,396 \ mm = 4,439 \ cm$ 

#### Asentamiento total en el centro:

 $S_{i \, Total \, Centro} = 0,05156 \, m + 0,1638 \, m = 0,21536 \, m$ 

#### Asentamiento total en el borde:

 $S_{i Total Borde} = 0,0957 m + 0,0443 m = 0,140 m$ 

## b) Incremento de esfuerzos verticales producidos en el centro y borde del cimiento

Nota: Los siguientes cálculos, se realizan a profundidades medidas desde el nivel de cimentación.

#### **Esfuerzos verticales CENTRO**



Esfuerzo a una profundidad de 1m

$$\Delta \sigma_A = 1000 \, kPa$$

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 996 \ kPa$ 

Esfuerzo a una profundidad de 3m

$$\Delta \sigma_c = 988 \, kPa$$

Esfuerzo a una profundidad de 4m

$$\Delta \sigma_D = 964 \, kPa$$

Esfuerzo a una profundidad de 5m

$$\Delta \sigma_E = 948 \ kPa$$

Esfuerzo a una profundidad de 6m

$$\Delta \sigma_F = 920 \ kPa$$

Esfuerzo a una profundidad de 7m

$$\Delta \sigma_G = 884 \ kPa$$

Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 824 \ kPa$ 

**Esfuerzos verticales BORDE** 



Esfuerzo a una profundidad de 1m

 $\Delta \sigma_A = 250 \ kPa$ 

Esfuerzo a una profundidad de 2m

 $\Delta \sigma_B = 250 \ kPa$ 

Esfuerzo a una profundidad de 3m

 $\Delta \sigma_c = 249,8 \ kPa$ 

Esfuerzo a una profundidad de 4m

 $\Delta \sigma_D = 249 \ kPa$ 

Esfuerzo a una profundidad de 5m

 $\Delta \sigma_E = 248 \ kPa$ 

Esfuerzo a una profundidad de 6m

 $\Delta \sigma_F = 246,8 \ kPa$ 

Esfuerzo a una profundidad de 7m

 $\Delta \sigma_G = 244,5 \ kPa$ 

# Esfuerzo a una profundidad de 8,5m

 $\Delta \sigma_H = 240,5 \ kPa$ 

Nota: Los cálculos de esfuerzos geoestáticos y gráficos de círculo de Mohr se observan en el ejercicio de cimiento rectangular apoyado sobre suelo estratificado (Con presencia de nivel freático).

Anexo B. Modelo de encuesta y estadísticas

# ENCUESTA PARA LA ELABORACIÓN DE UNA GUÍA METODOLÓGICA PARA EL USO DEL SOFTWARE SIGMA/W EN EL CÁLCULO DE ESFUERZOS VERTICLAES, GRAFICAS DE CIRCULO DE MOHR Y ASENTAMIENTOS INMEDIATOS PARA CIMENTACIONES SUPERFICIALES.

**1.** Que ocupación desempeña actualmente?

Estudiante ____ Docente - Profesional __

**2.** Como estudiante, docente o profesional en el momento de calcular asentamientos y esfuerzos en cimentaciones superficiales, de que medios se ha basado para la obtención de los resultados?

**3.** Para el cálculo de asentamientos y esfuerzos en cimentaciones superficiales, ha implementado el uso de algún tipo de software?

 NO _____

 SI _____
 Cual software? _____

4. ¿Qué conocimiento tiene acerca del paquete de software GEOSTUDIO?

Ninguno ____

Lo conoce, pero no ha hecho uso del mismo _____ Sabe usarlo de forma muy general _____ Lo conoce y sabe utilizarlo a la perfección _____ No tenía idea de su existencia ____

**5.** ¿Tiene conocimiento de la existencia del software SIGMA/W, perteneciente al paquete de software GEOSTUDIO?

SI ____ NO____

**6.** ¿Considera pertinente la creación de una guía metodológica acerca de cómo usar el software SIGMA/W en lo que respecta al cálculo de esfuerzos y deformaciones para cimentaciones superficiales?

SI _____ NO _____

7. ¿En el momento de que se llegue a llevar a cabo la elaboración de la guía metodológica, estaría dispuesto hacer uso de ella?

SI _____ NO____

## ESTADISTICAS DE ENCUESTA

#### • Resultados de profesionales encuestados

**Gráfica 121.** Gráfica de medios empleados para el cálculo de asentamientos y esfuerzos verticales llevado a cabo por profesionales.



Fuente. Autora del proyecto

**Gráfica 122.** Gráfica de software implementados para el cálculo de asentamientos y esfuerzos verticales llevado a cabo por profesionales.



Fuente. Autora del proyecto

**Gráfica 123.** Gráfica de grado de conocimiento acerca del paquete Geostudio® llevado a cabo por profesionales.



#### Fuente. Autora del proyecto

**Gráfica 124.** Gráfica de conocimiento acerca de la existencia del software SIGMA/W llevado a cabo por profesionales.



Fuente. Autora del proyecto

**Gráfica 125.** Gráfica de pertinencia de la creación de una guía metodológica para el uso del software SIGMA/W llevado a cabo por profesionales.



Fuente. Autora del proyecto

# Resultados de estudiantes encuestados

**Gráfica 126.** Gráfica de medios empleados para el cálculo de asentamientos y esfuerzos verticales llevado a cabo por estudiantes del área de ingeniería civil.







**Gráfica 127.** Gráfica de software implementado para el cálculo de asentamientos y esfuerzos verticales llevado a cabo por estudiantes del área de ingeniería civil.



**Gráfica 128.** Gráfica de grado de conocimiento acerca del paquete Geostudio® llevado a cabo por estudiantes del área de ingeniería civil.



Fuente. Autora del proyecto

**Gráfica 129.** Gráfica de conocimiento acerca de la existencia del software SIGMA/W llevado a cabo por estudiantes del área de ingeniería civil.



Fuente. Autora del proyecto